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Abstract

Pairwise interaction point processes with strong interaction are usually difficult to
sample. We discuss how Besag lattice processes can be used in a simulated tem-
pering MCMC scheme to help with the simulation of such processes. We show how
the N -fold way algorithm can be used to sample the lattice processes efficiently
and introduce the N -fold way algorithm into our simulated tempering scheme. To
calibrate the simulated tempering scheme we use the Wang-Landau algorithm.
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1 Introduction

Pairwise interaction point processes are common models for random point
pattern. However, they are usually not amenable to analytic examination
and therefore require simulation-based inference. Markov chain Monte Carlo
(MCMC) methods produce Markov chains that can be used to sample such
processes. However, for models with strong interaction, these Markov chains
often suffer from high autocorrelation and so the resulting estimates have high
asymptotic variances. To improve mixing of these chains (and thus reduce the
autocorrelation) methods like simulated tempering are being used. In this pa-
per we develop a variant of simulated tempering based on the use of Besag
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lattice processes. These define point processes via the joint distribution of
point counts in cells dividing the sampling window. We can sample these lat-
tice processes using an N -fold way algorithm, a method originally introduced
for Markov random fields, which reduces computation time for Markov chains
with long waiting times between transitions from one state to another.

The paper is structured as follows. First we introduce pairwise interaction
point processes and Besag lattice processes. Then we provide a review on
MCMC methods and ways of improving these. We then discuss our N -fold
way approach to simulated tempering and illustrate it on the example of a
Strauss process. The last section discusses the results thus obtained.

2 Point processes and Besag lattice processes

Point processes are models for random pattern of points. They are often de-
fined by a density with respect to a Poisson point process on a bounded window
W . For simplicity, we assume that W = [0, 1]2, the unit square window. In the
following we consider pairwise interaction point processes on W which have
the following density with respect to a unit rate Poisson process:

f(x) = αλn(x)
∏

i<j

g(||xi − xj ||) x ⊆ W. (1)

Here n(x) is the number of points in x and || · || denotes the Euclidean distance
in R

2. The parameter λ is positive and α denotes the normalizing constant
of the density. If the interaction function g satisfies 0 ≤ g(d) < 1, then the
point process exhibits inhibitory interaction, that is it produces regular point
pattern. For example, if the interaction function is given by

g(d) =











γ if d < R

1 otherwise
(2)

where 0 ≤ γ < 1, then the resulting density

π(x) = αλn(x)γSR(x) (3)

specifies the Strauss process with interaction range R [21]. Here SR(x) counts
the number of neighbour pairs in the point pattern x, that is the number
of point pairs less than the distance R apart. As γ < 1 the Strauss process
favours point pattern where only a few point pairs are neighbours. If γ = 0,
then f describes a hard core process in which points are at least a minimum
distance R apart from each other.
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In [2] the authors show that the distribution of a purely inhibitory pairwise
interaction process can be seen as the limit distribution of a sequence of auto-
Poisson processes. Suppose we subdivide the sampling window into a regular
grid of m equal sized square cells Cr, r = 1, . . . , m. Let ξi be the centroid,
xi the point pattern and nr the number of points in cell Cr. To define the
distribution of an auto-Poisson process we specify the probability of observing
the cell counts n = (n1, . . . , nm), where nr is the number of points in cell Cr,
as proportional to

∏

1≤r≤m

(λ/m)nr

nr!

∏

r<s

g(||ξr − ξs||)
nrns.

Now, given the point count in each cell we can produce a point pattern on
W by generating a binomial process for each cell, that is, the locations of the
nr points are independent and uniformly distributed in cell Cr. The resulting
point pattern X has a density with respect to a unit rate Poisson process given
by

fm(x) ∝ λn(x)
∏

r<s

g(||ξr − ξs||)
nrns. (4)

Now, [2] show that as the cell area 1/m tends to zero we have that fm(x)
tends to the density f(x) defined in (1).

Besag lattice processes such as the auto-Poisson process or the auto-logistic
process were originally considered for pseudo-likelihood estimation [2] and also
can be derived for marked point processes [11]. They can be simulated easily
using a Gibbs sampler as in Section 3.2; for a perfect Gibbs Sampler see [17].
For the Strauss process the auto-Poisson approximation is given by

fm(x) ∝ λn(x)γSB
R

(x) where SB
R (x) =

∑

r<s:||ξr−ξs||<R

nrns (5)

In the following we will call this process the Strauss lattice process.

Because within-cell interactions are neglected in the standard auto-Poisson
process, its realisations can look very different from the corresponding Markov
point process. We propose the use of a modified Besag lattice process where
the area of interaction is still determined by the centroids of the cell but
within-cell interactions are introduced. We achieve this by defining

hm(x) ∝ λn(x)
(

∏

r<s

g(||ξr − ξs||)
nrns

)(

∏

r

g(0)
nr(nr−1)

2

)

.

Then we still have that hm(x) → f(x) as m → ∞. For the Strauss process we
define the following modified Strauss lattice process through the interaction
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function

gm(d) =



























γ for d = 0

β for 0 < d < R

1 otherwise

leading to the density

hm(x) ∝ λn(x)βSB
R

(x)γ
ni(ni−1)

2 (6)

where SB
R (x) is defined as in (5). Here 0 < β < 1 and 0 < γ < 1. Assume that

as m → ∞ the interaction function gm(d) tends to the interaction function
of a Strauss process as defined in (2). Then it can be shown easily that as
m → ∞ the density hm(x) → π(x) where π(x) is the density of the Strauss
process defined in (3).

3 Markov chain Monte Carlo algorithms

Sampling of Markov point processes usually requires Markov chain Monte
Carlo (MCMC) methods. In the following we give a short review of the most
common algorithms.

3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm developed in [9] is often used for point pro-
cesses and, like all Metropolis-Hastings type algorithms, it consists of propos-
ing a new state and accepting or rejecting the proposal with the appropriate
probability. If the state is accepted the chain moves to the proposed state,
otherwise the chain remains in its current state. The probability is chosen
such that the invariant distribution of the resulting chain coincides with the
target distribution.

Suppose the current state of the chain is Xt = x. With probability p(x) the
birth of a point ξ, which is sampled according to a density b(x, ·), is proposed.
The birth is accepted with probability min{1, α(x, ξ)} in which case we set
Xt = x∪{ξ}. Alternatively, with probability 1−p(x) a point η ∈ x is sampled
according to a probability d(x, η) and its death proposed. The death proposal
is accepted with probability min{1, α(x\η, η)−1}. The acceptance probabilities
are specified by the Metropolis-Hastings ratio

α(x, ξ) = λ(x, ξ)
1 − p(x ∪ {ξ})

p(x)

d(x ∪ {ξ}, ξ)

b(x, ξ)

4
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where

λ(x, ξ) =











f(x∪{ξ})
f(x)

for f(x) > 0

0 otherwise

is the Papangelou conditional intensity of the target process with density f . A
common choice is to let b(x, ξ) be the uniform density on the sampling window
W . For death proposals a point is chosen at random from the current con-
figuration. Note that in pairwise interaction processes with strong inhibitory
interaction the Papangelou conditional intensity λ(x, ξ) can be very small in
large regions of the sampling window. This leads to a high rejection rate of
births if the location of proposed points is sampled uniformly on the sampling
window.

For a perfect simulation version of the above algorithm see [15] and for a
comparison with birth-death processes see [4,5].

3.2 The Gibbs sampler

To simulate the auto-Poisson process we will use a Gibbs sampler. For a more
detailed description of Gibbs sampling see for example [7]. The Gibbs sampler
applies to multivariate distributions and samples successive states from full
conditional distributions.

Consider the modified Strauss lattice process and let Nr be the cell count
in cell Cr. The conditional probability q(k|n(−r)) of Nr = k given the point
counts n(−r) in all other cells is proportional to

µk
r

k!
γ

k(k−1)
2 . (7)

Here

µr =
λ

m

∏

s∼r

βns

where the product is over all R-close cells of cell Cr and ns is the point count
in cell Cs. (Cell Cs is R-close to Cr if ||ξr−ξs|| < R). Using the full conditional
distributions of cell counts we easily can sample the modified Strauss lattice
process using a random-scan Gibbs sampler. Suppose the current state of the
chain is Xt = x where x = (x1, . . . , xm) is a point pattern with point counts
n = (n1, . . . , nm). To produce Xt+1 proceed as follows:

(1) Choose at random a cell index r ∈ {1, . . . , m}.
(2) Sample k with probability q(k|n(−r)).
(3) Sample a Binomial point pattern yr with k points on cell Cr.
(4) Now Xt+1 is the point pattern produced from x by replacing the point

pattern xr in cell Cr with the point pattern yr.

5
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4 Improving and accelerating MCMC algorithms

While MCMC is a powerful technique for examining complex probability dis-
tributions efficiency can be a bottleneck. Various methods have been developed
to improve efficiency and we review the following selection of methods that
we will be exploiting in our context:

(1) the N -fold way algorithm,
(2) simulated tempering and
(3) the Wang-Landau algorithm.

For point processes with strong interaction the standard Metropolis-Hastings
algorithm described in Section 3.1 or the Gibbs Sampler in Section 3.2 often
experience long waiting times between moves from one state in the state space
to another. The N -fold way algorithm reduces computation time by observing
the target Markov chain only at times when there is a change in its state and
recording the waiting between such transitions. To implement the algorithm
we need to be able to sample these waiting times and transitions efficiently.
As we describe in Section 4.1 this be done for the Gibbs sampler chain for the
(modified) Besag lattice processes. (In general it is not possible to define an
efficient N -fold way algorithm for pairwise interaction processes as it requires
a partitioning of the sampling window into regions with constant Papangelou
conditional intensity).

In order to exploit the computational saving produced by the N -fold way algo-
rithm we use a simulated tempering scheme to combine N -fold way sampling
of the modified Besag lattice process with standard Metropolis-Hastings sam-
pling for the pairwise interaction process. Simulated tempering is a method
that exploits faster mixing Markov chains defined on the same state space
to help the slowly mixing target chain escape from local modes. More details
are given in Section 4.2. To be able to apply simulated tempering we need to
compute ratios of normalizing constants of the relevant invariant distributions.
As this cannot be done analytically for our problem numerical approximations
have to be found. The Wang-Landau algorithm is a clever way of avoiding such
computation by using an adaptive algorithm that determines these quantities
during the run-time of the simulated tempering algorithm.

4.1 The N-fold way algorithm

Because the Gibbs sampler is based on full conditional distributions, high cor-
relation between the components of the multivariate target distribution leads
to a slowly mixing Gibbs chain. For the Strauss lattice process this happens
when there is strong repulsion between points. In this case the parameter µr

6
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will be very small for a large number of cells. This leads to a large number
of empty cells which often are updated to the empty set, thus leading to no
change in the state of the chain. This problem can be alleviated by using the
N -fold way algorithm [3]. This method is based on the idea of sub-sampling
a Markov chain at times when there is a change in the state of the chain.
Estimation using the sub-sampled chain is then based on weighted averages
where the weighting is according to the lifetime of a state. While this does not
change the mixing properties of the chain itself it does reduce the computing
time needed to produce a sample of a fixed size.

In more detail, the N -fold way algorithm on a discrete state space works as
follows. Firstly, given the current state Xt = x of the chain the probability p(x)
of a transition in the next time step to a state different from x is determined.
Let L

x
be a Geometrically distributed random variable with parameter p(x)

which we call the lifetime of state x. We set Xt+k = x for k < L
x

and then
sample Xt+Lx

from its conditional distribution given that Xt+Lx
6= x and

Xt+Lx−1 = x.

For the modified Strauss lattice process an N -fold way algorithm can be de-
rived as follows. Cell Cr is picked for updating with probability 1/m. A change
in the point pattern xr in cell Cr always occurs unless the cell is empty and
updated to the empty configuration. Assume cell Cr is empty, then the proba-
bility of the cell being updated to an empty configuration is given by q(0|n(−r))
as defined in (7). Thus given the current state Xt = x the probability p(x) of
a transition to a point pattern different to x at time t + 1 is equal to

p(x) = 1 −
1

m

∑

r:xr=∅

q(0|n(−r)).

Hence state x is given a lifetime L
x

which is Geometrically distributed with
parameter p(x). The state Xt+Lx

is now produced as follows.

(1) Pick cell Cr with probability

1

p(x)

(

1

m
1[xr 6=∅] +

1 − q(0|n(−r))

m
1[xr=∅]

)

.

(2) (a) If cell Cr is not empty then sample k with probability q(k|n(−r)).
(b) If cell Cr is empty then sample k > 0 with probability

q(k|n(−r))/(1 − q(0|n(−r))).

(3) Replace the point pattern xr in Cr by a Binomial point pattern yr on Cr

consisting of k points.

Note that an N -fold way algorithm is also useful when using Besag lattice
processes for maximum pseudo-likelihood estimation. The asymptotic variance
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of the estimator can be reduced by using a Rao-Blackwell approach [4]. Let
x1, . . . , xn be the states sampled by the N -fold way algorithm and Lx1, . . . , Lxn

the corresponding observed lifetimes. To estimate Eπ(f(X)) we can use the
standard ergodic average which is equivalent to the lifetime weighted average

f̄1 =
1

∑n
t=1 Lxt

n
∑

t=1

f(xt)Lxt

A Rao-Blackwell-type estimate can be produced by replacing the observed
lifetimes Lxt

by their expectation 1/p(xt) and so the following estimator has
smaller asymptotic variance than f̄1:

f̄2 =
1

∑n
t=1 1/p(xt)

n
∑

t=1

f(xt)/p(xt).

4.2 Simulated tempering

Simulated tempering [10,19] is an MCMC approach that aims at improving
mixing of the target MCMC sampler by exploiting faster mixing samplers with
stationary distribution different to the target distribution.

Let π1(x) = π(x) be the unnormalized target density and let π2(x), . . . , πM(x)
be a set of unnormalized auxiliary densities. Generally πi is in some sense
“flatter” than πi+1 and so an MCMC sampler with stationary density πi tends
to explore the state space better. For example, we might choose

πi(x) =
(

π(x)
)

1
1+λ(i−1)

, i = 1, . . . , M ; λ > 0.

In this paper we will explore a sequence of auxiliary distributions that are
based on a coarser auto-Poisson approximation to the target distribution.

Simulated tempering samples a chain (X, I)t≥0 with stationary distribution

π(x, i) ∝ ciπi(x), i ∈ {1, . . . , M}

and inference on π(x) can be done by simply retaining values (x, i) where
i = 1. Let the current state of the chain be (Xt, It) = (x, i). One iteration
of simulated tempering consists of an update of Xt according to the sampler
with stationary distribution πi followed by an update of the index It. In the
following we call It the level. To perform an update of It = i we propose a
new index j with user-defined probability qij . The proposed index is accepted
with probability

α(x, i, j) = min
{

1,
cjπj(x) qji

ciπi(x) qij

}

. (8)

8
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The constants ci, i = 1, . . . , M , are chosen such that the chain divides its
time roughly equally among the M levels. This is ensured if ci is equal to
the normalizing constant of πi. As these normalizing constants usually are not
available approximations need to be found before the simulated tempering
scheme is run. A common method used is reverse logistic regression, see [8].

Successive auxiliary densities πi and πi+1 should be sufficiently similar to allow
the simulated tempering chain to move from one level to another. On the other
hand πM should be sufficiently different from π so that the corresponding
chain is fast mixing. Literature suggests a spacing that leads to an average
acceptance rate for moves between neighbouring levels of about 20% to 40%.

4.3 The Wang-Landau algorithm

The Wang-Landau algorithm [22,1] is an adaptive MCMC approach based on
a sequence of stochastic approximations of the target density π(x) by mixture
distributions of the form

πn(x) =
M
∑

i=1

π(x)

θn(i)
1[x∈Si], n ∈ N, (9)

where 1 denotes the indicator function. Here S1, . . .SM , is a disjoint parti-
tion of the state space S of π which is chosen such that the mass

∫

Si
π(x)dx

is roughly equal for all i ∈ {1, . . . , M}. The random sequences θn(i), i ∈
{1, . . . , M}, for n ∈ N are defined as

θn(i)= Φn(i)/
M
∑

j=1

Φn(j) where (10)

Φn(i)= Φn−1(i)(1 + γn−11[Xn∈Si]) and (11)

Φ0(i) is set to some user-defined value. (12)

Here (γn)n∈N is a positive, non-increasing sequence that we define later and
X = (Xn)n∈N is a controlled Markov chain with limit distribution π. This
controlled Markov chain is evolved as follows. Let Pn(x, ·) be a transition kernel
with stationary distribution πn(x) as defined in (9). Given the current state
Xn = x we sample Xn+1 from Pn(x, ·) and then update θn(i) for i ∈ {1, . . . , M}
as defined in equations (10)-(12). Note that Φn(i) may be interpreted as an
occupation measure of Si. Recall that the partition of S is chosen such that in
equilibrium each partition set has equal mass and so asymptotically the chain
will spend equal time in each partition set. As the occupation measure Φn(i)
increases the mixture distribution πn and thus the stationary distribution of
Xn is adapted such that the probability of the chain leaving Si is increased.

9
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To ensure that the controlled Markov chain has the correct asymptotic distri-
bution π the sequence (γn)n∈N needs to converge to zero. It should converge
slowly enough to avoid the algorithm becoming stuck but not too slowly as
the rate of convergence of the controlled Markov chain X depends on the rate
of convergence of (γn)n∈N towards zero. A major contribution of the Wang-
Landau algorithm is a method of adaptively decreasing γn according to the
following mechanism. At random times τ̃1 < τ̃2 < . . . we set

γτ̃k+1 = (1 + γ0)
1

2k − 1

for some initial value 1 < γ0 + 1 < e. Between these random times γn remains
constant, that is

γn = γτ̃k+1 for τ̃k < n ≤ τ̃k+1.

The random times τ̃n are chosen to be times at which the occupation measures
Φ(n) become approximately equal. Wang and Landau [22] suggest to measure
this as follows. Equal occupation measures are assumed if

min
i=1,...,M

θn(i) ≥ c
1

M

M
∑

j=1

θn(j)

where c is some constant close to one, say 0.8. Atchade and Liu [1] recommend
to use times τn = min{a, τ̃n} for some large integer a such that nλγn ≤ K for
constants K < ∞ and λ > 1

2
. This is to ensure that the time-varying transition

kernels Pn stabilize and thus the algorithm converges.

The Wang-Landau algorithm can also be applied to simulated tempering [1].
Here the partition of S = ∪M

i=1{i}×X is given by Si = {i}×X , i ∈ {1, . . . , M}.
Suppose the current state of the chain is (Xt, It) = (x, i). A proposal to update
the level It to state j then has acceptance probability

αn(x, i, j) = min
{

1,
Φn(j)πj(x) qji

Φn(i)πi(x) qij

}

.

In this case we have θn(i) → 1/ci as n → ∞ and thus the Wang-Landau algo-
rithm avoids the need to compute approximations to the normalizing constants
prior to running the simulated tempering algorithm.

For illustration we describe below a Wang-Landau simulated tempering scheme
for the Strauss process with density

π1(x) = λ
n(x)
1 γ

SR(x)
1 .

The auxiliary densities are Strauss processes with weaker interaction, that is

πi(x) = λ
n(x)
i γ

SR(x)
i i ∈ {1, . . . , πM}

10

CRiSM Paper No. 06-11, www.warwick.ac.uk/go/crism



where λ1 > λ2 > · · · > λM and γ1 < γ2 < · · · γM . The interaction radius R is
equal for all M densities.

Suppose the current state of the Wang-Landau simulated tempering chain is
(Xt, It) = (x, i), then we sample (Xt+1, It+1) as follows:

(1) With probability 1/2 propose a birth. Alternatively, propose a death.
(a) If we propose a birth we sample a point ξ uniformly on W . With

probability

min
{

1, γ
SR(x∪{ξ})−SR(x)
i

λi

(n(x) + 1)

}

we set Xt+1 = x ∪ {ξ}. Alternatively, we set Xt+1 = x.
(b) If we propose a death and x = ∅ we set Xt+1 = ∅. If Xt 6= ∅ then we

sample at random a point ξ ∈ x. With probability

min
{

1, γ
SR(x\{ξ})−SR(x)
i

n(x)

λi

}

we set Xt+1 = x\{ξ}. Alternatively, we set Xt+1 = x.
(2) With probability 1/2 we sample j = min{i + 1, M}. Alternatively we set

j = max{i − 1, 1}. Then with probability

min
{

1,
Φt(j) λ

n(x)
j γ

SR(x)
j

Φt(i) λ
n(x)
i γ

SR(x)
i

}

.

we set It+1 = j. Alternatively, we set It+1 = i.
(3) Finally, for k ∈ {1, . . . , M} we update Φt(k) to Φt+1(k) as defined in (11).

5 N-fold way simulated tempering for the Strauss process

5.1 Simulated tempering using lattice processes

In the following we consider a simulated tempering approach with one auxil-
iary density π2 that defines a modified auto-Poisson distribution. In principle
this simulated tempering approach could be extended to include several aux-
iliary densities with auto-Poisson models defined on coarsening grids. Such an
approach would produce a multi-resolution type algorithm. Multi-resolution
or multi-scale methods have been used very successfully for lattice models such
as Markov random fields, see for example [20,14,13,18,12,16]. However to the
best of our knowledge such methods have not been used for continuous mod-
els such as the point process models that we are examining here. Also note
that by having auxiliary densities defined on an increasingly coarse lattice
structure we are able to introduce a grid that is so coarse that the algorithm
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will update the locations of several points at once. However, more auxiliary
densities will lead to the target chain being visited less often. Furthermore,
while chains whose equilibrium distribution is defined on a coarser grid will
tend to mix better, the computational advantages of using the N -fold way
is lost as the expected waiting time in a state becomes shorter. We found it
computationally more efficient to consider only one auxiliary density and use
it to exploit the advantages of the N -fold way algorithm.

As an example we consider as target density the (unnormalized) density π1 of
the Strauss process:

π1(x) = λn(x)γsR(x).

Now π2 is the unnormalized density of a modified Strauss lattice process, that
is

π2(x) = λn(x)βSB
R

(x)
∏

r

γ
nr(nr−1)

2 .

In our experiments we chose the parameters of the modified Strauss lattice
process such that the number of cells m was as small as possible but still
produced a sufficiently high average acceptance rate for moves between levels.

5.2 Wang-Landau simulated tempering, the N-fold way

For the modified Strauss lattice model on a fine grid we observe slow mixing
of the corresponding Gibbs Sampler when the inhibitory interaction is very
strong. Thus we will use the N -fold way algorithm to save computing time.
We described the standard N -fold way algorithm to sample a modified auto-
Poisson process in Section 4.1. We now augment this algorithm for the Wang-
Landau simulated tempering approach described in Section 4.3.

Recall that the simulated tempering scheme produces a chain (X, I)t≥0 with
two components: (X)t≥0 which describes the current point pattern and (I)t≥0

which describes the level. An iteration within the simulated algorithm scheme
then consist of an update of the point pattern followed by an update of the
level. In the Wang-Landau approach to simulated tempering the transition
kernels for updates of the level change with time. This may be taken account
of by sampling the lifetime Lt

x,i of the state (x, i) entered by the chain at time
t not from a Geometric distribution but from the probability mass function
given by

P(Lt
x,i = k) =

k−2
∏

j=0

(

1 − pt+j(x, i)
)

pt+k−1(x, i). (13)

Here

pt(x, i) = 1 − P

(

(Xt, It) = (x, i)
∣

∣

∣

∣

(Xt−1, It−1) = (x, i)
)

, t ∈ N,

12
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and can be computed as follows. We have Xt = Xt−1 if at time t − 1 we pick
an empty cell and update it to an empty cell. Given (Xt−1, It−1) = (x, i) this
occurs with probability

q(x, i) =
1

m

∑

r:xr=∅

qi(0|n(−r)).

Here qi(k|n(−r)) is the conditional probability mass function of the number of
points in cell Cr given the point counts n(−r) in all other cells for the modified
Strauss lattice process with density πi(x).

Next, we derive the probability of It = It−1 given that Xt = Xt−1 and
(Xt−1, It−1) = (x, i). Recall that qij is the probability of proposing to move
from level i to level j. Also recall that the probability of accepting the proposal
j at time t given Xt = x and It−1 = i is given by

αt(x, i, j) = min
{

1,
Φt(j)πj(x) qji

Φt(i)πi(x) qij

}

.

Then

1 − pt(x, i) = P

(

(Xt, It) = (x, i)

∣

∣

∣

∣

(Xt−1, It−1) = (x, i)
)

= q(x, i)
[

qi,i−1[1 − αt(x, i, i − 1)] + qi,i+1[1 − αt(x, i, i + 1)]
]

This defines the distribution of the lifetime Lt
x,i.

We now describe the Wang-Landau simulated tempering scheme with one
auxiliary density, although the algorithm can easily be extended to a scheme
with more than one auxiliary density. Recall that

π1(x) = λ
n(x)
1 γ

sR(x)
1

and

π2(x) = λ
n(x)
2 β

SB
R

(x)
2

∏

r

γ
nr(nr−1)

2
2 .

As mentioned earlier, N -fold way simulation is only feasible for the Markov
chain with invariant density π2. We augment the state space of the simulated
tempering chain by an additional variable that keeps track of the lifetimes.
Choose a starting value (X0, I0, Z0) = (x0, 1, 1) for the chain and set Φ0(1) =
Φ0(2) = 1. Suppose the current state of the chain is (Xt, It, Zt) = (x, i, z). We
then proceed as follows:

(1) If i = 1 then perform the following steps:
(a) With probability 1/2 propose a birth. Alternatively, propose a death.
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(i) If we propose a birth we sample a point ξ uniformly on W . With
probability

min
{

1, γ
SR(x∪{ξ})−SR(x)
1

λ1

(n(x) + 1)

}

we set Xt+1 = x ∪ {ξ}. Alternatively, we set Xt+1 = x.
(ii) If we propose a death and x = ∅ we set Xt+1 = ∅. If Xt 6= ∅

then we sample at random ξ ∈ x. With probability

min
{

1, γ
SR(x\{ξ})−SR(x)
1

n(x)

λ1

}

we set Xt+1 = x\{ξ}. Alternatively, set Xt+1 = x.
(b) With probability

min
{

1,
Φt(2) λ

n(x)
2 β

SB
R

(x)
2

∏

r γ
nr(nr−1)

2
2

Φt(1) λ
n(x)
1 γ

SR(x)
1

}

.

we set It+1 = 2. Alternatively, set It+1 = 1.
(c) For k ∈ {1, 2} update Φt(k) to Φt+1(k) as defined in (11).
(d) If It+1 = 1 set Zt+1 = t + 1. Alternatively, if It+1 = 2, sample the

lifetime Lt+1
x,2 = L according to the probability mass function defined

in (13) and set Zt+1 = t + L.
(2) If i = 2 then perform the following steps:

(a) If Zt > t set (Xt+1, It+1, Zt+1) = (Xt, It, Zt). For k ∈ {1, 2} update
Φt(k) to Φt+1(k) as defined in (11).

(b) If Zt = t then proceed as follows:
(i) With probability q(x, i) set Xt+L = x. Alternatively set Xt+L =

y where y 6= x is sampled as follows. Choose cell Cr with prob-
ability

1

1 − q(x, i)

(

1

m
1[xr 6=∅] +

1 − qi(0|n(−r))

m
1[xr=∅]

)

.

If cell Cr is not empty sample k with probability qi(k|n(−r)). If
cell Cr is empty sample k > 0 with probability

qi(k|n(−r))/(1 − qi(0|n(−r)).

Then y is the point pattern produced by replacing in x the
pattern xr with a Binomial pattern on cell Cr with k points.

(ii) If Xt+1 = x then set It+1 = 2 with probability

αt(x, 2, 2)

αt(x, 2, 1) + αt(x, 2, 2)
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and It+1 = 1 otherwise. If Xt+1 = y 6= x then perform a
standard update of the level. Set It+1 = 1 with probability
0.5αt(y, 2, 1) and set It+1 = 2 otherwise.

(iii) If It+1 = 1 set Zt+1 = t + 1. If If It+1 = 2 sample the lifetime
Lt+1

x,2 = L according to the probability mass function defined in
(13) and set Zt+1 = t+L. For k ∈ {1, 2} update Φt(k) to Φt+1(k)
as defined in (11).

6 Experimental Results

6.1 Assessing performance

The standard approach to assess the performance is to examine the auto-
correlation function of a summary statistic of the point pattern. Commonly
used summary statistics are the number of points, the number of neighbour
pairs and the average first coordinate of the points. We additionally propose to
use a summary statistic more specific to spatial point pattern: the multivariate
K-function [6]. Given two point patterns x and y, the multivariate K-function
essentially looks at the number of points in pattern x that lie close to a point
in y. More formally, the multivariate K-function of a point process X and a
point process Y is given by

λY KX,Y (r) = E(number of points in Y within distance r

of an arbitrary point in X) = λXKY,X(r),

where λX and λY are the intensity of X and Y respectively. An estimate of
the K-function can be computed as follows:

K(r, x, y) =
|W |

n(x)n(y)

∑

xi∈x

∑

yj∈y

1[||xi−yj ||≤r].

We use periodical boundary conditions to account for edge effects. If x and y
are independent then K(r, x, y) = πr2. To stabilize the variance, it is common
to consider the so-called L-function which is defined as

L(r, x, y) =
√

K(r, x, y)/π − r

Under the hypothesis of independence L-function is constant zero. Thus to
measure the dependence between successive point configurations sampled by
our MCMC algorithm we compute

L̂(τ, r) =
1

N − τ

n−τ
∑

k=1

L(r, xk, xk+τ),
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where xt is the observed state of the Markov chain at time n. We expect these
estimates to decay to zero as τ increases subject to sampling fluctuations. To
decide when the L-function has converged to zero we calculate an upper con-
fidence envelope.. The envelope is obtained by randomly translating the first
point pattern xk and estimating the L-function for the translated pattern and
xk+τ . This procedure is repeated independently 99 times. The 100(1-α)% con-
fidence upper envelope is then given by the pointwise 100(1− α)th percentile
of the 99 L-function estimates. For more information on using confidence en-
velopes and related Monte Carlo tests, see [6].

6.2 Example: A Strauss process

In the following we consider the Strauss process as an example case. However,
our methods apply to any Markov point process that can be approximated by
an auto-Poisson or auto-logistic lattice process. We examine sampling from a
Strauss process on the window W = [0, 2.5]2 with parameters

λ = 1000, γ = 10−5, and R = 0.45.

This is a process with very strong inhibitory interaction which is difficult to
sample and so a good test case for our method. The average number of points
for this process is about 20 and Figure 1 shows a sample.

As discussed earlier we use one auxiliary density π2(x) which describes a mod-
ified Strauss lattice process. The parameter of the auxiliary density are chosen
as follows:

m = 322, λ = 1000 β = 10−5 γ = 10−5 R = 0.45.

These parameters lead to an average acceptance rate of 2% for moves between
levels. This is lower than the values recommended in the literature and us-
ing a finer grid would increase the average acceptance rate. However, a finer
grid makes the sampling process computationally more expensive. More im-
portantly it produces a Markov chain that is slower mixing as it effectively
updates smaller region in the sampling space. In simulation experiments we
found that using a finer grid produced little improvement in terms of mixing
at a significantly higher computational expense.

For comparison we also run a standard simulated tempering scheme based
on auxiliary densities that describe Strauss process with increasingly weaker
inhibitory interaction. The parameters of the auxiliary densities are as follows:
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λ2 = 600 γ2 = 0.002 R2 = 0.45,

λ3 = 380 γ3 = 0.0066 R3 = 0.45,

λ4 = 315 γ4 = 0.02 R4 = 0.45,

λ5 = 210 γ5 = 0.05 R5 = 0.45,

λ6 = 65 γ6 = 0.1 R6 = 0.45,

λ7 = 30 γ7 = 0.22 R7 = 0.45,

λ8 = 12.5 γ8 = 0.45 R8 = 0.45,

λ9 = 7.2 γ9 = 0.66 R9 = 0.45,

λ10 = 3.35 γ10 = 1 R10 = 0.45,

The above parameters were chosen such that the average acceptance rate of
moves between levels lie between 20% and 40%. The hottest chain (sampling
the Strauss process with the weakest interaction) is in fact a Poisson process
which can be sampled directly.

6.3 Results and Discussion

Both simulated tempering schemes were run for 5 × 106 iterations. Then the
cold chain was subsampled to yield a timeseries of length 104. Figure 2 shows
the auto-correlation function of the number of points in the sub-sampled cold
chain for both the N -fold way simulated tempering scheme and the standard
simulated tempering algorithm. Figures 3 and 4 show the L-function for both
schemes for length scales r = 0.05 and r = 0.1 respectively.

First note that the auto-correlation function of the number of points suggests
negligible auto-correlation at smaller lags than the L-functions. This provides
evidence to the fact that a high -level summary statistic like the number of
points is unlikely to provide an adequate description of the auto-correlation
of the chain. Similary, we found the number of neighbour pairs not a useful
summary statistic as our target distribution has such strong repulsoin that
neighbour pairs hardly occur. Thus we would recommend the use of the L-
function which is specifically designed to detect ”correlation” between point
patterns.

Recall that r denotes the radius of the neighbourhood in which the L-function
considers point counts. For r = 0.05 the L-function displays negligible auto-
correlation at lag τ = 200 for both simulation schemes, see Figure 3. For larger
length scales r = 0.1 N -fold way simulated tempering compares less favourable
as the L-function indicates negligible auto-correlation at about τ = 200 in
contrast to τ = 150 in the competing scheme, see Figure 4. However, this comes
at the cost of having 10 auxiliary densities in the standard scheme compared to
only two auxiliary densities in the N -fold way simulated tempering schedule.
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Fig. 1. A sample of a Strauss process on the window [0, 2.5]2 with parameters
λ = 1000, γ = 10−5 and R = 0.45.

The fact that the L-function takes longer to decay to zero is probably due
to the gridsize. In our scheme the grid has square cells of sidelength 0.78125.
Therefore the neighbour count SB

R (x) of a point pattern x does not change if
a point ξ ∈ x changes its location within the same cell.

We restricted our simulation experiments to simulated tempering and did not
exploit a parallel computing based implementation. The fact that the N -fold
way scheme relies on a smaller number of chains will be less of an advantage
if using parallel tempering implemented on multiple processing units.

Finally, we considered a Strauss process whose interaction function g is a step
function. The interaction in a (modified) Besag lattice process is based on cell
centres. For the (modified) Strauss lattice process this leads to existence of
point patterns x such that SR(x) = 0 but SB

R (x) > 0 and vice versa. This,
in turn, leads to an increased rejection rate when moving from one level to
another. We would expect this problem to be less pronounced for a smooth
interaction function, thus leading to a better mixing N -fold way simulated
tempering algorithm.
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