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Abstract

Graphs provide an excellent framework for interrogating sym-
metric models of measurement random variables and discovering
their implied conditional independence structure. However, it is
not unusual for a model to be specified from a description of how a
process unfolds (i.e. via its event tree), rather than through rela-
tionships between a given set of measurements. Here we introduce
a new mixed graphical structure called the chain event graph that
is a function of this event tree and a set of elicited equivalence
relationships. This graph is more expressive and flexible than
either the Bayesian network — equivalent in the symmetric case
— or the probability decision graph. Various separation theo-
rems are proved for the chain event graph. These enable implied
conditional independencies to be read from the graph’s topology.
We also show how the topology can be exploited to tease out
the interesting conditional independence structure of functions
of random variables associated with the underlying event tree.

1 Introduction

A Bayesian Network (BN) is an established framework for encoding and
interrogating conditional independence statements. However, despite
its advantages, many problems have been discovered whose underlying
structure cannot be fully expressed by a single BN. Thus, for example,
two well known Microsoft BN products incorporate special additional
information [3]. Four of the common instances when BNs do not capture
all of the problem’s structure are listed in [20].

Such observations have prompted the development of so called context-
specific networks, both to prove new analogues of Pearl’s d-separation
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theorem, and to guide the search for efficient probabilistic representa-
tion, propagation, estimation and minimum cost variable assignment.
Early models often supplemented BNs with additional structure, usu-
ally encoded via trees [3]. The majority of the most recent work has
focused on propagation and estimation and has progressively become
less graphical. For example, a powerful and ingenious method of propa-
gation using context-specific tables as primitives (called confactors) has
been devised [20].

Similar types of information can also be represented via collections of
polynomial equations [21]. In a more inferential vein, other methods [6,
9] employ context-specific information for estimation in an undirected,
graphical, log-linear framework. Further, very general methods based
on the Case-Factor Diagram have been developed to solve a large class
of problems [15], by employing directed (as opposed to mixed) graphs.
Their methods, based on Boolean formulae, represent many different
classes of probabilistic models and, in distinction to the objectives in this
article, construct algorithms through minimising a given cost variable.

Another graphical framework, the Probability Decision Graph (PDG)
[10], is also based on Boolean logic. The focus there is on fast propaga-
tion algorithms. Unlike our representation, this framework is not purely
graphical and its semantics are not rich enough to contain all BNs as a
special case. For example, Jaeger shows through exhaustive enumeration
that the diamond shaped BN shown in figure 1 cannot be represented
in his model class.

X1

X2

X3

X4

Figure 1: A Bayesian network for four variables that cannot be repre-
sented by a probability decision graph.

We do not start from a BN (as the context-specific models do) or a
Boolean structure, but rather an event tree. In several different fields,
for example Bayesian policy analysis [7], risk analysis [2], physics [14]
and biological regulation [1, 5], models are often elicited as an event
tree rather than a BN. In fact, one of the motivations for the earliest
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BNs and influence diagrams was to efficiently depict, classify and store
probability tables associated with problems whose event tree descriptions
were highly symmetrical [23, 24]. (That is, the branches of the tree all
have the same, or very similar, topologies).

An event tree represents how processes might unfold. The atoms
of the resulting event space are its root-to-leaf paths. For illustration,
consider the symmetric event tree T given in figure 2.

v0

v1

v2

v3

v4

v5

v6

e1

e2

e3

e4

e5

e6

Figure 2: A simple symmetric event tree.

Its atoms are its four root-to-leaf paths {e1, e3}, {e1, e4}, {e2, e5}, {e2, e6}
which are labelled by the terminal vertices {v3, v4, v5, v6} respectively.
Two binary random variables X1 and X2 can be constructed (where X2

does not happen before X1) from this event space. Its atoms are thus:

(x1, x2) = {(0, 0) = v3, (0, 1) = v4, (1, 0) = v5, (1, 1) = v6}

Note that the topology of the tree can explicitly acknowledge which
events are possible. Thus, if when X1 = 1 it is a logical necessity that
X2 = 1, then the tree would have a different topology: the edge e5

and the vertex v5 would be missing from T . The event tree therefore
has a great advantage over the BN in that it can express this type of
asymmetry explicitly.

Event trees have their own Boolean logic and so there are clear links
with Jaeger [10] and McAllester et al [15] in this regard. However,
unlike these authors, we see such trees (and not a construction from
another framework, such as a Markov field, BN or junction tree) as the
foundation of an elicited model.

In a seminal work [25], Shafer demonstrated that an elicited tree was
often a much more powerful expression of an observer’s beliefs about the
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process. He produced compelling arguments to show that this is par-
ticularly true when those beliefs are based on an underlying conjecture
concerning a specific causal mechanism: a common occurrence in many
disciplines.

There is an apparent redundancy in the event tree representation of
the event space {v3, v4, v5, v6} above: the interior vertices v0, v1 and v2

(the situations) together with all the edges are an unnecessary embel-
lishment. However, Shafer convincingly demonstrates that if situations
are consistent with the order in which they unfold (in this case that X2

does not occur before X1) then the tree captures other useful “causal”
structure. Hence, the edges e1 and e2 can be directly associated with
the events {X1 = 0} and {X1 = 1} respectively. Furthermore the edges
{e3, e4, e5, e6} can be associated with the respective conditional events
{X2 = 0|X1 = 0}, {X2 = 1|X1 = 0}, {X2 = 0|X1 = 1}, {X2 = 1|X1 = 1}
and the vertices v1 and v2 with the two different conditioning situations
{X1 = 0} and {X1 = 1} under which the possible future evolution of the
process is differentiated. The tree thus not only explicitly represents the
joint event space but also certain conditional events and conditioning
situations central to dependence relationships.

The topology of the tree does not represent conditional independence
directly. However, we demonstrate in this paper that it is possible to
construct a graph — the Chain Event Graph (CEG) — that does.

A CEG is a function of the tree and a collection of equations on cer-

tain conditional probabilities. Suppose it is asserted that X2

∐
X1 (i.e.

X2 is independent of X1) in the example above. Call the tree and this
elicited assertion Model 1. The independence statement is equivalent to
the two equations

P (X2 = 0|X1 = 0) = P (X2 = 0|X1 = 1)

P (X2 = 1|X1 = 0) = P (X2 = 1|X1 = 1)

This implies that the set of all possible future unfoldings of the tree
from situation v1 are predictively equivalent to those from situation v2.
Furthermore in this predictive sense, the conditioned event e3 is equiv-
alent to e5 and e4 to e6. The CEG defined formally in section 2 is able
to express this type of elicited equivalence topologically by associating
the predictively equivalent vertices and edges of T in the obvious way.
Thus the CEG, C, of Model 1 depicted in figure 3 has vertex set V (C)
and edge set E(C) given by

V (C) = {w0 = {v0}, w1 = {v1, v2}, w∞ = {v3, v4, v5, v6}}

E(C) = {e∗1(w0, w1) = e1, e
∗
2(w0, w1) = e2,

e∗3(w1, w∞) = {e3, e5}, e
∗
4(w1, w∞) = {e4, e6}}
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w0 w1 w∞
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4

Figure 3: The CEG for Model 1.

Note that:

1. The root-to-sink paths, {e1, e
∗
3}, {e1, e

∗
4}, {e2, e

∗
3}, {e2, e

∗
4} of C are

in one-to-one correspondence with, respectively, the root-to-leaf
paths {e1, e3}, {e1, e4}, {e2, e5}, {e2, e6} of the original tree. So, as
for the event tree, all atoms in the associated event space of C are
explicitly represented as paths in its graph.

2. The topology of C is simpler than T in the sense that it has fewer
vertices and edges.

3. Unlike T , C represents the statementX2

∐
X1 topologically. Hence

we can read directly from the graph that, on reaching the ver-
tex w1 = {v1, v2} the probabilities of the conditioned events e∗3 =
{e3, e5} and e∗4 = {e4, e6} are the same. We show later that, with an
appropriate definition, the set of conditional independence state-
ments in a BN can be equivalently coded in the CEG.

4. Like the BN, the CEG expresses qualitative information such as
whether or not certain sets of conditional probabilities emanating
from different situations are the same and, unlike the BN, the
explicit structure of the event space. However, we don’t need the
values of these conditional probabilities to actually draw a CEG.

One feature of a BN, sometimes not acknowledged in practice, is the
critical role played by the underlying components {X1, X2, .., Xn} of a
random vector X labelling the vertices of the network. These compo-
nents are given a preferred status over any other transformed random
vector g(X) = {g1(X), g2(X), .., gn(X)}, where g is invertible. This is
despite the fact that the event space of g(X) is an equally good repre-
sentation of the underlying sample space of the problem. This is fine in
contexts when it is only reasonable to postulate model classes whose con-
ditional independence relationships between subsets of the components
{X1, X2, .., Xn} are not functions of these variables. However, even in
the simplest scenarios such model classes can appear very restrictive.

5

CRiSM Paper No. 05-3v4, www.warwick.ac.uk/go/crism



In the event tree above, suppose both X1 and X2 measure the pres-
ence of some attribute at an early and late time respectively. Instead

of Model 1 (X2

∐
X1), a reasonable alternative, Model 2, might assert

that the probability that X2 takes a different value to X1 is independent
of the value of X1. This is equivalent to

P (X2 = 0|X1 = 0) = P (X2 = 1|X1 = 1)

P (X2 = 1|X1 = 0) = P (X2 = 0|X1 = 1)

Now, in contrast to Model 1, the conditioned event e3 is equivalent
to e6 and e4 to e5. So the CEG C of Model 2 has vertex set V (C) and
edge set E(C) given by

V (C) = {w0 = {v0}, w1 = {v1, v2}, w∞ = {v3, v4, v5, v6}}

E(C) = {e1, e2, e
′
3(w1, w∞) = {e3, e6}, e

′
4(w1, w∞) = {e4, e5}}

The new CEG is topologically the same but the edge equivalences are
different: e′i replaces e∗i , i = 3, 4. Notice from the equations above that
we automatically create a new indicator random variable Y that takes
the value zero, say, when e′3 occurs (i.e. when x1 = x2) and one, say,
when e′4 occurs (i.e. when x1 6= x2). Analogous to Model 1, we prove

later that the probability equations tell us that Y
∐

X1. Therefore the

tree and the collection of probability equivalences is embodied in the
topology of the CEG and this allows a visual identification of a new pair
of random variables (X1, Y ) that are independent of each other.

Note that Model 2 is not a BN on the variables (X1, X2). The only
way to incorporate this information in a BN is to increase the sam-
ple space artificially to (X1, X2, Y ). Then Model 1 would be a BN
with directed edge set {(X1, Y ), (X2, Y )} and Model 2 with edge set
{(X1, X2), (Y,X2)}. When we need the flexibility to simultaneously con-
sider these two types of model, both of which have been elicited from
an explanation of how situations unfold, and want to examine the im-
plicit conditional independence structure, we argue that the class of CEG
models is a much more natural tool than the BN.

Once the CEG has been agreed with the expert observer, it can
be used as a framework for further elaboration into a full probabilistic
model in the same way as the other constructions discussed above. Fur-
thermore, it gives a much more compact description of a problem than
an event tree. For example, n k-state independent random variables
{X1, X2, ...Xn} are represented by a tree with kn edges, whilst — like
the directed acyclic graph of the related Case-Factor Diagrams [15] —
the CEG has only nk edges. Unlike the PDG [10], we prove that all
finite discrete BNs can be expressed as a CEG. In fact, this is also true
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for all context-specific BNs as defined in [3]. This is illustrated in the
last example of this paper, see figure 15.

In section 2 we review the BN and the event tree and give a general
definition of the CEG — a mixed graph with some of its directed edges
coloured. We illustrate its construction and how it can be used to en-
code elicited qualitative information about a process. In section 3 we
show how to construct useful random variables from the topology of a
CEG and how to read off implied conditional independence relationships
between these variables, even when the underlying process, unlike the
one discussed in the introduction, is highly non-symmetric. We prove
that all information in a BN can always be represented by a CEG, but
not vice versa.

We give various analogues of the d-separation theorem for BNs for
the CEG in section 4, and show how other dependence relationships, not
encoded in the BN, can be read from the CEG when it is based on the
tree of a context-specific BN. We also suggest a general algorithm for
interrogating the dependencies of a given CEG. In the final section, we
briefly discuss connections to other work and current developments in
this field.

2 Some Background on Graphs and the CEG

2.1 Bayesian networks: a review

Let X = {X1, X2, . . . , Xn}, where Xi are discrete random vectors which
take one of the ri values in the sample space Xi, 1 ≤ i ≤ n. Write
X

(i) =
∏i

j=1 Xj , X = X
(n), r(i) =

∏i
j=1 rj, 2 ≤ j ≤ n and r = r(n). There

are many equivalent ways of defining a BN. For this paper it is most
convenient to use the total order of the components in X and express
the n− 1 conditional independence statements

Xi

∐
{X1, X2, . . . , Xi−1}|Qi

where Qi ⊆ {X1, X2, . . . , Xi−1}, 2 ≤ i ≤ n. As a notational convention,
let Q1 be the empty set and call the set of random vectors Qi the parent
set of Xi, 1 ≤ i ≤ n. The BN D is then the directed graph whose
vertex set V (D) is labelled by the set of n random variables and has
edge set E(D), where e = (Xj, Xi) ∈ E(D) if and only if Xj ∈ Qi [27].
The d-separation theorem ([17] and later re-expressed in, for example,
[13] using constructions based on [12]) allows one to answer arbitrary
conditional independence queries about relationships between disjoint
subsets of the variables.

Let X[1], X[2], X[3] ⊆ {X1, X2, . . . , Xn} be disjoint subsets of com-
ponents of X. Let the set A(B) of a set of vertices, B, consists of
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all vertices in V (D) that are in B or that lie on a directed path in D
which leads to a vertex in B. The moralised graph DM of D is the
mixed graph with vertex set V (D) and directed edges E(D), but with
an undirected edge between any two vertices v[1], v[2] ∈ V (D) such that
whenever neither (v[1], v[2]) nor (v[2], v[1]) is in E(D), there exists a
vertex v[3] ∈ V (D) where both (v[1], v[3]) and (v[2], v[3]) are in E(D).

Let Du denote the undirected graph obtained from DM by replac-
ing all directed edges in E(DM) by undirected edges. For any C ⊆
{X1, X2, . . . , Xn}, let D[C] have vertex set V (D[C]) = V (D)∩C and an
edge between v[1], v[2] ∈ V (D[C]) if and only if there is an edge between
v[1], v[2] ∈ V (D). The d-separation theorem [13] now states that

X[3]
∐

X[2]|X[1]

is a valid deduction ifX[1] separates X[2] andX[3] in DU [A(X[1]∪X[2]∪
X[3])]. That is, all undirected paths in DU [A(X[1] ∪X[2] ∪X[3])] from
a vertex in X[2] to a vertex in X[3] must pass through a vertex in X[1].
Note that this theorem concerns only deductions about the relationships
between subsets of {X1, X2, . . . , Xn} and not general functions of these
variables.

A joint mass function π(x) on the random variables {X1, . . . , Xn}
can be factored in the form

π(x) =
n∏

i=1

πi(xi|x
(i−1)) (1)

where πi(xi|x
(i−1)), 1 ≤ i ≤ n, is a conditional mass function of xi given

x(i−1) = (x1, . . . , xi−1) ∈ X
(i−1), for 2 ≤ i ≤ n (and x(0) denotes the

empty set). These conditional mass functions have an important role
in our subsequent discussion so call πi(xi|x

(i−1)) with xi ∈ Xi, x(i−1) ∈∏i−1
j=1 Xi and 1 ≤ i ≤ n, primitive probabilities. The factorisations in

equation (1) can be seen as a set of r equations whose arguments are the
primitive probabilities πi(xi|x

(i−1)), xi ∈ Xi, having (xi|x
(i−1)) ∈ X

(i) as
their indices.

The conditional probabilities obviously respect the simplex condi-
tions for 1 ≤ i ≤ n and each x(i−1) ∈ X

(i−1)

∑

xi∈Xi

πi(xi|x
(i−1)) = 1

and
πi(xi|x

(i−1)) ≥ 0, xi ∈ Xi

Using this representation, let D be the directed graph defined above
and let XQi

be the sample space for the random variables in Qi in the
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parent set of Xi, 1 ≤ i ≤ n. Consider two instantiations x(i−1) and
x′(i−1) ∈ X

(i−1) whose projection onto XQi
coincide. In other words, for

which
qi(x

(i−1)) = qi(x
′(i−1)) (2)

where qi(x
(i−1)) is the projection of x(i−1) onto XQi

.
Let r(qi) =

∏
{j:xj /∈Qi}

rj. The set of conditional independence state-
ments above are then equivalent to the assertion that

πi(xi|x
(i−1)) = πi(xi|x

′(i−1)) (3)

whenever equation (2) holds.
This in turn is equivalent to asserting that

π(x) =
n∏

i=1

πi(xi|qi(x
(i−1))) (4)

which is the familiar factorisation of a joint probability mass function
associated with a BN. However, implicitly specifying this factorisation
through statements concerning the equality of the distributions of ran-
dom variables with different conditioning sets, seamlessly transfers to
classes of more heterogeneous models.

2.2 Factorisations from event trees

Here we will define and briefly review some properties of an event tree
based on [25, 26] indicating when we diverge from their terminology.
An event tree is a directed, rooted tree T = (V (T ), E(T )) where V (T )
denotes its vertex set, assumed finite, and E(T ) its edge set. Denote the
root vertex (the only vertex of this tree with no edge into it) by v0 and
call any vertex with no edge out of it a leaf vertex v ′. Throughout this
paper, in distinction to Shafer, we call a non-leaf vertex v a situation
and denote the set of situations by S(T ) ⊂ V (T ).

Henceforth, Λ will denote the set of root-to-leaf paths of T . The
paths λ ∈ Λ which form the atoms of the event space (called the path
σ-algebra of T ) label the different possible unfoldings of the described
process. Each event {Y = y} such that y ∈ Y (where Y denotes the
sample space of a random variable Y measurable with respect to this
event space) will label a subset Λ(Y = y) ⊆ Λ. Furthermore, the sets
{Λ(Y = y) : y ∈ Y} will form a partition of Λ. We will demonstrate
later how to identify topologically various interesting random variables
associated with a process described by an event tree.

Unlike BNs, event trees can be used to describe highly non-symmetric
processes. For example, consider the following fictitious but nevertheless
typical model description of a biological regulatory system.
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A culture is placed in an environment which: is benign (B = 0),
can potentially disrupt gene interaction but is not physically damaging
(B = 1), is physically damaging but does not disrupt gene interaction
(B = 2) or can potentially disrupt gene interaction and is physically
damaging (B = 3). Given that the environment damages the cell, it can
repair itself: quickly (R = 2), slowly (R = 1) or be unable to repair
(R = 0).

Assume the system hinges on two genes that can be under expressed
(Gi = −1), normally expressed (Gi = 0) or highly expressed (Gi = 1),
i = 1, 2. Suppose that we know from the gene pathways that if G1 = 1
then G2 = 0 or G2 = 1 and if G1 = 0 then G2 = 0. Our interest is in
whether the environment causes a cancerous increase in cells (C = 1)
or not (C = 0). This increase can be affected either by enduring cell
damage or disruption of the gene pathway in an otherwise undamaged
cell.

When a process is described in this way, we note that the edge labels
R, G1 and G2 are defined contingent on what has happened earlier in
the unfolding. They can therefore be seen as labels of states of condi-
tioned random variables defined, possibly only conditionally, on certain
earlier developments. Thus it is meaningless to talk about the repair of
a cell if it is not damaged, and expression of genes is only relevant to
cancerous increase if the cell has been repaired but its interaction pos-
sibly disrupted. The full and direct expression of this description by a
single BN is therefore not possible. However it is simple to express this
process directly using an event tree, as shown in figure 4.

For example, the third path down λ(B = 1, G1 = −1, G2 = −1, C =
0) expresses the unfolding that the environment only possibly disrupts
cell interaction, the first gene becomes under expressed, the second gene
becomes under expressed but there is no increase in cancerous cells. Note
that each situation v ∈ S(T ) in this tree represents an attained state
of the process that determines its subsequent development. Thus the
first situation on this path v0 defines the conditions under which the
background environment is determined.

The edges label the possible states this background variable can take.
The next situation v(B = 1) tells us that we have an environment only
possibly disruptive to gene interaction and edges from this situation
determine the possible resulting expression states of the gene. The sit-
uation v(B = 1, G1 = −1) defines the state when B = 1 and the first
gene has under expressed and finally v(B = 1, G1 = −1, G2 = −1) the
situation when the second gene has also under expressed. Note that the
labels on the edges of a tree give the values a variable can take condi-
tional on the circumstances defined by the situation from which those
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C = 0

C = 1

B = 1

G1 = −1

G2 = −1

C = 0

C = 1

G2 = 0
C = 0

C = 1

G2 = 1
C = 0

C = 1

G1 = 0
G2 = 0

C = 0

C = 1

G1 = 1
G2 = 0

C = 0

C = 1

G2 = 1

C = 0

C = 1B = 2

R = 0

R = 1

R = 2

B = 3

R = 0

R = 1

R = 2

B = 0

C = 0

C = 1

C = 0

C = 1

C = 0

C = 1

C = 0

C = 1

Same topology and probabilities as highlighted tree,

but different probabilities for C = 0 and C = 1

Same topology and probabilities as highlighted tree

Figure 4: Event tree for the cell culture example. The dash-outlined
tree is repeated (with minor differences) in other parts of the tree as
indicated. See the text for an explanation of the variables.

11

CRiSM Paper No. 05-3v4, www.warwick.ac.uk/go/crism



edges emanate.
This means that each situation v in an event tree has a dual role:

it expresses a state of a process and it also serves as an index of a
random variable X(v) whose values describe the next stage of possible
developments of the unfolding process. The state space X(v) of X(v) can
be identified with the set of directed edges (v, v′) ∈ E(T ) that emanate
from v in T .

For each {X(v) : v ∈ S(T )}, let

Π(v) = {π(v′|v) : v′ ∈ X(v)} (5)

be the primitive probabilities associated with the random variable X(v),
where π(v′|v) = P (X(v) = v′|v), and let Π =

⋃
{v∈S(T )} Π(v). Obviously

these probabilities must satisfy, for all v ∈ S,

∑

v′∈X(v)

π(v′|v) = 1

and for all v′ ∈ X(v), v ∈ S(T ), π(v′|v) ≥ 0.
The probabilities Q = {π(λ) : λ ∈ Λ} of the elementary events λ ∈ Λ

can now be given as products of these primitive probabilities Π, [25, 26].
Assume that each root-to-leaf path λ = (v0,λ, v1,λ, . . . , vn[λ],λ) ∈ Λ with
v0,λ = v0, is n[λ] ≥ 0 edges from the root vertex. Then the probabilities
π(λ) for every λ ∈ Λ must satisfy the equations

π(λ) =

n[λ]−1∏

j=0

π(vj+1,λ|vj,λ) (6)

Like the BN, the probabilities of elementary events can be expressed
as a set of monomials in the primitive probabilities. However, unlike the
BN these monomials can be of different degrees. This is the case in figure
4. Note that a necessary and sufficient condition for these equations to
hold is that {X(v), v ∈ A} are mutually independent whenever all v ∈ A
lie on a single path in T . Henceforth we shall assume this is true for
consistency with other work such as [25].

Clearly, a full specification of the probability model is given by
(T ,Π(T )): the tree and its set of primitive probabilities. It is common,
having elicited an event tree, to learn that one of a set Λ∗ ⊂ Λ of root-
to-leaf paths in (T ,Π(T )) has occurred and it is necessary to condition
on this event in the event space associated with the paths of T . Within
the event tree framework it is in fact simple to construct a tree that
reflects this change.
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Notation 1 The Λ∗−tree TΛ∗ = (V (TΛ∗), E(TΛ∗)) has vertex set V (TΛ∗),
edge set E(TΛ∗) and situations S(TΛ∗) defined by

V (TΛ∗) = {v ∈ V (T ) : v is on a root-to-leaf path λ ∈ Λ∗}

E(TΛ∗) = {e ∈ E(T ) : e is on a root-to-leaf path λ ∈ Λ∗}

S(TΛ∗) = {v ∈ S(T ) : v is on a root-to-leaf path λ ∈ Λ∗}

Using an obvious extension of notation, for each v ∈ S(TΛ∗), let each
XΛ∗(v) have sample space XΛ∗(v) ⊆ X(v). Directly from Bayes’ rule,
it is simple to find the associated primitive probabilities as functions of
the primitives in Π(T ):

ΠΛ(v) = {πΛ(v′|v) : v′ ∈ XΛ∗(v)}

These constitute the new set of primitive probabilities ΠΛ∗(TΛ∗) associ-
ated with TΛ∗ after conditioning. Thus whenever v is a terminal situation
in S(TΛ∗), then

πΛ∗(v′|v) = µ−1
Λ∗ [v]π(v′|v)

where v′ ∈ XΛ∗(v) and µΛ∗[v] =
∑

v′∈V (TΛ∗ ) π(v′|v).
The remaining primitives associated with a non-terminal situation

can now be recursively calculated backwards along the tree as a function
of the revised primitives associated with its children and the original
primitives associated with X(v). Thus

πΛ∗(v′|v) = µ−1
Λ∗ [v]µΛ∗[v′]π(v′|v)

where v′ ∈ XΛ∗(v) and µΛ∗[v] =
∑

v′∈V (TΛ∗ ) µΛ∗[v′]π(v′|v). The set of
primitive probabilities associated with edges of the new conditional tree
is now simply ΠΛ∗ =

⋃
{v∈S(T )∩V (T ∗

Λ )} ΠΛ∗(v).

The formulae above give a local propagation of the information that
λ ∈ Λ∗ through (T ,Π(T )) analogous to junction tree algorithms for
BNs [11]. Just as clique probability tables are sequentially revised to
admit new information so, in the case of the tree, the distributions of
{X(v) : v ∈ S(T )} are revised to {XΛ(v) : v ∈ S(TΛ∗)} using the algo-
rithm above. In general, when conditioning on the observation of a gen-
eral function measurable with respect to the path σ-algebra associated
with the tree, the updating algorithm given above will not necessarily
be quick: this should not however be surprising. Updating probability
tables after observing a general function of variables in a BN can also
be very time consuming, often requiring a new customised triangulation
step.

Useful fast junction tree algorithms assume observations need to be
of subsets of the variables depicted by the vertices of the BN. The speed
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of algorithms is therefore linked to conditioning on a compatible type
of observation as well as utilising conditional independence structure.
Jaeger [10] has now established several fast algorithms based on impor-
tant classes of these models, see also [15]. Note that conditioning can
destroy symmetries in a tree. In particular, it is common for the distri-
butions of X(v[1]) and X(v[2]) to be the same, but for XΛ∗(v[1]) and
XΛ∗(v[2]) to differ.

2.3 Probability graphs and chain event graphs

Define the floret of v in T as the subtree

F(v, T ) = (V (F(v, T )), E(F(v, T )))

of an event tree T with v ∈ S(T ), where the vertex set V (F(v, T )) and
edge set E(F(v, T )) are given by

V (F(v, T )) = {v} ∪ {v∗ ∈ V (T ) : (v, v∗) ∈ E(T )}

E(F(v, T )) = {e ∈ E(T ) : e = (v, v∗) for some v∗ ∈ V (T )}

We noted above that the random variable X(v) has sample space
X(v) = {x1(v), . . . , xn(v)(v)} where xi(v) can be used to label an edge in
E(F(v, T )), 1 ≤ i ≤ n(v). It is often possible to elicit information that
two situations v and v′ are equivalent in the sense that the distribution
of their associated random variables X(v) and X(v ′) are the same. We
now set out two key definitions.

Definition 1 We say that the situations v, v′ are in the same stage
u if and only if the random variables X(v) and X(v ′) have the same
distribution under a bijection ψu(v, v

′), v, v′ ∈ u, where

ψu(v, v
′) : X(v) = E(F(v, T )) 7→ E(F(v′, T )) = X(v′)

: xi(v) = e(v, v∗) 7→ e(v′, v′∗) = xi′(v
′)

Note that the set of stages L(T ) of a tree T form a partition of the set
of situations S(T ). We call L(T ) = {Ψu(v, v

′) : v, v′ ∈ u, u ∈ L(T )} a
staging of T .

Definition 2 A staged tree G(T , L(T ),L(T )) is a tree with vertex set
V (G) = V (T ), edge set E(G) = E(T ), stage set L(T ) and staging L(T ).
Its edges are coloured as follows.
When v ∈ u and u contains a single vertex, then all edges emanating
from v in E(G) are uncoloured.
When v ∈ u and u contains more than one vertex, then all edges ema-
nating from v in E(G) are coloured.
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Two edges e(v, v∗), e(v′, v′∗) ∈ E(G) emanating from v and v′ respectively
have the same colour if and only if e(v, v∗) 7→ e(v′, v′∗) under ψu(v, v

′) ∈
L(T ).

Note that a staged tree contains only qualitative information. In
particular, the stages of the tree specify the collections of situations the
expert believes are equivalent in the sense that they share the same
distribution over the next stage of their development. We show later
that all information in a BN can equally well be represented in a staged
tree. For example, in figure 2, we can identify X(v1) with X2|X1 = 0
and X(v2) with X2|X1 = 1. The statement that X2

∐
X1 is equivalent

to the assertion that, under the obvious map of edges, v1 and v2 are in
the same stage.

The types of stage partitions that are expressible through a BN are
highly restricted. For instance, two situations v and v ′ can only lie in
the same stage if those situations are the same distance from the root
vertex. This type of symmetry is not exhibited through the information
which we might elicit to supplement the tree of the biological regulation
experiment given in this section. Nevertheless, it can be expressed with a
staged tree. For example, suppose we are given the following qualitative
information about the regulatory network.

The expression level G1 of the first gene has the same distribution
whenever the disrupted environment does not cause irreparable cell dam-
age (u1). Also, the distribution of the expression of the second gene G2

given that the first is highly or lowly expressed has the same distribution
in the same circumstance (u4, u5). Further, the probability of cancerous
increase when both genes are lowly expressed is the same whether they
are in a gene disruptive environment where cell damage (if it occurs) is
quickly repaired or, similarly, when the genes are both highly expressed
(u7 and u8). The distribution of cancerous increase when there is ir-
reparable cell damage and neither gene is normally expressed is always
the same.

This type of information allows us to identify distributions associated
with the random variable X(v) over certain v, giving us a staged tree.
Labelling the situations of T by the numbering of their incoming edges
and the root vertex as v0, gives the stages: u0 = {v0},
u1 = {v(1), v(3, 1), v(3, 2)}, u2 = {v(2)}, u3 = {v(3)},
u4 = {v(1,−1), v(3, 1,−1), v(3, 2,−1)}, u5 = {v(1, 1), v(3, 1, 1), v(3, 2, 1)},
u6 = {v(0)}, u7 = {v(1,−1,−1), v(3, 2,−1,−1)},
u8 = {v(1, 1, 1), v(3, 2, 1, 1)},
u9 = {v(3, 1,−1,−1), v(3, 1, 1,−1), v(3, 1,−1, 1), v(3, 1, 1, 1)},
u10 = {v(3, 2)}.
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A second useful partition K(T ) = {w(v) : v ∈ S(T )} can be defined
from a staged tree G(T , L(T ),L(T )). For each situation v ∈ S(T ), let
Λ(v, T ) denote the set of paths in T from v to a leaf vertex of T . Two
situations v, v′ are defined to be in the same position w ∈ K(T ) if there
is a bijective map

φw(v, v′) : Λ(v, T ) → Λ(v′, T )

:λ(v) 7→ λ(v′)

such that

1. all edges in all the paths in Λ(v, T ) and Λ(v′, T ) are coloured in
G(T , L(T ),L(T ))

2. for all paths λ(v) ∈ Λ(v, T ), the ordered sequence of colours in λ(v)
equals the ordered sequence of colours in λ(v′) = φw(v, v′)[λ(v)] ∈
Λ(v′, T ).

Two situations v and v′ are therefore in the same position when
(under the map φw(v, v′)) the future evolution from both v and v′ is
governed by the same probability law.

In the cell culture example, we can group the 13 positions wi as fol-
lows: u0 = w0, u1 = {w1, w6}, u2 = w2, u3 = w3, u4 = {w4, w7}, u5 =
{w5, w8}, u6 = w9, u7 = w10, u8 = w11, u9 = w12 and u10 = w13. Con-
sider, for example, u1. We choose to distinguish the two cases w1 ∼ value
of G1 given {B = 1} or {B = 3, R = 2} from w6 ∼ value of G1 given
{B = 3, R = 1}. We do this because the distribution of C corresponding
to these two scenarios may be different later on: the slow repair of the
cell during gene interaction may influence cancer cell growth. The other
positions distinct from stages are:

• w4 ∼ value of G2 given {B = 1, G1 = −1} or {B = 3, R = 2, G1 =
−1}

• w5 ∼ value of G2 given {B = 1, G1 = 1} or {B = 3, R = 2, G1 = 1}

• w7 ∼ value of G2 given {B = 3, R = 1, G1 = −1}

• w8 ∼ value of G2 given {B = 3, R = 1, G1 = 1}

Positions are a very obvious way of equating situations, because two
situations in the same position will be impossible to differentiate through
subsequent events. For example, the stage u1 is partitioned into two po-
sitions {w1, w2} because the value of B has a bearing on the distribution
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of a future but not immediate unfolding. Note that, by an abuse of no-
tation, the stages {u : u ∈ L(T )} partition the set of positions {w : w ∈
K(T )}.

A new graph — the Chain Event Graph (CEG) — which is useful
for deducing implied conditional independencies from a staged tree can
now be constructed. Unlike an event tree, the vertices and edges of a
CEG play different roles. Its non-leaf vertices will define circumstances
in which a unit may find itself. The directed edges emanating from
that vertex position label the different possible outcomes that might
subsequently be experienced. Finally, undirected edges join positions
whose next stage of evolution is governed by the same probability law.
The construction of a CEG is based on the probability graph of this
event tree model [4, 16, 25].

Definition 3 The probability graph H(G(T )) = H(T ) = (V (H), E(H))
of a staged tree G(T ) of an event tree T is a directed graph with, possibly,
some coloured edges. Its vertex set is given by V (H) = K(T ) ∪ {w∞}.
Its edge set E(H) is constructed as follows.

For each position w ∈ K(T ) choose a single representative situation
v(w) ∈ S(T ). For each edge from v(w) to v ′(w) ∈ E(T ), denoted by
e(v(w), v′(w)), construct a single edge e(w,w′) ∈ E(H) where w′(w) =
w∞ if v′(w) is a leaf vertex of T and w′(w) = w(v′(w)) otherwise, where
w(v′(w)) ∈ K(T ) is the position containing v′(w).

The colour of the edge (w,w′) ∈ E(H) is the colour of the edge
(v(w), v′(w)) ∈ S(T ) if u(w) 6= {w}, where u(w) is the stage containing
v(w) and is otherwise uncoloured.

Because T is finite, all its paths are of finite length so, by definition,
H(T ) is directed and acyclic, having a single root vertex w0 = v0 (the
root vertex of its tree) and a single sink vertex w∞. There is a one-to-one
correspondence between all root-to-leaf paths in T and all root-to-leaf
paths in H(T ). Thus each elementary event generated by the root-to-
leaf paths in T appear as w0 to w∞ paths λ(w0, w∞) in H(T ). Unlike
the BN, the probability graph is always rooted but not usually simple,
i.e. there can be several directed edges from a node w to another w′.

As for situations on an event tree, for two positions w,w′ write w ≺ w′

when there is a directed path λ in H(T ) from w to w′. Note that each
edge in E(H(T )) can be associated with a primitive probability π ∈ Π
(although not necessarily uniquely), but that in general H(T ) has far
fewer vertices and edges than T .

It is useful to supplement the topology of the probability graph so
that the stages are represented explicitly. Thus we have:
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Definition 4 Call the chain event graph (CEG) C(T ) the mixed graph
with vertex set V (C(T )) = V (H(T )), directed edges Ed(C(T )) = E(H(T ))
and undirected edges Eu(C(T )) = {(w,w′) : u(w) = u(w′),
w, w′ ∈ V (C(T ))}. The colours of the directed edges of C(T ) are inher-
ited from the corresponding probability graph H(T ).

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w∞

B = 0

B = 1

B = 2

B = 3

G1 = −1

G1 = 0

G1 = 1

R = 0

R = 1 or 2

R = 0

R = 1

R = 2

G2 = −1

G2 = 0 or 1

G2 = 0

G2 = 1

G1 = −1

G1 = 0

G1 = 1

G2 = −1

G2 = 0 or 1

G2 = 0

G2 = 1

Figure 5: Chain event graph for the cell culture example. Notice the
colour identification of edges from positions in the same stage. The
dashed lines are the undirected edges which join situations in the same
stage. The double edges from w9, w10, w11 and w12 represent C = 0 and
C = 1. The positions, wi, are used to label the nodes. See the text for
an explanation of the variables.

Note that, by definition, positions connected to w∞ in C(T ) are never
connected by an undirected edge. When the set of stages L(T ) equals
the set of positions K(T ) of a staged tree G(T ), we call C(T ) simple.
By definition, simple CEGs have no undirected edges and no coloured
edges and so are acyclic, directed graphs. An example of a simple CEG
can be found in the introduction. Later in the paper we will show how

18

CRiSM Paper No. 05-3v4, www.warwick.ac.uk/go/crism



to read conditional independence relationships from the topology of a
general CEG.

For a staged tree G(T ), the pair of primitive probabilities (T ,Π(T ))
(where Π(T ) = {Π(u) : u ∈ L(T )}) associated with the distributions
{X(u) : u ∈ L(T )} give a complete description of an event space and its
associated probability model. It follows that (C(T ),Π(C)) also gives a
complete specification of a probability model, where Π(C) = Π(T ). So,
like the BN, the CEG can be seen as a graph whose topology embodies
sets of conditional independence statements and, when supplemented by
a set of conditional probability distributions, can be elaborated into a
full probability model. But unlike the BN, because there is an explicit
invertible map between the set of directed root-to-sink paths of C(T )
and the root-to-leaf paths of T , the topology of the CEG expresses the
structure of the sample space of T and, in particular, impossible events.

The CEG of the staged tree of the cell culture example is given in
figure 5. Note that the labelling and colouring of the edges is consistent
with the set of maps L(T ) and that all information in the staged tree is
expressed within the topology of this graph.

3 Conditional Independence in CEGs

3.1 Cuts and CEGs

As with a faithful BN, it is possible to read the various implied condi-
tional independence statements of a staged tree directly from the topol-
ogy of a CEG. We demonstrated in the introduction that because the
CEG is constructed from an explanation of how situations happen (un-
like the BN) there is no intrinsic set of measurement random variables
over which conditional independence is defined. The random variables
that explain the underlying symmetries can, however, be deduced from
the topology of a CEG and its associated maps L(T ). Two important
constructions of these intrinsic random variables, linked to the underly-
ing filtration represented in the event tree, are the cut and fine cut, as
illustrated in figure 6.

Definition 5 Call a collection W of positions w ∈ K(T ) a fine cut of
H(T ) (or C(T )) if all root-to-leaf paths in H(T ) pass through exactly
one w ∈ W . For any fine cut W of H(T ), let T ∗W denote the subtree
of T whose paths are those paths of T which end in a v ∈ w, for some
w ∈ W . Let H(T ∗W ) and C(T ∗W ) represent the probability graph and
the chain event graph of T ∗W , respectively.

Definition 6 Call a collection U of stages u ∈ L(T ) a cut of H(T ) if
all root-to-leaf paths in H(T ) pass through exactly one w ∈ u for some
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u ∈ U . For any cut U of H(T ), let T U denote the subtree of T whose
paths are those paths of T which end in a v ∈ u, for some u ∈ U .
Let H(T U) and C(T U) represent, respectively, the probability graph and
the chain event graph of T U . Let P

U(C(T )) denote the set of probability
distributions associated with the stages of positions of C(T U).

w0

w1

w3

w4

w6

w9

w7

w2 w5 w8 w10

w∞

X1 = 1

X1 = 0

X2 = 1

X2 = 0

u1

u2

fine cut

Figure 6: An example of a CEG displaying various constructions: a
cut {u1} ∪ {u2} = {w3, w4} ∪ {w5} and a fine cut {w6, w7, w8}. A fine
cutting sequence is given by {w0}∪{w1, w2}∪{w2, w3, w4}∪{w5, w6, w7}∪
{w6, w7, w8}∪ {w9, w10}. Some edges have been labelled for illustration.

For convenience, let the set consisting solely of the root vertex {v0}
be both a cut and a fine cut. By definition, since (C(T ),Π(C(T )) pro-
vides a full description of a probability model on T , (C(T U),ΠU(C(T U))
provides a full description of a probability model on T U . In particular,
the probabilities associated with each of its paths sum to unity and are
expressible as a monomial in primitive probabilities in ΠU(C(T U)). To
explore the relationship between the graphical depiction of conditional
independence in the BN and the analogous depiction in the CEG, it is
first necessary to introduce further definitions.
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Definition 7 Call a sequence of fine cuts (W0,W1,W2, . . . ,WN) of H(T ),
a fine cutting sequence of H(T ) if:

1. W0 = {w0}, where w0 is the root vertex.

2. For each wi ∈ Wi there is a wi−1(wi) ∈ Wi−1 such that either
wi−1(wi) = wi, so that wi lies in both Wi or Wi−1, or (wi−1, wi) ∈
E(H(T )), so that there is an edge from a vertex wi−1 to wi, 1 ≤
i ≤ n.

3. All vi ∈ wi, wi ∈ Wi, lie on a path λ(v0, vi+1) in T from its root
to some vertex vi+1 ∈ wi+1, wi+1 ∈ Wi+1 or vi ∈ wi+1, for some
wi+1 ∈ Wi+1, 1 ≤ i ≤ N − 1.

4. S(T ) =
⋃

1≤i≤N{v ∈ Wi} ∪ {w0}.

Call this sequence an orthogonal fine cut if all positions in Wi lie the
same distance from the root position for 1 ≤ i ≤ N, and no Wi = Wj

for 1 ≤ i, j ≤ N.

Definition 8 Call a sequence of cuts (U0, U1, U2, . . . , UN ) of H(T ), a
cutting sequence of H(T ) if:

1. U0 = {w0} where w0 is the root vertex.

2. For each wi ∈ Ui there is a wi−1(wi) ∈ Ui−1 such that either
wi−1(wi) = wi or (wi−1, wi) ∈ E(H(T )), 1 ≤ i ≤ n.

3. All vi ∈ ui, ui ∈ Ui, either lie on a directed path λ(v0, vi+1) in T
from its root v0 to some vertex vi+1 ∈ ui+1, ui ∈ Ui+1 or are such
that vi ∈ ui+1, for some ui+1 ∈ Ui+1, 1 ≤ i ≤ N − 1.

4. S(T ) =
⋃

1≤i≤N{v ∈ ui : ui ∈ Ui}.

Call this sequence an orthogonal cut if all positions in Ui lie the same
distance from the root position 1 ≤ i ≤ N , and no Ui = Uj, 1 ≤ i, j ≤ N.

Note that an orthogonal fine cut partitions the set of positions K(T ).
There are three useful random variables which can be defined using the
concept of a cut.

Notation 2 Let C(T ) be a CEG and Π(C) be the set of probability dis-
tributions on its positions. For any cut U , let X(U) = (X[u] : u ∈ U)
where X[u] is the random variable associated with the stage u. Let Q(U)
be a random vector of parents of X(U), whose state space is the set of
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stages u ∈ U where the probability πQ(U)(u) is the sum of all the mono-
mials in primitives associated with paths λu ∈ Λu from the root vertex of
H(T ) to an element w ∈ u. Explicitly,

πQ(U)(u) =
∑

λu∈Λu

∏

w∈λu,w/∈u

π(w′|w)

Let Z(U) denote a random variable whose state space ΛU consists of all
paths λu ∈ Λu in H(T ) from its root vertex to a vertex w ∈ u, for some
u ∈ U : the upstream variable. This has an associated probability mass
function π

Z(U)
given by

πZ(U) =
∏

w∈λu,w/∈u

π(w′|w)

These constructions give answers to conditional independence state-
ments, like those embedded in BNs, that are valid for all values of the
conditioning variables. By definition, once the stage u is given, or equiv-
alently once the value of Q(U) is observed, the inputs to any random
variable associated with a stage u ∈ U are known. So, in particular,
none of the positions in H(T U) can have any bearing on the realisation
of X(U). Thus we have that, given a set of primitives, by construction

X(U)
∐

Z(U)|Q(U)

Conversely,

Theorem 1 If a function B(Z(U)), where U is a cut, satisfies

X(U)
∐

Z(U)|B(Z(U))

then Q(U) is a function of B(Z(U)) with probability one.
Proof. Suppose Q(U) is not a function of B(Z(U)) with probability
one. Then there exist two positions w[1] and w[2] in different stages
(u[1] and u[2] respectively) which each have non-zero probability and for
which X(w[1]) = X(w[2]). But this would imply that w[1] and w[2] were
at the same stage, giving a contradiction.

The theorem above also tells us that these are the only independen-
cies between upstream and downstream random variables defined on the
path event space that can be deduced from the CEG of a staged tree T .

22

CRiSM Paper No. 05-3v4, www.warwick.ac.uk/go/crism



3.2 Homogeneous staged trees and the BN

In this paper we focus much of our attention on event trees that are n-
homogeneous: that is, all their root-to-leaf paths are of length n edges.
One important n-homogeneous event tree is compatible with finite dis-
crete random variables X1, X2, . . . , Xn taking values on a subset of the
product event space {X1×X2× . . .×Xn} where each root-to-leaf path of
λ ∈ Λ corresponds to an event of the form ∩n

i=1{Xi = xi}. An example
of such a tree on two binary variables is given in the introduction.

Suppose an observer’s beliefs are fully and accurately given by a
BN D. Suppose this is unknown to the analyst who constructs the
client’s event tree T and then its CEG (C(T ),Π). It is shown below
that the underlying BN is identified from the CEG C(T ) alone: the
primitive probabilities of (C(T ),Π) project directly on to the primitive
probabilities of D.

When a staged tree represents all the conditional independence state-
ments depicted in a BN, its stages L(C(T )) must be in one-to-one cor-
respondence with the different possible configurations qi of the n − 1
parent sets Qi of the random variables Xi, 2 ≤ i ≤ n, with the root
vertex of C(T ) being associated with X1. Let the set of stages Ui−1 la-
bel the different possible configurations qi of parents of Xi, 2 ≤ i ≤ n.
Clearly, each of the sets Ui−1 , forms a cut in C(T ) for 1 ≤ i ≤ n − 1,
and furthermore (U0, U1, . . . , Un−1) is a cutting sequence of C(T ).

One of many equivalent definitions [17, 27] of a valid Bayesian net-
work D = (V (D), E(D)), with V (D) = {X1, X2, . . . , Xn} is that (Xj, Xi) ∈
E(D) ⇔ Xj ∈ Qi where 1 ≤ j < i and, for all configurations qi of the
parents Qi of Xi,

Xi

∐
{X1, X2, .., Xi−1}|Qi = qi

It has already been noted that the associated tree (T (D),Π(T (D))
and hence its CEG (C(D),Π(C(D)) gives a full description of this proba-
bility model. So (T Ui(D),Π(T Ui(D)) (or equivalently (C(T Ui(D),Π(CUi(D)))
has its root-to-leaf paths — the sample space of Z(Ui) — labelling the
set of events {X1 = x1, X2 = x2, .., Xi = xi}.

By definition, whenever a situation labelled by the path {X1 =
x1, X2 = x2, . . . , Xi = xi} corresponds to the same configuration of
parents of Xi+1, it will be placed in the same stage in Ui. Different con-
figurations of parents of Xi will correspond to different events {Qi = qi}
where Qi = Q(Ui+1), 1 ≤ i ≤ n − 2. It follows that for each ui ∈ Ui,
0 ≤ i ≤ n− 1,

X(Ui)
∐

Z(Ui)|Q(Ui)
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Note here that X(Ui) can be identified with Xi+1|Qi+1, 1 ≤ i ≤ n, Q(Ui)
with Qi+1 and Z(Ui) with the set of random variables {X1, . . . , Xi} \
Qi+1. Henceforth we will identify edges emanating from the positions of
vi of the CEG on an n-homogeneous tree T a distance i − 1 from the
root of T by Xi|Qi, 2 ≤ i ≤ n, the collection of such edges by Xi+1 and
X(W0) by X1.

Since the stages of a CEG can be identified visually, it follows that all
the conditional independencies that are needed to build the associated
faithful BN D can be read directly from the chain event graph C(T (D)).
Note here that each of the cuts consists of stages, all of whose positions
are the same number of edges from the root vertex. They are therefore
trivial to identify from C(T (D)). Note also that the sequence of cuts
defined by the the parent configurations (U1, U2, . . . , Un−1) provide an
orthogonal cutting sequence of C(T (D)).

3.3 Event conditioned independence in CEGs

A position w∗ of C is called a stalk if every root-to-sink path λ ∈ Λ(C)
passes through w∗. A stalk is a fine cut that is also a singleton and has
a particularly important role in the interpretation of a CEG. Because
H(T ) is acyclic, all paths in C pass through its stalks in the same order.
Label the m stalks {w0, w

∗
1, w

∗
2, . . . , w

∗
m} consistently with this order.

Definition 9 A shelling of a CEG (C,Π(C)) into peas {(Ci,Π
(i)(Ci)) :

1 ≤ i ≤ m} is a map

(C,Π(C)) → {(C1,Π
(1)(C1)), (C2,Π

(2)(C2)), . . . , (Cm,Π
(m)(Cm)}

where

1. The vertex set V (C1) of the mixed graph C1 is the set of positions
{w ∈ K(C) : w ≺ w∗

1} together with its sink vertex w∗
1. The vertex

set V (Ci) of the mixed graph Ci is the set of positions {w ∈ K(C) :
w∗

i−1 � w ≺ w∗
i } together with its sink vertex w∗

i where we use the
convention that w∗

m = w∞. For 1 ≤ i ≤ m, if E(C) denotes the
edge set of C then the edge set E(Ci) is defined by

e ∈ E(Ci) ⇔ e ∈ E(C)

2. The primitive probabilities πi(v
′
i|ui) ∈ Π(i)(Ci) of Xi(ui) are such

that πi(v
′
i|ui) = π(v′i|ui) ∈ Π(C).

Theorem 2 Suppose a CEG has at least two peas. The random vector
(Yi, Yi+1, . . . , Ym) whose sample space can be identified with a set of paths
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through vertices in ∪m
k=iV (Ck) is then independent of the random vector

(Y1, Y2, . . . , Yi−1) whose sample space is defined by paths through vertices
in ∪i−1

k=1V (Ck), 2 ≤ i ≤ m.
Proof. Each atom of the σ-field associated with (Y1, Y2, . . . , Yi−1) ×
(Yi, Yi+1, . . . , Ym) = (Y1, Y2, . . . , Ym) corresponds to a root-to-leaf path λ
in C. By definition, λ = (w0, w1,λ, . . . , wt(λ),λ = w∗

i−1, . . . , wn(λ)) must
pass through the position w∗

i−1. Let Λ1(λ) denote the set of all paths that
agree with λ until the position w∗

i−1 and are otherwise arbitrary. Let
Λ2(λ) denote the set of all paths that are arbitrary until reaching w∗

i−1

but that agree after w∗
i−1. By definition

π(λ) =

n(λ)∏

i=1

π(wi,λ|wi−1,λ)

Clearly, by definition and the fact that all paths pass through w∗
i−1

P (λ ∈ Λ1(λ)) =

t(λ)∏

i=1

π(wi,λ|wi−1,λ)

whilst, by the same argument,

P (λ ∈ Λ2(λ)) =

n(λ)∏

i=t(λ)+1

π(wi,λ|wi−1,λ)

It follows that

π(λ) = P (λ ∈ Λ1(λ))P (λ ∈ Λ2(λ))

Since this is true for all atoms in the space, the theorem is proved.

This result is important, since it is now possible to immediately iden-
tify a CEGs independent components (its peas) visually from its stalks.
Thus from the topology of the CEG of figure 7, we can immediately iden-
tify three mutually independent random variables (Y1, Y2 and Y3) on the
event space of its 18 root-to-sink paths. We have that Y1 = y1(1) when
a path contains e1 and e3, Y1 = y1(2) when a path contains e1 and e4
and Y1 = y1(3) when a path contains e2. Y2 = y2(1) when a path passes
through e6, Y2 = y2(2) when it passes through e7 and Y2 = y2(3) when
it passes through e8. Finally, Y3 = y3(1) when a path passes through
e9 and Y3 = y3(3) when it passes through e9. In fact, the theorem also
allows us to identify certain conditional independence statements,

Let Λ[w] ⊂ Λ denote the event in the path σ-algebra Λ of C consisting
of the set of all paths λ ∈ Λ passing through w∗ = (w∗

1, w
∗
2, . . . , w

∗
m−1),
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w0

w∞

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

peas

stalks

Figure 7: A CEG with three peas.

where w∗
i ∈ K(C(G))\{w0}, 1 ≤ i ≤ m − 1 and, for k > 1, w∗

i ≺ w∗
i+1,

1 ≤ i ≤ k− 1. Let GΛ[w∗](TΛ[w∗], L(TΛ[w∗]),L(TΛ[w∗])) denote the subtree
of a staged tree G whose tree is TΛ[w∗] — the subtree of T whose paths
are Λ[w∗] — and which inherits its stages and staging bijections from
G(T , L(T ),L(T )).

Corollary 1 If C(TΛ[w∗]) has stalks {w0, w
∗
1, w

∗
2 . . . w

∗
m−1} with {Yi(w

∗) :
1 ≤ i ≤ m}, as defined in theorem 2 but with (C(TΛ[w∗]),Π(C(TΛ[w∗]))
replacing (C,Π(C)), then

m∐

i=1

Yi|Λ[w∗]

Proof. This is immediate from the observations at the end of section
2.2 that C(TΛ[w∗]) is in fact the CEG of the tree TΛ[w∗] conditioned on
the event Λ[w∗] and that, under our formula, the necessary separation
of probabilities in Π(C(TΛ[w∗]) still holds.

This allows many conditional independence statements to be read
from the CEG C(T ) of the unconditioned tree T , when the conditioning
is on an event rather than a variable.
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For example, consider the cell culture CEG of figure 5. Suppose
we take a measurement that tells us that there is possible disruption of
epistatic interaction but if cell damage has occurred it is quickly repaired
(position w1) and that these circumstances preclude a larger than usual
probability of an increase in cancer cells (position w8). Then Λ[w1, w8] is
the set of 12 paths in Λ passing through w1 and w8. The corollary allows
us to construct three random variables Y1, Y2 and Y3 which are mutually
independent given the event Λ[w∗]. Thus Y1 is determined given Λ[w∗],
whether or not cell damage has occurred (i.e. which path from w0 to w1

is taken: {B = 3, R = 1} or {B = 1}). Variable Y2 labels which of the
three passive switching pathways {G1 = 0}, {G1 = −1, G2 6= −1}, {G1 =
1, G2 6= 1} is taken: the legal paths between w1 and w8 given what we
have learned. Finally, Y3 is an indicator of whether or not there has been
a cancerous increase: represented by the two paths from w8 to w∞.

Obviously many other examples of event conditioned conditional in-
dependence can be read from this CEG. They allow us to address inter-
esting implications of this staged tree without demanding the construc-
tion of a conditioning random variable: a construction that is needed
in the interrogation of a BN. In contrast, all we need is a conditioning
event : here Λ[w∗]. It is argued in [23] that this is intrinsic to implications
associated with causal models.

For the remainder of the paper we return to more familiar conditional
independence relationships and investigate how cuts and fine cuts of the
CEG of a a staged tree can be used to identify pairs of variables that
are independent of each other given a third.

3.4 Constructing variables from CEGs: a simple

example

In the last example, through naming the positions and edges of a CEG
we created a semantics within which we could construct variables that
exhibited conditional independence over an event. Here we demonstrate
a similar simple method for finding conditional independencies over vari-
ables using cuts.

An explorer in a forest may die tomorrow. There is a possibility that
she is bitten by a venomous snake. If she carries an antidote and uses
it, such a bite will certainly not be deadly and will have no effect on
her health. But without the antidote, the probability that she will die
tomorrow will increase.

Naively constructing a BN of this scenario encourages us to represent
the dependence structure in terms of the three indicators we could mea-
sure: X1 (whether she is bitten), X2 (whether she carries the antidote)
and X3 (whether she dies tomorrow). Unfortunately, the story as re-
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layed above would simply give a degenerate (complete) BN. Indeed, the
only possibly plausible additional conditional independence that might

be added to the story is that X1

∐
X2 , but this looks suspicious since

if she is more likely to be bitten then, unless she is very ignorant, she is
more likely to decide to carry the antidote.

b

a

d|e

d|e

a

d|e

d|e

d|e

d|e

b

b

Figure 8: The event tree for the snake bite example. b is the event
that she gets bitten, a that she is carrying the antidote, d that she dies
tomorrow and e ≡ b ∩ a that she is endangered. An over-line denotes
the complement.

However, once the event tree and then the CEG of this scenario is
drawn, see figures 8 and 9 respectively, random variables that might
exhibit conditional independencies can be automatically derived from
the cuts and fine cuts of the CEG.

Having drawn the CEG and acknowledged that two situations in the
tree can be combined into a single position w3, it is easy to see that
the interior positions (w1, w2, w3) represent (bitten, endangered by bite,
not endangered). The edges (w0, w1) and (w0, w3) hold the primitive
probability of being bitten, π[b], or not, π[b]; (w1, w2) that she does
not carry the antidote when bitten, π[a]; (w1, w3) that she carries the
antidote when bitten, π[a]; the two edges from w2 to w∞ whether she
dies, π[d|e], or not, π[d|e], if endangered; and the two edges from w3 to
w∞ whether she dies, π[d|e], or not, π[d|e], when there is no effect from
the bite. Clearly she is endangered only if b and a have occurred, and
not endangered if b and a, or just b have taken place.

Note that because C(T ) = H(T ), positions and stages are identical
and consequently the primitive probabilities of the problem can be as-
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w0

w1

w3

w2

w∞

b

b

a

a

d|e

d|e

d|e

d|e

Figure 9: The CEG for the event tree of the snake bite example shown
in figure 8.

signed uniquely to the edges of this graph. Our sum to one conditions
reduce these eight probabilities to four functionally independent values.
The only non-degenerate cut here is that provided by U = {w2, w3}.
From the results above it is possible to read directly from figure 9 that

X(U)
∐

Z(U)|Q(U)

where Q(U) is the indicator of whether or not the individual is endan-
gered by the snake bite, X(U) = X3 is the indicator of whether or not
the individual dies, and Z(U) is an indicator differentiating between the
event that the person was bitten and then took the antidote, and the
event that she was not bitten. Thus, the conditional independence em-
bedded in the CEG is over these three variables, all of which can be
constructed directly from the graph.

The substantive statement being made by the observer and encap-
sulated by this conditional independence statement is that the fact that
the person was not bitten, or bitten and then given the antidote, is
irrelevant to predictions about her probability of death tomorrow.

Following the common practice of simply searching over dependence
structures between these three variables, either from an elicitation pro-
cess or a search over a sample space, will fail to detect this structure.
But tracing how events might happen leads us to appropriate random
variables which do express any exchangeability. In general, any non-
degenerate cut corresponds to a substantive conditional independence
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statement associated with the description of the problem as captured
by the CEG. Furthermore, an associated parent variable Q and residual
variable Z can be visually identified, and subsequently interpreted, via
the original description from the client.

Note that the BN demands that all cuts can be expressed as invert-
ible functions of a subset of the measurement vector whose sample space
defines Z(U). This fierce invertibility condition is completely unneces-
sary in the CEG: Q(U) can be any function of the space determined
by the previously listed variables. The only implicit condition on the
examined functions Q(U) is that they must be consistent with a natu-
ral order of an associated tree, i.e., consistent with the partial order in
which the client believes situations will take place. This covers a large
class of models. Indeed Shafer, [25] would appear to assert that these are
the only conditional independence statements that one can reasonably
expect to elicit from a client by direct questioning. Certainly when the
whole of the client’s beliefs are captured by a single “causally” faithful
event tree, Shafer’s assertion appears a compelling one.

4 Dependence Enquiries Using CEGs

4.1 Fine cuts and conditional independence con-

cerning the past given the future

Identifying cuts allows us to define independence structures associated
with subsequent unfoldings of situations on a tree. However, fine cuts
address global independence statements associated with a graph. In
particular, they allow deductions to be made about conditional inde-
pendencies of causes given effects in the same way as the constructions
associated with d-separation in BNs. This is important since it is com-
mon to observe effects but not causes. For example, a doctor sees a
patient’s symptoms but she is interested in observing the disease itself.

To address this type of enquiry, three random variables associated
with a fine cut on a CEG must be defined.

Notation 3 Let (C(T ),Π) be a CEG. Let H(T (w)), w ∈ K(T ), denote
the subgraph H(T ) whose root-to-leaf paths are exactly those paths in
H(T ) beginning at w and ending at w∞. Let X(H(T (w))) be the random
vector with event space atoms consisting of all these paths from w to w∞

and write
X[W ] = (X(H(T (w)) : w ∈ W )

for the vector of such variables associated with a fine cut W . Let Z(W )
denote the random variable whose state space ΛW consists of all paths
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λ(w0, w
′) in H(T ) from its root vertex to the vertex w′ ∈ W . The asso-

ciated probability π
Z(W )

is given by

πZ(W )(λ(w0, w
′)) =

∏

w∈λu,w 6=w′

π(w′|w)

Let Q(W ) be the random variable whose state space is the set of posi-
tions w′ ∈ W and the probability πQ(W )(w

′) is the sum of monomials in
the primitives associated with all paths λ(w0, w

′) from the root vertex of
H(T ) to w′. We then call Q(W ) (a function of Z(W )), the separator
of X(W ) from Z(W ). Explicitly,

πQ(W )(w
′) =

∑

λ(w0,w′)

∏

w∈λu,w 6=w′

π(w′|w)

These constructions allow us to move directly from the geometry
of H(T ), or C(T ), to large collections of conditional independence re-
lationships between vectors of functions of random variables which, as
for the BN, can be read from the separation properties of the graph
H(T ). Thus, for any fine cut W we can assert immediately from the
construction above that

X [W ]
∐

Z(W )|Q(W ) (7)

From the usual conditional independence algebra, we can deduce
from equation (7) that, for a vector function of the downstream variables,
g(X[W ]), given each possible position w ∈ W learned through observing
Q(W ):

(X[W ], g(X[W ])
∐

Z(W )|Q(W )

and therefore through symmetry and weak union [18]:

X[W ]
∐

Z(W )|Q(W ), g(X[W ])

Thus, even after we observe a function g(X[W ]), any function T =
h(Z(W )) of Z(W ) (a random vector measurable with respect to ΛW )
remains uninformative about any function Y = f(X [W ]) downstream
of Q[W ] if we know the value of Q[W ]. So, if we need to learn about
Y there is no point in learning or remembering the value of T given Q:
the value of Q will suffice.

This fact is useful both for designing efficient sampling schemes for
Y and for developing efficient propagation algorithms which we are cur-
rently developing. Note that the corresponding observation is not nec-
essarily true for the separator variable of cuts Q(U). Hence refining cuts
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into fine cuts to obtain general separation criteria for a CEG is analo-
gous to coarsening a BN by adding edges in the moralisation step of the
d-separation theorem.

In fact, there is also an important converse to this observation. Let
Q(W ) be the separator associated with an arbitrary cut W . Let Q∗(W )
be a function of Q(W ) which is not a cut. By definition, this im-
plies that it is possible to find two positions w1, w2 ∈ W , such that
Q(wi) = qi (i = 1, 2) are distinct values for which the joint distributions
of (X[W ]|Q(W ) = q1,Q

∗(W )) and (X[W ]|Q(W ) = q2,Q
∗(W )) are

not identical. It immediately follows that

X[W ]
∐

Q(W )|Q∗(W )

cannot hold, and hence in particular that

X[W ]
∐

Z(W )|Q∗(W )

is also false. As a consequence, all functions Q of upstream variables
which on conditioning make all downstream variables independent of
upstream variables must define fine cuts.

4.2 Dependence enquiries on BNs using CEGs

If a CEG can be expressed as a faithful BN and a dependence enquiry
only concerns the relationship between subsets of the variables of the BN,
then the simplest and recommended method for answering the enquiry
is to use the d-separation theorem. However, it is instructive to see how
an n-homogeneous CEG (see section 3.2) and its cuts can be used as an
alternative way of answering these queries. Consider the BN given in
figure 10.

X1

X2 X3

X4 X5 X6

Figure 10: An example of a BN on which we wish to make an enquiry.
X6 can be observed, but our variable of interest, X2, cannot.

The variable X6 can be observed, but not X2, which is our variable
of interest. The values of which remaining variables can be ignored
without loss? To answer this question using d-separation, the undirected
version of the moralised ancestral graph must be constructed, see figure
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X1

X2 X3

X4 X5 X6

Figure 11: The undirected moralised graph of figure 10. d-separation
can be used to deduce conditional independencies.

11. Clearly, {X1, X3, X6} separate X2 from the other variables {X4, X5}
and so {X4, X5} give no useful additional information about X2 over
that given by {X1, X3, X6}. Furthermore, discarding a variable from
the subsets {X1, X6} and {X3, X6} will inevitably lose information.

Now construct a CEG of the BN. The five fine cuts, defined by posi-
tions associated with a tree that introduces situations compatible with
variables in the order {X1, X2, X3, X4, X5, X6}, are defined by functions
of ({X1}, {X1, X2}, {X1, X3}, {X3, X4}, {X4, X5}). This is illustrated in
figure 12. The third fine cut gives us that

{X4, X5, X6}
∐

{X1, X2, X3}|{X1, X3} (8)

implying

{X4, X5, X6}
∐

X2|{X1, X3}

and thus
{X4, X5}

∐
X2|{X1, X3, X6}

This is the same irrelevance statement obtained from the d-separation
theorem above.

The only other substantive conditional independencies that can be
read from the fine cut and are also readable from d-separation are

{X5, X6}
∐

{X1, X2, X3, X4}|{X3, X4} (9)

{X5, X6}
∐

{X1, X2}|{X3, X4} (10)

Equation (10) is derived from the property of decomposition [18] and
implies, by symmetry and weak union, that

X5

∐
{X1, X2}|{X3, X4, X6}

Because a CEG focuses on relationships between upstream and down-
stream variables, and the definition of upstream and downstream is
partly a function of the underlying tree, it is not always possible to
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w∞

X1 X2|Q2 X3|Q3 X4|Q4 X5|Q5 X6|Q6

Figure 12: The CEG with cuts for the Bayesian network shown in figure
10. The dashed lines are the undirected edges. The variables Xi and
Qi, 1 ≤ i ≤ 6, are defined in section 3.2. For example, for the two
vertices and four edges labelled X2|Q2, the vertices correspond to the
configurations of the parent X1, and the edges correspond to the possible
values X2 can take given these two possible configurations.

read all implied conditional independencies from the cuts and fine cuts
of a single CEG of a BN. It is in fact sometimes necessary to repeat the
procedure above on a subset of different trees, all compatible with the
BN, before deriving a complete list using intersection and conditioning.

For example, the tree taking variables into the CEG in total order
{X1, X4, X5, X2, X3, X6}, gives the analogous statements

{X2, X3}
∐

X4|{X1, X5, X6}

X3

∐
{X1, X4}|{X3, X4, X6}

We conjecture that, in general, all substantive statements implicit in a
BN can be generated by searching through a small subset of all compat-
ible trees and evoking the properties of symmetry, decomposition and
weak union. Alternatively, we can use somewhat more complex topo-
logical structure and edge colouring: see [22] for some analogues of such
constructions.

4.3 Representing BNs with compact CEGs

An event tree can define rich classes of conditional independencies via
the sets of random vectors {X(Ui),Z(Ui),Q(Ui) : 2 ≤ i ≤ n} associated
with the cuts/fine cuts of a CEG C(T (D)). In particular, the cuts and
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fine cuts define random variables Q(Ui) intrinsic in separating down-
stream variables that might be observed from upstream variables whose
distributions are of interest. Because the event tree can be more expres-
sive than the BN and is often not unique, different CEGs describing the
same problem can highlight different sets of conditional independencies.

Due to the fine cut property discussed above, the most useful CEGs
for interrogation purposes are ones where the sizes of stages have as
small a number of positions in them as possible. It is therefore of some
interest to find out when a given BN has a compact CEG representation.

Suppose four binary variables respect the BN in figure 13. A tree
compatible with the total order (X1, X2, X3, X4) gives the CEG in figure
14.

X2 X4

X1 X3

Figure 13: A Bayesian network that can be represented differently by
event trees and CEGs according to the order in which you take the four
variables. See figure 14.

w0 w∞

X1 = 1

X1 = 0

X2 = 1

X2 = 0

X2 = 1

X2 = 0

X3 = 1

X3 = 0

X3 = 1

X3 = 0

X4 = 1

X4 = 0

X4 = 1

X4 = 0

X1 X2|X1 X3|X1 X4|X3

Figure 14: The CEG corresponding to the Bayesian network in figure
13, taking the variables in the order (X1, X2, X3, X4).

It is straightforward to characterise those BNs with simple represen-
tations: that is, those whose CEGs need no undirected edges. Hence,
the set of fine cuts and the set of cuts are identical. Let the vertices
(X1, X2, . . . , Xn) of a BN, D, be such that Qi ⊆ {X1, X2, . . . , Xi−1} are
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the parents of Xi for 2 ≤ i ≤ n, and write Ri = {X1, X2, . . . , Xi−1}\Qi

for 2 ≤ i ≤ n.

Definition 10 A BN, D, is said to be moral if all its parent sets Qi,
1 ≤ i ≤ n, are complete.

Theorem 3 A BN, D, with variables (X ′
1, X

′
2, . . . , X

′
n) can be repre-

sented as a simple CEG if and only if there is a permutation of the
components (X ′

1, X
′
2, . . . , X

′
n) 7→ (X1, X2, . . . , Xn) such that

Ri ⊆ Ri+1 for 2 ≤ i ≤ n− 1

Proof. Let u(Qj = qj) denote the stage associated with each configura-
tion of the parents of each random variable Xj, 1 ≤ j ≤ n. These label
the stages of the tree T compatible with the total order of this particular
indexing of variables. Note that this equivalence class of situations is
precisely

u(Qj = qj) = {v(Qj = qj,Rj = rj) : Qj = qj}

Because Ri ⊆ Rj, j ≥ i implies that the index Qj = qj does not depend
on the situation, with the choice of element of u(Qi = qi) labelled by
Ri = ri. It follows that the positions of T are exactly its stages. On
the other hand, again by definition, if the condition above is violated,
then for any compatible total ordering of the variables, there exist values
1 ≤ i < j ≤ n such that the index Qj = qj depends on the value of
Ri. It then follows that u(Qi = qi) must contain at least two stages,
implying that #[w] − #[u] ≥ 1. Thus any such CEG cannot be simple.

Corollary 2 If a CEG is simple and fully represents a BN, D, then D
must be moral.
Proof. If a CEG is not representable as a faithful decomposable BN,
then there must exist random variables Xi, Xj, Xk, 1 ≤ i < j < k ≤ n
in the vertex set of the BN such that Xi ∈ Qk (so that Xi /∈ Rk). So
there are at least two configurations of {Xi, Xj} which define different
positions, but for which Xi is not connected by an edge to Xj. Thus
Xi ∈ Rj. But this violates the condition of the theorem.

In the example above, the two fine cuts {w(0, X3), w(1, X3)} and
{w(0, X4), w(1, X4)} on the original random variables give the respective
statements

{X4, X3}
∐

X2|X1

X4

∐
{X2, X1}|X3

Notice that all the conditional independence statements implied by this
BN can be derived from the fine cuts.
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4.4 An example of interrogating a CEG that cannot

be fully represented by a BN

CEGs have real advantages over BNs when there is additional staging
information that cannot be expressed directly by a BN. Such structures
are very common. Perhaps the simplest of these lie in the category of
context-specific BNs [3, 8, 20]. These also have n-homogeneous trees.

Suppose (X1, X2, . . . , X6) are binary random variables and

X3

∐
X1|X2

X5

∐
{X1, X2, X4}|X3

X6

∐
{X1, X2, X3}|{X4, X5}

w0

w1

w3 w6 w8 w12

w2

w4

w5 w7 w11 w13

w9

w10 w∞

0

1

X1 X2|Q2 X3|Q3 X4|Q4 X5|Q5 X6|Q6

Figure 15: The CEG of binary variables with noisy OR and AND gates
as described in the text. The dashed lines are undirected edges. The con-
ditioning variables (Q2,Q3,Q4,Q5,Q6) defined in section 3.2 no longer
correspond to subvectors of x.

It is also known that X4 is a noisy OR gate on {X1, X2, X3}: i.e.
the distribution of X4 depends only on whether or not at least one
of {X1, X2, X3} takes the value 1. Also, X6 is a noisy AND gate on
{X4, X5}: the distribution of X4 depends only on whether or not both
{X4 and X5} take the value 1. The CEG of this situation, see figure 15,
not only explicitly depicts the conditional independencies above but also,
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unlike the BN, the OR and AND gates. There are 32 stages but only 15
positions. These correspond to various configurations of the parents.

Let (x1, . . . , xk) denote the event (X1 = x1, . . . , Xk = xk), 1 ≤ k ≤
5, where a missing entry corresponds to union over all those coordi-
nates, and let (x1, x2, . . . , xk) denote the complement of (x1, x2, . . . , xk)
in the path event space determined by the variables i to k. The posi-
tions can then be listed as w0, the root vertex, w1 = (0), w2 = (1),
w3 = (0, 0), w4 = (1, 0), w5 = (1, 1), w6 = (0, 0, 0), w7 = (0, 0, 0),
w8 = (0, 0, 0, 0), w9 = (0, 0, 0, 1), w10 = (0, 0, 0, 0), w11 = (0, 0, 0, 1).
w13 = (x4 = 1, x5 = 1) and w12 is the complement of w13. The stages
that are not positions are u3,5 = {w3, w4}, u4,6 = {w5}, u9,10 = {w8, w9}
and u11,12 = {w10, w11}.

The orthogonal fine cuts that can be read automatically from the
graphs are the non-informative fine cuts W0 = {w0} and W1 = {w1, w2},
together with W2 = {w3, w4, w5}, W3 = {w6, w7},
W4 = {w8, w9, w10, w11} and W5 = {w12, w13}, and the orthogonal cuts
U0 = {w0}, U1 = {w1, w2}, U2 = {u3,5, u4,6}, U3 = {w6, w7}, U4 =
{u9,10, u11,12} and U5 = {w12, w13}. Potentially informative separators
can also be read directly from the CEG. Of course, these are defined
only up to invertible transformations because they define conditioning
sets. Thus, suitable representatives are Q(W2) = (X1, X2), Q(W3) =
max{X1, X2, X3}, Q(W4) = (X3, X4), Q(W5) = min{X4, X5}. Here,
Q(W2) is uninformative because Z(W2) is the constant function, but
all others convey conditional independence relationships concerning the
whole space. For example, the fact that Q(W3) is a separator tells us
that

{X4, X5, X6}
∐

{X1, X2, X3}|max{X1, X2, X3}

This clearly cannot be read from the BN on {X1, X2, . . . , X6}, unless
Q(W3) is added to the variables listed in the BN. Furthermore, using
corollary 1, it can be deduced that

{X5, X6}
∐

{X1, X2, X3, X4}|min{X4, X5} = 1

because conditioning on the position w13 gives us that w7 is a pea. Notice
that since it is not true that

{X5, X6}
∐

{X1, X2, X3, X4}|min{X4, X5} = 0

it is impossible to read this statement from any BN since the value of the
conditioning variable must be the same at all levels to be representable
as a BN.
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4.5 A simple interrogation algorithm

Suppose interest centres on the value of the variable Y — the queries
variable — measurable with respect to the path σ-field of an event tree,
Tc. You have observed a vector of measurements X, also measurable
with respect to Tc. Your task is to determine which features of X you
can discard with no loss of information about Y . Equivalently, you
want to determine which functions f(X) you can keep and still be fully

informed about Y : i.e. which f(X) satisfy Y
∐

X|f(X). This type

of question has a solution for BNs, when f is a subvector of X , through
the d-separation theorem.

We present a similar protocol for CEGs when f is allowed to be a
general function of X. Note that this construction is based on what
Shafer calls a simplification, see chapter 13 in [25].

1. From a given enquiry to an elicited tree, Te, construct a CEG,
C(Te). Find a cut U so that all the possible positions of interest,
B, are upstream of the cut or in the cut. The set A must contain
all positions that define the query and the possible positions that
could be observed. Choose a cut to be minimal in the sense that
it has the property described above but has the smallest number
of positions upstream. A therefore contains all situations in C(Te)
whose positions are upstream of all query or observed vertices in
C(Te).

2. Beginning again with the situations in A, draw a tree TA describing
the unfolding of these situations. Construct the CEG of TA, C(TA).
The most expressive CEGs tend to be those that introduce as many
situations associated with the observed variables into TA as early as
possible, and introduce situations involving the query object as late
as possible. In the case when C(TA) is cross-sectional, its net can
be used to help construct a TA sympathetic to the considerations
above.

3. Any fine cuts in C(TA) with the property that all situations pertain-
ing to the query on Y lie downstream will now define a conditional
independence associated with the observation vector. In particu-
lar, if B(T ) can be expressed as a function of Q(U), where U is a
fine cut of C(TA), then

Y
∐

T |B(T )

Note that the first two steps are analogous to the construction of
an appropriate moralised ancestor set under the d-separation procedure,
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whilst the third is a construction of paths blocking a set of variables from
the others. These constructions provide lists of many valid conditional
independence statements implicit in a CEG.

5 Discussion

Because CEGs encode conditional independence statements, they can
be used as a framework for fast probability propagation both for general
inference (using fine cuts) and abductive inference (using cuts). Such
algorithms are under development and will be reported in a later paper.
Although classes of models defined by how events unfold are not ubiq-
uitous, experience suggests that they are very common. One important
subclass are the so-called causal models.

Although the most common graphical method for expressing such hy-
potheses is an adapted Bayesian network — the causal BN [18, 19, 28] —
it has recently been recognised that this representation is unnecessarily
restrictive and other methodologies have been suggested. In particular,
one author [25] has argued compellingly that causal hypotheses should
be expressed through the framework of event trees rather than BNs. The
representation of manipulative causal structures by CEGs is extended
in [21] and [22]. Such causal modelling [18] is much better addressed
within the event tree framework of the CEG than the BN [22]. Further-
more, generalised classes of discrete models can be developed. However,
their richness often precludes the use of a graphical representation, see
[21, 29].

Finally, within the framework described above, classes of prior prob-
ability distributions over the simplices of a CEG can be defined so that
CEGs can be estimated. This methodology is discussed from a Bayesian
perspective in [22] and it is shown that a conjugate product Dirichlet
prior-to-posterior analysis is often possible.
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