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APPROXIMATE LIKELIHOOD CONSTRUCTION FOR ROUGH
DIFFERENTIAL EQUATIONS

ANASTASIA PAPAVASILIOU AND KASIA TAYLOR

Abstract. The paper is split in two parts: first, we construct the exact likelihood
for a discretely observed rough differential equation, driven by a piecewise linear
path. In the second part, we use this likelihood in order to construct an approxima-
tion to the likelihood for a discretely observed rough differential equation. Finally,
We show that the approximation error disappears as the sampling frequency goes
to zero.

1. Setting and Main Ideas

In the first part of the paper, we consider the following type of differential equations

(1) dY Dt = a(Y Dt ; θ)dt+ b(Y Dt ; θ)dXDt , Y0 = y0, t ≤ T,

where XD is a realisation of a random piecewise linear path in Rm corresponding to
partition D of [0, T ]. We also assume that θ ∈ Θ, where Θ is the parameter space.
Moreover, we request that a(·, θ) : Rd → Rd and b(·, θ) : Rd → L(Rm,Rd) are Lip(1),
which are sufficient conditions for the existence and uniqueness of the solution Y D,
which is a bounded variation path on Rd.

We will use Iθ to denote the Itô map defined by (1). That is, Iθ maps the path
XD to the path Y D and we write

Y D = Iθ(X
D).

First, we develop a framework for performing statistical inference for differential
equation (1), assuming that we know the distribution of XD. More precisely, we will
aim to construct the likelihood of discrete observations of Y D on the grid D, which
we will denote by yD. The main idea is to use the observations to explicitly construct
the Itô map that maps a finite parametrization of Y D to a finite parametrization of
XD. Typically, Y D will be parametrized by the observations yD := {yti ; ti ∈ D}
and XD will be parametrized by the corresponding normalised increments (∆x)D :=

{xti+1−xti
ti+1−ti ; ti, ti+1 ∈ D}.
In section 2, we study the existence and uniqueness for the pair (XD, Y D) for

Y D parametrised by the given dataset yD = {yti ; ti ∈ D}. We give conditions for
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existence, which is necessary for the methodology to work. Then, we show that for
a and b in Lip(2) and b non singular, the solution will be unique for the case m = d
and it will have m − d degrees of freedom for the case m > d. Since existence will
not in generally be true for the case d > m, this case will not be considered.

In section 3, we explicitly construct the likelihood, treating separately the cases
where we have uniqueness and where we have one or more degrees of freedom. Finally,
in section 4, we demonstrate how the method works in the simple case of a discretely
observed Ornstein-Uhlenbeck model driven by a picewise linear approximation to
fractional Brownian motion.

In the second part of the paper, we consider equation

(2) dYt = a(Yt; θ)dt+ b(Yt; θ)dXt, Y0 = y0, t ≤ T,

where X ∈ GΩp(Rm) is the realisation of a random geometric p-rough path, defined
as the p-variation limit of a random sequence of nested piecewise linear paths. Let
us denote by D(n, T ) the sequence of nested partitions of [0, T ] and by πn(X) the
corresponding sequence of piecewise linear paths, such that dp(πn(X), X) → 0 as
n → ∞. We now assume that for each θ ∈ Θ, a(·, θ) and b(·, θ) are Lip(γ + 1), for
some γ > p, which are sufficient conditions for the existence and uniqueness of the
solution Y = Iθ(X) ∈ GΩp(Rd). Moreover, as before, for b non-singular, the pair
(X, Y ) is unique. If we denote by Y (n) the response to the piecewise linear path
πn(X), i.e. Y (n) = Iθ (πn(X)), then the continuity of the Itô map in the p-variation
topology implies that dp(Y (n), Y )→ 0 as n→∞.

To simplify notation, we will assume that the partitions D(n, T ) are the dyadic
partitions of [0, T ], i.e. they are homogeneous with interval size δ = 2−n. We write
D(n) = {k2−n; k = 0, . . . , N}, where N = 2nT .

In section 5, we use the likelihood constructed before to construct an approximate
likelihood of observing a realisation of (2) on grid D(n) for some fixed n – denoted
by yD(n). The main idea behind the construction is to replace the model (2) that
produces the data by (1), which is tractable and converges to (2) for n → ∞.
However, one also needs to normalise the likelihood appropriately, so that the limit
still depends on the parameter that we want to estimate.

In section 6, we make precise in what sense the likelihood constructed in the
previous section is approximate. Replacing the complicated model by a simpler one
approximating the actual model, when we can construct the likelihood corresponding
to the simpler model exactly, is not an uncommon approach for performing statistical
inference for otherwise intractable models. For example, this is done in [?] where
the authors replace the actual multiscale model by its limiting diffusion and use
that to construct the likelihood. They show that the approximation error due to
the mismatch between data (coming from the multiscale model) and model (the
limiting equation) disappears in the limit. Following a similar approach, we show
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that, under suitable conditions, an appropriate distance between the likelihood for
discrete observations on a grid D(n) of the corresponding process Y (n) and of the
limiting process Y respectively disappears, as n→∞.

Finally, in section ??, we construct the limiting likelihood for a discretely observed
OU process and construct the MLE as well as posterior distributions for the drift
and diffusion parameter of the OU model.

2. Existence and Uniqueness

We are given a set of points yD in Rd, where D is the fixed partition of [0, T ].
In this section, we study the existence and uniqueness of piecewise linear path XD,
whose response Y D through (1) goes through points yD, i.e. Y Dti = yti for each ti ∈ D.

First, we discuss how to express Y D in terms of XD. By construction, XD is linear
between grid points, i.e.

XDt = XDti + ∆XDti (t− ti) , ∀t ∈ [ti, ti+1), ti, ti+1 ∈ D,

where ∆XDti =
XDti+1

−XDti
ti+1−ti . By definition, Y D = Iθ(X

D) which implies that for every

t ∈ [ti, ti+1), Y Dt satisfies

dY Dt = a(Y Dt ; θ)dt+ b(Y Dt ; θ)dXDt =

=
(
a(Y Dt ; θ)dt+ b(Y Dt ; θ)∆XDti

)
dt

with initial conditions Y Dti = yti . This is an ODE and we have already assumed
sufficient regularity on a and b for existence and uniqueness of its solutions. The
general form of the ODE is given by

(3) dỸt =
(
a(Ỹt; θ) + b(Ỹt; θ) · c

)
dt, Y0 = y0

and we will denote its solution by Ft(y0, c; θ). Then,

(4) Y Dt = Ft−ti(yti ,∆Xti ; θ), ∀t ∈ [ti, ti+1).

In order to fit Y D to the observed data yD, we need to solve for ∆Xti , using the
terminal value, i.e. solve

(5) Fti+1−ti(yti ,∆Xti ; θ) = yti+1

for ∆Xti(yti , yti+1
; θ). So, for every interval [ti, ti+1), we need to solve an independent

system of d equations and m unknowns. That is, we need to study the existence and
uniqueness of solutions with respect to c of the system

(6) Fδ(y0, c; θ) = y1,
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for every θ and for appropriate values of δ, y0 and y1. We are going to assume
existence of solution, by requiring that y1 ∈ ∩θ∈ΘMδ (y0; θ), where

(7) Mδ (y0; θ) = {Fδ(y0, c; θ); c ∈ Rm} .

Now, suppose that c1 and c2 are both solutions for a given θ ∈ Θ, i.e.

Fδ(y0, c1, θ) = y1 = Fδ(y0, c2, θ).

We can write the difference as

Fδ(y0, c2, θ)− Fδ(y0, c1, θ) =

(∫ 1

0

DcFδ(y0, c1 + s(c2 − c1); θ)ds

)
· (c2 − c1).

Thus, Fδ(y0, c1; θ) = Fδ(y0, c2; θ) implies(∫ 1

0

DcFδ(y0, c1 + s(c2 − c1); θ)ds

)
· (c2 − c1) = 0.

So, it is sufficient to show that ∀ξ ∈ Rm, the rank of d × m matrix DcFδ(y0, ξ; θ)
is d, which implies that the solution will have m − d degrees of freedom, i.e. given
m− d coordinates of c, the other coordinates are uniquely defined. In particular, for
d = m we get uniqueness.

Since the vector field of (3) is linear with respect to c, we know that Ft(y0, c; θ)
will be continuously differentiable with respect to c for every y0, θ and t in the
appropriate bounded interval [1]. Thus, we define a new auxiliary process as Zt(c) =
DcFt(y0, c; θ) ∈ Rd×m, or,

(8) Zi,α
t (c) =

∂

∂cα
F i
t (y0, c; θ), for i = 1, . . . , d, α = 1, . . . ,m.

Then, assuming one additional degree of regularity, Zt(c) satisfies

d

dt
Zi,α
t (c) =

d

dt

∂

∂cα
F i
t (y0, c; θ) =

∂

∂cα

d

dt
F i
t (y0, c; θ) =

=
∂

∂cα

(
ai(Ft(y0, c; θ)) +

m∑
β=1

cβbiβ(Ft(y0, c; θ))

)
=

=
d∑
j=1

(
∂jai(Ft(y0, c; θ)) +

m∑
β=1

cβ∂jbiβ(Ft(y0, c; θ))

)
Z̄jα
t (c) + biα(Ft(y0, c; θ)),

where by Z̄α
t (c) we denote column α ∈ {1, . . . ,m} of matrix Zt(c). More concisely,

we write

(9)
d

dt
Z̄α
t (c) = 5 (a+ b · c) (Ft) · Z̄α

t (c) + b̄α(Ft),
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where 5f of a function f : Rd → Rd we denote the d× d matrix defined as

(5f(y))i,j = ∂jfi(y).

Also, b̄α is column α of matrix b. Note that, for each fixed α, this is a linear equation
of Z̄α(c) with non-homogeneous coefficients. Also note that the initial conditions
will be

Zi,α
0 (c) =

∂

∂cα
F i

0(y0, c; θ) =
∂

∂cα
y0 ≡ 0, ∀i = 1, . . . , d, α = 1, . . . ,m.

Thus, the solution to this equation will be

(10) Z̄α
t (c) =

∫ t

0

exp (A)s,t b̄α(Fs)ds,

where by exp (A)s,t we denote the sum of iterated integrals

exp (A)s,t =
∞∑
k=0

Ak
s,t

and

Ak
s,t =

∫
· · ·
∫
s<u1<···<uk<t

A(Fu1) · · ·A(Fuk)du1 . . . duk

for

(11) A(y) = 5 (a+ b · c) (y)

This is a d× d matrix and for k = 0 we get the identity matrix, i.e. A0
s,t = Id. Since

each vector Z̄α
δ is a column of the matrix DcFδ(y0, c; θ), the condition that the rank

of this matrix is d is equivalent to d columns being linearly independent. Without
loss of generality, let’s consider the first d columns (d ≤ m) and let us assume that

(12) λ1Z̄
1
δ + · · ·+ λdZ̄

d
δ = 0̄,

for some λ1, . . . , λd ∈ R. We need to find conditions such that (12) is equivalent to
λ1 = · · · = λd = 0. Using (10) we get that (12) is equivalent to∫ δ

0

exp (A)s,δ
(
λ1b̄1(Fs) + · · ·+ λdb̄d(Fs)

)
ds = 0̄.

Using the continuity of the integrated function with respect to s, we can deduce that
there exists a δ′ ∈ [0, δ], such that we can write the above relationship as

exp (A)δ′,δ
(
λ1b̄1(Fδ′) + · · ·+ λdb̄d(Fδ′)

)
· δ = 0̄.

It is known that exp (A)δ′,δ is invertible, with inverse equal to exp (A)δ,δ′ . Conse-
quently, the above relationship can only be true if

λ1b̄1(Fδ′) + · · ·+ λdb̄d(Fδ′) = 0̄.
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Assuming that the rank of d × m matrix b(y) is d for every y, this implies that
λ1 = · · · = λd = 0, which is what we required.

We have shown the following results:

Lemma 2.1. Suppose that rank (b(y, θ)) = d for every y and that a(·, θ) and b(·, θ)
are Lip(2). Then

rank (Zt(c)) = rank (DcFt(y0, c; θ)) = d.

Note that the construction of the process Z can also be done for X ∈ GΩp(Rm),
provided that its piecewise linear approximations converge in p-variation and that
the vector field functions a and b are now Lip(γ + 1). Uniqueness of the pair (X, Y )
for given Y follows by taking limits. We make this statement formal in the following

Corollary 2.2. Suppose that rank (b(y, θ)) = d for every y and that a(·, θ) and b(·, θ)
are Lip(γ + 1). Then, for a given Y , the solution (X, Y ) of (2) is unique.

3. Construction of the Likelihood

In this section, we construct the exact likelihood of observing the process Y D on
a fixed grid D, denoted by yD = Y DD , where Y D is the response to a piecewise linear
path XD on D through (1). The key realisation is that the values of Y D on D actually
completely describe the process Y D.

First, we need to impose a probability structure to the space. Let (Ω,F ,P) be
a probability space and let XD be a random variable, taking values in the space
of piecewise linear paths on D, equipped with the 1-variation topology. So, XD is
a random piecewise linear path on Rm corresponding to partition D. Thus, it is
fully described by the distribution of its values on the grid D, or, equivalently, its
increments. Let us denote that distribution by P∆XD .

The measure P∆XD is a distribution on the finite dimensional space Rm×N , with
N = |D| being the size of the partition. We will assume that this is absolutely
continuous with respect to Lebesgue.

By the continuity of Iθ, Y
D = Iθ(X

D) is also an implicitly finite dimensional
random variable, whose distribution can be fully describe by the probability of its
values on the grid. Below, we construct the likelihood of observing a realisation of
Y D, corresponding to parametrisation yD.

3.1. Case I: Uniqueness. Let us first consider the case where we have existence
and uniqueness of solutions to system (6), so m = d. Then, for each dataset yD, the
set {∆Xti(yti , yti+1

; θ), ti ∈ D} will be uniquely defined as the collection of solutions
of (6). This defines a map

(13) I−1
θ,D(yD) = {∆Xti(yti , yti+1

; θ), ti ∈ D},
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which can be viewed as a transformation of the observed random variable in terms
of the increments of the driving noise. Note that yD and {∆Xti , ti ∈ D} fully
parametrize processes Y D and XD. Thus, we can write the likelihood of observing
yD as

LY D (yD|θ) = L∆XD

(
I−1
θ,D(yD)

)
|DI−1

θ,D(yD)|,
where by L∆XD(∆xD) we denote the Radon-Nikodym derivative of P∆XD with re-
spect to Lebesque. This will be explicitly known since we assumed that we know
the distribution of XD. Finally, since ∆Xti only depends on yti and yti+1

and not
the whole path, it is not hard to see that the Jacobian matrix will be block lower
triangular and consequently, the determinant will be the product of the determinants
of the blocks on the diagonal:

(14) |DI−1
θ,D(yD)| =

∏
ti∈D

∣∣∣O∆Xti(yti , y; θ)|y=yti+1

∣∣∣ .
Note that, by definition,

Fti+1−ti(yti ,∆Xti(yti , y; θ); θ) ≡ y.

Thus,
DcFti+1−ti(yti , c; θ)|c=∆Xti (yti ,yti+1 ;θ) · O∆Xti(yti , y; θ)|y=yti+1

≡ Id

and, consequently,

O∆Xti(yti , y; θ)|y=yti+1
=

(
DcFti+1−ti(yti , c; θ)|c=∆Xti (yti ,yti+1 ;θ)

)−1

=

=
(
Zti+1−ti(∆Xti(yti , yti+1

; θ))
)−1

.

So, the likelihood can be written as

(15) LY D (yD|θ) = L∆XD

(
I−1
θ,D(yD)

)(∏
ti∈D

∣∣Zti+1−ti
(
I−1
θ,D(yD)ti

)∣∣)−1

.

3.2. Case II: Degrees of Freedom. Now suppose that m > d. Without loss
of generality, let us assume that given coordinates cd+1, . . . , cm, the remaining co-
ordinates c1, . . . , cd are uniquely defined. Similar to previous case, we denote by
I−1
θ,D,cd+1,...,cm

(yD) the map from data points yD to the first d increments, denoted

by {∆Xti(yti , yti+1
; θ, cd+1, . . . , cm)i, ti ∈ D, i = 1, . . . , d}, for fixed cd+1, . . . , cm. As

before, this can be viewed as a transformation of the observed random variable in
terms of the first d increments of the driving noise and we get a similar formula for
the likelihood:

LY D (yD|θ, cd+1, . . . , cm) =

L∆XD

(
I−1
θ,D,cd+1,...,cm

(yD)
)
·
(∏

ti∈D

∣∣∣Zti+1−ti

(
I−1
θ,D,cd+1,...,cm

(yD)ti

)∣∣∣)−1

.
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However, cd+1, . . . , cm will not be known in general, so we have to consider all possible
values of them, leading to the formula

LY D (yD|θ) =

∫
Rm−d

LY D (yD|θ, xd+1, . . . , xm)Pcd+1,...,cm (dxd+1, . . . , dxm) =∫
Rm−d

L∆XD

(
I−1
θ,D,xd+1,...,xm

(yD)
)
·

(∏
ti∈D

∣∣∣Zti+1−ti

(
I−1
θ,D,xd+1,...,xm

(yD)ti

)∣∣∣)−1

·

·Pcd+1,...,cm (dxd+1, . . . , dxm) ,

where Pcd+1,...,cm is the marginal distribution of P∆XD on R(m−d)×N .

4. Example: The 1d fractional O.U. process

To demonstrate the methodology, we will apply the ideas described in the previous
section to a simple example. We consider the differential equation

(16) dY Dt = −λY Dt dt+ σXDt , Y D0 = 0,

where XDt is the piecewise linear interpolation to a fractional Brownian path with
Hurst parameter h on a homogeneous grid D = {kδ; k = 0, . . . , N} where Nδ = T .
Our goal will be to construct the likelihood of discretely observing a realisation of
the solution Y D(ω) on the grid, for parameter values θ = (λ, σ) ∈ R+ × R+.

Our first task is to explicitly construct the parametrization of Y D(ω) in terms of
its values on the grid yD, that completely determine the process. Let XD(ω) be
the piecewise linear interpolation on D of the corresponding realisation of a frac-
tional Brownian path driving (16). We will denote by xti its values on the grid, i.e.
XD(ω)ti = xti , ∀ti ∈ D. Since XD(ω) is the piecewise linear path defined on these
points, Y D(ω) will be the solution to

dY D(ω)t = −λY D(ω)tdt+ σ
x(k+1)δ − xkδ

δ
dt,

which is given by

Y D(ω)t = Y D(ω)kδe
−λ(t−kδ) +

σ

λ

x(k+1)δ − xkδ
δ

(
1− e−λ(t−kδ)) , t ∈ [kδ, (k + 1)δ).

We now need to solve for the unknown ∆xk+1 := x(k+1)δ − xkδ: for t = (k + 1)δ. We
get

(17) y(k+1)δ = ykδe
−λδ +

σ∆xk+1

λδ

(
1− e−λδ

)
and, consequently,

(18) I−1
θ,D(yD)k+1 := ∆xk+1 =

λδ
(
y(k+1)δ − ykδe−λδ

)
σ (1− e−λδ)

, k = 0, . . . , N − 1,
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with y0 = 0 and θ = (λ, σ). Thus, Y D(ω) is given by

(19) Y D(ω)t = ykδe
−λ(t−kδ) +

y(k+1)δ − ykδe−λδ

1− e−λδ
(
1− e−λ(t−kδ)) ,

for t ∈ [kδ, (k + 1)δ) and y0 = 0.
Clearly, in this case, the solution of system (6) always exists and is unique under

the condition that σ 6= 0. Let us now compute the process Z defined in (8). In this
case, since d = 1, this is a scalar process. It is easy to compute Z directly but we
will use formula (10) instead, as a demonstration. First, we note that A defined in
(11) will be A(y) = ∂y(−λy + σc) = λ. Thus, (10) becomes

Zt =

∫ t

0

exp(−λ(t− s))σ
δ
ds =

σ

λδ
(1− e−λt).

We now have all the elements we need to write down the likelihood: from (15), we
get

LY D (yD| θ) = L∆XD

(
I−1
θ,D(yD)

)( λδ

σ(1− e−λδ)

)N
.

Finally, we note that the likelihood of the increments ∆XD is a mean zero Gaussian
distribution with covariance matrix given by(

ΣDh
)
ij

=
δ2h

2

(
|j − i+ 1|2h + |j − i− 1|2h − 2|j − i|2h

)
, i, j = 1, . . . , N,

where h is the Hurst parameter of the fractional Brownian motion. Thus, the likeli-
hood becomes

(20) |2πΣDh |−
1
2 exp

(
−1

2
I−1
θ,D(yD)

(
ΣDh
)−1

I−1
θ,D(yD)∗

)(
λδ

σ(1− e−λδ)

)N
,

where we denote by z∗ the transpose of a vector z. The corresponding log-likelihood
is proportional to

(21) `Y (yD| θ) ∝ −
1

2
I−1
θ,D(yD)

(
ΣDh
)−1

I−1
θ,D(yD)∗ +N log

(
λδ

σ(1− e−λδ)

)
.

Finally, we can replace I−1
θ,D above with its exact expression, which gives

`Y (yD| λ, σ) ∝ − λ2δ2

2σ2(1− e−λδ)2

(
∆λy

)
D

(
ΣDh
)−1 (

∆λy
)∗
D +N log

(
λδ

σ(1− e−λδ)

)
,

where by ∆λykδ = y(k+1)δ − ykδeλδ.
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5. The Limiting Case

In the first part of the paper, we assumed that we observe the response to a
differential equation driven by a piecewise linear path (1) and we constructed the
exact likelihood of the observations. In this second part of the paper, we discretely
observe the response to a differential equation (2) driven by a p-rough path X. We
aim to construct an approximate likelihood for the observations, where we consider an
approximation to be acceptable if it leads to asymptotically consistent estimators. A
crucial assumption is that there exists a sequence of partitions D(n) (usually dyadic)
such that the corresponding piecewise linear interpolations πn(X) of the path X
converge in p-variation to the p-rough path X. This allows us to replace (2) by (1)

Let us denote by yD(n) the sequence of observations of the limiting equation (2) on
the grid D(n). We will use the likelihood LY D(n) constructed in (15) to construct an
approximate likelihood for the partially observed limiting equation – for simplicity,
we will now denote it by LY (n). Also, to simplify the exposition, we will focus on the
case where we have uniqueness, i.e. m = d and b is non-singular.

A first idea would be to define the approximate likelihood as LY (n)

(
yD(n)|θ

)
. Then,

we would hope to show that, for n large, this will be close to LY (n)

(
y(n)D(n)|θ

)
in a

way that it allows the estimators constructed using this likelihood to inherit a lot of
the properties of those constructed using exact likelihood LY (n)

(
y(n)D(n)|θ

)
. Note

that the difference between yD(n) and y(n)D(n) is that the first is the response to
a realisation of the rough path x while the latter is the response to the piecewise
linear approximation of x on the grid D(n), i.e. y(n)D(n) = Iθ(πn(x))D(n), making the
likelihood exact. Note that the two sequences converge in p-variation, for n → ∞.
So, we expect that the estimators constructed using the datasets yD(n) and y(n)D(n)

will be close, provided that the estimator is continuous in the p-variation topology.
However, when the model involves more than one parameter, it is often the case

that, in the limit, LY (n)

(
yD(n)|θ

)
as a function of θ scales differently for different

coordinates of θ. In particular, this occurs because the drift component dt scales
differently than the ‘diffusion’ component dXt. Thus, we need to carefully normalise
the likelihood appropriately, depending on which coordinate of θ we want to esti-
mate at any time. Actually, it is equivalent and more convenient to work with the
log-likelihood: normalising the log-likelihood involves adding functions to the log-
likelihood that are independent of the parameters we want to estimate and thus
do not alter the estimation, as both the maximum with respect to the parameter
and the posterior on the parameter remain unaffected. So, we want to construct an
expansion of the log-likelihood of the form

(22) `Y (n)

(
yD(n)|θ

)
=

M∑
k=0

`
(k)
Y (n)

(
yD(n)|θ

)
n−αk +RM(yD(n), θ)
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for M ∈ N and −∞ < α0 < α1 < · · · < αM < ∞, where `
(k)
Y (n)

(
yD(n)|θ

)
converges

to a non-trivial limit (finite and non-zero) for every k = 0, . . . ,M and the remain-
der RM(yD(n), θ) satisfies limn→∞ n

αMRM(yD(n), θ) = 0. This will exist, assuming
sufficient smoothness of the log-likelihood function of ∆xD(n). The construction is
based on a Taylor expansion around the two components of the inverse that scale
differently. More precisely, it is done as follows:

1. Using (15), we express the log-likelihood in terms of I−1
θ,D(n)(yD(n)), which we

will denote for simplicity by I−1
θ,n(yD(n)). That is,

`Y (n)

(
yD(n)|θ

)
= `∆XD(n)

(
I−1
θ,n(yD(n))

)
−

N−1∑
i=0

log |Zti+1−ti
(
I−1
θ,n(yD(n))

)
|.

2. Assuming sufficient regularity of `∆XD(n)
, we expand `Y (n)

(
yD(n)|θ

)
in terms

of the monomials of I−1
θ,n(yD(n)). Note that Zti+1−ti

(
I−1
θ,n(yD(n)

)
given by (10)

will always be smooth.
3. We have assumed uniqueness, which is equivalent to b(y) being invertible.

Thus, I−1
θ,n(yD(n)) can be expressed as

I−1
θ,n(yD(n))ti,ti+1

=

∫ ti+1

ti

b−1(Y (n, yD(n))u)dY (n, yD(n))u(23)

−
∫ ti+1

ti

b−1(Y (n, yD(n))u)a(Y (n, yD(n))u)du

= I−1
θ

(
Y (n, yD(n))

)
ti,ti+1

where the process Y (n, yD(n)) is the response to a piecewise linear path,
parametrised by its values on the grid D(n), given by yD(n). Using this equiv-
alence, we further expand the monomials of I−1

θ,n(yD(n)) in terms of monomials
of the two vectors formed by these integrals, i.e.{∫ ti+1

ti

b−1(Y (n, yD(n))u)dY (n, yD(n))u

}N−1

i=0

and {∫ ti+1

ti

b−1(Y (n, yD(n))u)a(Y (n, yD(n))u)du

}N−1

i=0

,

where N = 2nT = T
δ
, as before.

4. We classify each monomial to class k if the normalisation needed for it to
converge to something “meaningful” is nαk , i.e. the monomial multiplied by
nαk converges to a function that is not equivalent to 0. We denote by M the
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number of such classes and by `
(k)
Y (n)

(
yD(n)|θ

)
the sum of all class k monomials

multiplied by nαk .

Remark 5.1. Note that while (23) is very useful for studying limiting behaviour, it
is not useful for constructing the likelihood for fixed n, as constructing Y (n, yD(n))
corresponding to observations yD(n) also requires the solution of (5).

Now, let θi be an arbitrary coordinate of the parameter θ and suppose that

`
(k)
Y (n)

(
yD(n)|θ

)
are independent of θi for k = 0, . . . ,m − 1 while `

(m)
Y (n)

(
yD(n)|θ

)
de-

pends on θi, in a way to be made precise later, which will depend on the way the
constructed likelihood is used. Intuitively, we expect that the first m−1 components
will be irrelevant to the estimation of the parameter and should be ignored, while
the remaining log-likelihood should be normalised by nαm . Thus, we will say that
coordinate θi of the parameter is of order m and, given observations of the limiting

equation, we will use the dominating term `
(m)
Y (n)

(
yD(n)|θ

)
for its estimation. We will

assume that all coordinates of the parameter are of finite order – otherwise, they
cannot be estimated!

Below, we use this framework to build estimators for parameter θ using the con-
structed likelihoods. We discuss separately the two most common approaches, cor-
responding to the Frequentist or Bayesian paradigm.

5.1. Frequentist Setting. In the frequentist setting, we use the likelihood con-
structed above in order to construct the Maximum Likelihood Estimator (MLE) of
the parameter θ ∈ Θ. We inductively define the MLEs of different co-ordinates of θ,
as follows:

1. We start with the lower order α0. We say that co-ordinates of the parameter
θ are of order α0 and we denote them by θ0 if

`(0)(yD(n)|θ) = `(0)(yD(n)|θ0), ∀θ ∈ Θ.

Then, we define their estimate as

θ̂0(yD(n)) = argmaxθ0`
(0)
Y (n)

(
yD(n)|θ0

)
.

2. Suppose that we have defined parameters of order up to m and their MLEs,
for some m ≥ 0. Then, we say that the co-ordinates of θ that satisfy

`(m+1)(yD(n)|θ) = `(m+1)(yD(n)|θ̂0(yD(n)), . . . , θ̂m(yD(n)), θm+1)

for all θ with coordinates of order less or equal to m equal to their MLE
estimates are of order m + 1, and we denote them by θm+1. We define their
MLE as

θ̂m+1(yD(n)) = argmaxθm+1
`

(m+1)
Y (n)

(
yD(n)|θ̂0(yD(n)), . . . , θ̂m(yD(n)), θm+1

)
.
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5.2. Bayesian Setting. In the Bayesian setting, we use the likelihood constructed
above together with a prior distribution on the parameter space that we will denote
by u, in order to construct the posterior distribution of the parameter θ ∈ Θ. We
inductively define the posterior distributions of different co-ordinates of θ, as follows:

1. First, we start with the lower order α0 and work our way up. We say that
a co-ordinate θi of the parameter is of order αk if the distance between the
marginal posterior on θi and the marginal prior (for an appropriate choice
of distance on the measure space) is non-zero for the first time when the
posterior is computed using the scaling of the likelihood corresponding to

`
(k)
Y (n)

(
yD(n)|θ0

)
. We will denote by θ(k) all the co-ordinates of the parameter

that are of order k and by r the maximum order.
2. The posterior can be written as a product of the posteriors of parameters of

different orders as follows:

P(θ|yD(n)) =
r∏

k=0

P
(
θ(k)|yD(n), θ(k − 1), . . . , θ(0)

)
,

where for each k, P
(
θ(k)|yD(n), θ(k − 1), . . . , θ(0)

)
is computed at the relevant

scale, i.e.

exp
(
`

(k)
Y (n)

(
yD(n)|θ(k), cθ(k)

)
n−αk

)
u(θ(k), cθ(k))∫

Θk
exp

(
`

(k)
Y (n)

(
yD(n)|θ̃(k), cθ(k)

)
n−αk

)
u(θ̃(k), cθ(k))dθ̃(k)

,

where Θk is the projection of the parameter space to the coordinates of order
k and by cθ(k) we denote all the parameters that are not of order k.

6. Convergence of Approximate Likelihood

In this section, we study the behaviour of the approximate likelihoods constructed
in section 5. The main result of this section is the following:

Theorem 6.1. Let `
(k)
Y (n)(·|θ) be the scaled likelihoods constructed in section 5, so

that (22) holds. Let y be the response to a p-rough path x through (2) and y(n) be
the response to πn(x) through (1), where πn(x) is the piecewise linear interpolation
of x on grid D(n) = {k2−nT, k = 0, . . . , N} for N = 2nT . Then, assuming that the
determinant of b is uniformly bounded from below

(24) lim
n→∞

sup
θ

∣∣∣`(k)
Y (n)

(
yD(n)|θ

)
− `(k)

Y (n)

(
y(n)D(n)|θ

)∣∣∣ = 0,

for all k such that αk ≤ 0.
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First, we will show that the log-likelihood function, which is the logarithm of (15),
is continuous with respect to the inverse Itô map of the data

(25) I−1
θ,n(yD(n)) = I−1

θ (Y (n, yD(n))),

where, as before, Y (n, yD(n)) is the response to a piecewise linear path parametrised
by its values on the grid, yD(n). So, I−1

θ (Y (n, yD(n))) will be exactly that piecewise
linear path driving the process. More precisely, we will show that, under certain
assumptions, the following holds:

(26)
∣∣`Y (n)

(
yD(n)|θ

)
− `Y (n)

(
ỹD(n)|θ

)∣∣ ≤ ω
(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n))

)
,

for some modulus of continuity function ω, independent of θ and n. This can be
further split into two parts, one corresponding to the log-likelihood of the inverse and
the other corresponding to the Jacobian correction. We start by deriving a bound
for the part of the log-likelihood error corresponding to the Jacobian correction.

Lemma 6.2. For Zti+1−ti and I−1
θ,n defined as in (10) and (13) respectively and under

the additional assumption on b that

inf
y
||b(y)|| = 1

Mb

> 0,

for some Mb > 0, it holds that∣∣∣∑ti∈D(n) log |Zti+1−ti
(
I−1
θ,n(yD(n))ti

)
| −
∑

ti∈D(n) log |Zti+1−ti
(
I−1
θ,n(ỹD(n))ti

)
|
∣∣∣ ≤

M · C · ω(dp(I
−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n))))

for some M,C ∈ R+ and modulus of continuity function ω.

Proof. We write∑
ti∈D(n) log |Zti+1−ti

(
I−1
θ,n(yD(n))ti

)
| −
∑

ti∈D(n) log |Zti+1−ti

(
I−1
θ,n(ỹnD(n))ti

)
| =(27)

=
∑

ti∈D(n) log
|Zti+1−ti(I

−1
θ,n(yD(n))ti)|

|Zti+1−ti

(
I−1
θ,n(ỹnD(n)

)ti

)
|

As before, using the continuity of integrated function within Zti+1−ti with respect to
the time variable, we write

Zti+1−ti
(
I−1
θ,n(yD(n))ti

)
= exp

(
A(yti , I

−1
θ,n(yD(n))ti)

)
ζi,ti+1

· b(Fζi) · (ti+1 − ti)

and

Zti+1−ti
(
I−1
θ,n(ỹnD(n))ti

)
= exp

(
A(ỹnti , I

−1
θ,n(ỹnD(n))ti)

)
ηi,ti+1

· b(Fηi) · (ti+1 − ti)
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for some ζi, ηi ∈ [ti, ti+1]. So, (27) simplifies to∑
ti∈D(n) log

| exp(A(yti ,I
−1
θ,n(yD(n))ti ))ζi,ti+1

·b(F (yti ,I
−1
θ,n(yD(n))ti )ζi )|

| exp
(
A(ỹnti

,I−1
θ,n(ỹnD(n)

)ti )
)
ηi,ti+1

·b(F (ỹnti
,I−1
θ,n(ỹnD(n)

)ti )ηi )|
=

∑
ti∈D(n) log

| exp(A(yti ,I
−1
θ,n(yD(n))ti ))ζi,ti+1

|

| exp
(
A(ỹnti

,I−1
θ,n(ỹnD(n)

)ti )
)
ηi,ti+1

|
+
∑

ti∈D(n) log
|b(F (yti ,I

−1
θ,n(yD(n))ti )ζi )|

|b(F (ỹnti
,I−1
θ,n(ỹnD(n)

)ti )ηi )|
.

Focusing on the second summand, we write

|
∑

ti∈D(n) log
|b(F (yti ,I

−1
θ,n(yD(n))ti )ζi )|

|b(F (ỹnti
,I−1
θ,n(ỹnD(n)

)ti )ηi )|
| ≤∑

ti∈D(n) log
(

1 +M
∣∣∣|b(F (yti , I

−1
θ,n(yD(n))ti)ζi)| − |b(F (ỹnti , I

−1
θ,n(ỹnD(n))ti)ηi)|

∣∣∣) ≤
M ·

∑
ti∈D(n)

∣∣∣|b(F (yti , I
−1
θ,n(yD(n))ti)ζi)| − |b(F (ỹnti , I

−1
θ,n(ỹnD(n))ti)ηi)|

∣∣∣ ≤
Mb · Cb · ω1(dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹnD(n)))),

where we used the inequality log(1 + x) < x, assumption that infy ||b(y)|| = 1
Mb

> 0,

the Lipschitz continuity of b and the universal limit theorem (see [4] for exact bound).
Similarly, we get that∑
ti∈D(n)

log
| exp

(
A(yti , I

−1
θ,n(yD(n))ti)

)
ζi,ti+1

|

| exp
(
A(ỹnti , I

−1
θ,n(ỹnD(n))ti)

)
ηi,ti+1

|
≤MACA · ω2(dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹnD(n)))).

under the additional assumption that infy|exp(A)(y)ti,ti+1
| > 0, which is trivially

satisfied. Putting the two together, we get the result.
�

Since we have not specified the distribution of the driving process X, we will just
assume that the log-likelihood of the inverse satisfies a similar bound. Then, (26)
will hold under the additional assumption that

(28)
∣∣∣`∆XD(n)

(
∆xD(n)

)
− `∆XD(n)

(
∆x̃D(n)

)∣∣∣ ≤ ω (dp(x, x̃)) ,

where x and x̃ are p-rough paths with ∆xD(n) and ∆x̃D(n) denoting increments on
D(n) respectively.

To prove Theorem 6.1, it remains to show that for y and y(n) as described in
the theorem, the piecewise linear paths I−1

θ,n(yD(n)) and I−1
θ,n(y(n)D(n)) converge in p-

variation in such a way that the different scalings also converge. Let us first look
into the different scalings and how these affect the requirements for the convergence
of the inverse piecewise linear paths.
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Lemma 6.3. Suppose that the log-likelihood has the form (22) and that it is uni-
formly continuous in the p-variation topology, with some modulus of continuity ω
independent of θ or n, i.e.

(29) |`Y (n)

(
yD(n)|θ

)
− `Y (n)

(
ỹD(n)|θ

)
| ≤ ω

(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n)))

)
Then, if for every k = 0, . . . ,M

lim
n→∞

nαkω
(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n)))

)
= 0,

it follows that

(30) lim
n→∞

|`(k)
Y (n)

(
yD(n)|θ

)
− `(k)

Y (n)

(
ỹD(n)|θ

)
| = 0.

Proof. Let’s denote by Rk(yD(n), θ) the remainder of the log-likelihood expansion
truncated at αk for some k ≥ 0, i.e.

Rk(yD(n), θ) =
M∑

j=k+1

`
(j)
Y (n)

(
yD(n)|θ

)
n−αj +RM(yD(n), θ).

Since functions `
(j)
Y (n) are convergent, we get that

nαkRk(yD(n), θ)→ 0, as n→∞.

We first prove (30) for k = 0. We re-write (29) as∣∣∣(`(0)
Y (n)

(
yD(n)|θ

)
− `(0)

Y (n)

(
ỹD(n)|θ

))
+
(
R0(yD(n), θ)−R0(ỹD(n), θ)

)
nα0

∣∣∣ ≤
≤ nα0ω

(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n)))

)
which implies that ∣∣∣`(0)

Y (n)

(
yD(n)|θ

)
− `(0)

Y (n)

(
ỹD(n)|θ

)∣∣∣ ≤
nα0ω

(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n)))

)
+ nα0

∣∣R0(yD(n), θ)−R0(ỹD(n), θ)
∣∣ .

Given that the nα0 times the remainder disappears in the limit, for every ε > 0, we
can find n0 such that ∀n ≥ n0∣∣∣`(0)

Y (n)

(
yD(n)|θ

)
− `(0)

Y (n)

(
ỹD(n)|θ

)∣∣∣ ≤ nα0ω
(
dp(I

−1
θ,n(yD(n)), I

−1
θ,n(ỹD(n)))

)
+ ε.

proving the statement for k = 0. The proof of (30) for k > 0 is similar, building
inductively on k. �

Finally, we show the following
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Lemma 6.4. Let I−1
θ be the inverse Itô map defined by (1). Moreover, let Y (n, Iθ0(x)D(n))

and Y (n, Iθ0(πn(x))D(n)) be the responses to the piecewise linear map as in (2),
parametrised by its values on the grid D(n), given by Iθ0(x)D(n) and Iθ0(πn(x))D(n)

respectively, where x is a fixed rough path in GΩp(Rd) and θ0 ∈ Θ. Then,

(31) lim
n→∞

dp
(
I−1
θ

(
Y (n, Iθ0(x)D(n))

)
, I−1
θ

(
Y (n, Iθ0(πn(x))D(n))

))
= 0,

provided that dp(πn(x), x)→ 0 as n→∞.

Proof. Under the assumption that b is invertible, I−1
θ is given by (23), which is an inte-

gral of the rough path Y (n, ·). By construction, these are piecewise linear paths. Let
us denote them by x(n) = I−1

θ

(
Y (n, Iθ0(x)D(n))

)
and x̃(n) = I−1

θ

(
Y (n, Iθ0(πn(x))D(n))

)
.

In particular, x(n) is that path that when driving the system will go through the
data points Iθ0(x)D(n), so its response converges point wise to Y . This implies that
x(n) will also converge point wise to x or that the distance between x(n) and πn(x)
disappears point wise as n → ∞. Now, using the fact that if the distance between
two piecewise linear paths disappears as n → ∞ and if one of them converges in
p-variation, then the other will also converge in p-variation to the same limit, we
conclude that

dp(x(n), πn(x))→ 0, as n→∞.
We have assumed that

dp(πn(x), x)→ 0.

Using the universal limit theorem and the continuity of integration in p-variation,
this implies that

dp(πn(x), x̃(x))→ 0, as n→∞.
The result follows. �

The three lemmas together prove the theorem.
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