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Abstract

This paper illustrates a sequential method to detect significant pa-

rameter changes for time series models. Rather than relying on an

explicit state equation, the parameters’ dynamics are assessed as a

change-point problem by combining Bayesian estimation with a non-

parametric test of hypothesis. The Kullback-Leibler divergence be-

tween the posterior probability densities given two different sets of

data is proposed as a test statistic. Markov chain Monte Carlo pos-

terior simulation is used to approximate in general the value of the

Kullback-Leibler statistic and its critical region under the null hy-

pothesis. For exponential family models we show that the statistic

has a closed form. We also report the results of a simulation study

demonstrating empirically that for the Bernoulli model the power of

the change-point test is not affected by the difference in the sample
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sizes of the data involved. The method is applied to detecting changes

of the functional connectivity of neuronal networks using in-vivo mul-

tiple spike trains recordings obtained via multi-electrode arrays.

Introduction

This paper illustrates a sequential method for detecting the occurrence of

changes in the parameter values of time series models under mild assump-

tions about the form of their evolution. This method is closely related to

state-space models and to change-point regression models. In the former

(Harrison and Stevens [1976], West et al. [1985], West and Harrison [1986],

West and Harrison [1997]), changes of the model parameters are governed

by an explicit state equation indexed by a set of evolution coefficients. Least

squares and Bayesian estimates are available in closed form for the Gaus-

sian dynamic linear model (Kalman [1960], Harrison and Stevens [1976]),

whereas estimation for non-Gaussian and non-linear dynamic models is cur-

rently carried out using sequential importance resampling methods (Gordon

et al. [1993], Doucet et al. [2000], Doucet et al. [2001], Gilks and Berzuini

[2001], Crisan and Doucet [2002], Del Moral et al. [2006]).

Change-point detection for regression models was introduced by Quandt

[1958] and Quandt [1960], who developed a likelihood ratio test detecting a

switch between two regimes for linear regression coefficients. Brown et al.

[1975] proposed a cumsum test based on a definition of recursive residuals

for linear regression models. Muller [1992], Loader [1996] and Mira and

Petrone [1996] develop methods for estimating the occurrence of change-

points in nonparametric regression models. Carlin et al. [1992] adopt a

hierarchical Bayesian approach using Markov chain Monte Carlo posterior
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simulation to detect a single change-point for generalised linear regression

models. Bélisle et al. [1998] considered a multivariate single change-point

problem for neuron spike trains using integer-valued autoregressive time

series models. Change-point estimation for partially observed non-linear

dynamic systems via particle filters is illustrated in Vaswami [2004]. Ap-

plications to tracking adaptive neural responses in the auditory cortex are

illustrated in Jain et al. [2007].

The distinctive feature of the approach proposed in this paper is that it

does not rely on any parametric formulation neither of the evolution of the

model coefficients nor of the number of their changes. Significant departures

from a null hypothesis of no change result in atipical values of a Kullback-

Leibler divergence (KL; Kullback and Leibler [1951], Kullback [1997]) be-

tween the posterior distributions of the model parameters given different

sets of data. This non-parametric Kullback-Leibler test is integrated in

a sequential procedure alternating Bayesian estimation with change-point

testing. We apply this methodology to assess the functional dynamics of

networks of neurons using in-vivo experimental multiple spike trains record-

ings (Buzsáki [2004]).

This paper is organised as follows. Section 1 illustrates the Kullback-

Leibler statistic, a Markov chain Monte Carlo strategy to estimate its value

and its critical region and the sequential algorithm integrating data fitting

and non-parametric change-point testing. Section 2 gives a closed form

expression of the Kullback-Leibler statistic for exponential family models.

A simulation study is presented investigating empirically the power of the

test for comparing datasets having different samples size using the Bernoulli

model. Section 3 briefly summarises the state-of-the-art in dynamic mod-

elling of neuronal networks. A Bayesian model for binary networks is in-
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troduced along the lines of Rigat et al. [2006] and a set of in-vivo multiple

spike trains recordings from sheep temporal cortex is analysed.

1 Sequential time series modelling and Kullback-

Leibler change-point testing

For i = 1, ..., N let Yi be a (K ×ni) dimensional time series of random vari-

ables Yi,k,t with k = 1, ...,K, t ∈ [ti,1 < ti,2 < ... < ti,ni
] and ti,ni

< ti+1,1.

When ni = 1, for all values of i we entertain only one K-dimensional time

series (Y1, ..., YN ). Otherwise, the distinction between the N sets of data is

relevant as we admit the possibility of time gaps occurring between pairs

of data sets. We assume that the initial conditions y0 and the form of the

sampling distribution P (Yi | θi, y0, y1, ..., yi−1) are fixed over time. Depen-

dence on the past data (y0, y1, ..., yi−1) is thought of as corresponding to

an autoregressive model and the parameters θi represent the autoregressive

coefficients for Yi. Here we do not consider the case where the distribution

of Yi also depends on other covariates, although our methodology can be

extended to such a case.

When i < N , upon observing a new realisation Yi+1 = yi+1 we wish

to detect whether Bayesian updating of the joint posterior distribution of

the model parameters is supported by the data. Our interest focuses on

this particular null hypothesis because it represents the optimal solution for

the sequential learning problem in the sense of Bellman (Bellman [1957],

Zellner [2002]). Under this definition of change-point, if no changes are de-

tected prior to observing yi+1 inferences for θi are reflected by its conditional
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posterior density

f(θi | y0, ..., yi) ∝ f(θi)
i
∏

j=1

P (yj | θi, y0, ..., yj−1). (1)

Conditionally on (y0, ..., yi) and (1), upon observing yi+1 the null hypothesis

of no change is

H0 : yi+1 ∼ P (Yi+1 | θi, y0, ..., yi),

and its alternative is

H1 : yi+1 ∼ P (Yi+1 | θi+1, y0, ..., yi),

where the probability density of the new parameter θi+1 conditional on

(y0, ..., yi) is not equal to the right-hand side of (1). Among the many

possible specifications of the alternative hypothesis, in this work we consider

f(θi+1 | y0, ..., yi+1) ∝ f(θi+1)P (Yi+1 | θi+1, y0, ..., yi). (2)

Under (2), when Bayesian sequential updating is not supported by the data

the learning process is reset at the prior, which is taken as fixed for all

i = 1, ..., N .

Conditionally on (y0, ..., yi), the evidence in the data yi+1 against H0

can be thought of as measured by an appropriate notion of discrepancy

between the joint posterior densities f(θi | y0, ..., yi) and f(θi | y0, ..., yi+1)

derived under the null hypothesis. When yi+1 supports H0, their discrepancy

should assume a range of values reflecting the typical concentration of the

latter posterior due to the accrual of new data. When yi+1 suggests that

a departure from H0 has taken place, the value of their discrepancy should

become more extreme. In the next Section we use the Kullback-Leibler

divergence to construct such a measure of discrepancy.
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1.1 A Kullback-Leibler test statistic

The divergence proposed by Kullback and Leibler [1951] has many appli-

cations in statistics, among whom density estimation (Hall [1987], Hastie

[1987]), model selection (Akaike [1978], Akaike [1981], Carota et al. [1996]

Goutis and Robert [1998]), experimental design (Lindley [1956], Stone [1959])

and the construction of prior distributions (Bernardo [1979]). Its geometric

properties have been explored by Critchley et al. [1994]. Here we illustrate a

form of the Kullback-Leibler divergence suitable for measuring the evidence

against the null hypothesis of no change-point when the data is accrued

sequentially over time. This statistic is:

KL(y0, ..., yi+1) =
∫

Θi
log
(

f(θi|y0,...,yi)
f(θi|y0,...,yi+1)

)

f(θi | y0, ..., yi)dθi, (3)

= log(E(P (yi+1 | θi, y0, ..., yi))) − E(log(P (yi+1 | θi, y0, ..., yi))), (4)

where the expectations in (4) are taken with respect to the posterior density

f(θi | y0, ..., yi). The right-hand side of (3) exists finite when the likelihood is

bounded away from zero for all values of θi and the posterior f(θi | y0, ..., yi)

is proper. In such a case (3) is a non-negative convex function measur-

ing the discrepancy between the posterior densities f(θi | y0, ..., yi) and

f(θi | y0, ..., yi+1). The discrepancy (3) is null if and only if the likelihood

function P (yi+1 | θi, y0, ..., yi) does not vary with θi over the range of values

associated to a non-negligible posterior density f(θi | y0, ..., yi). Prior to

observing Yi+1 = yi+1, (3) is a random variable KL(y0, ..., yi, Yi+1) which

distribution under H0 depends on that of the future data Yi+1 via model

P (Yi+1 | θi, y0, ..., yi).

Let α ∈ (0, 1) be a fixed type-1 error probability, that is the proba-

bility of rejecting H0 when it is true, for the change-point test using the
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statistic (3). Let (li,α, ui,α) be the critical cutoff values for the random vari-

able KL(y0, , ..., yi, Yi+1) under H0 prior to observing Yi+1 = yi+1. When

KL(y0, ..., yi+1) < li,α, under H0 the joint posterior densities f(θi | y0, ..., yi)

and f(θi+1 | y0, ..., yi+1) are too similar whereas if KL(y0, ..., yi+1) > ui,α

the two joint posterior densities are too different to be consistent with H0.

1.2 Computation of the test statistic

Since (2) is a non-linear functional of the ratio of two posterior densities, in

general neither its value nor its critical cutoffs under H0 can be derived in

closed form. However, using the representation (4) suggests that its Monte

Carlo approximation,

KL(y0, ..., yi+1) ≈ log
(PM

m=1 P (yi+1|θm
i ,y0,...,yi)

M

)

−
PM

m=1 log(P (yi+1|θm
i ,y0,...,yi))

M
,

can be computed using the Gibbs sampler (Gelfand and Smith [1990], Tier-

ney [1994], Smith and Roberts [1993]) draws {θm
i }M

m=1. Also a Monte Carlo

approximation of the critical region of (3) for varying values of Yi+1 under

H0 can be constructed using the same Gibbs sampler draws as follows:

i) for each draw θm
i generate a realisation ym

i+1 using the joint sampling

probability P (Yi+1 | θm
i , y0, ..., yi);

ii) compute the Monte Carlo approximation of the statistic KL(y0, ..., y
m
i+1).

The empirical distribution of the sequence {KL(y0, ..., y
m
i+1)}

M
m=1 approxi-

mates that of (4) under the null hypothesis. For instance, for any given type-

1 error probability α, the empirical (α
2 , 1−α

2 )th percentiles of {KL(y0, ..., y
m
i+1)}

M
m=1

approximate the values of the equal tails critical cutoffs (li,α, ui,α).
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1.3 Sequential estimation and change-point testing algorithm

Given the initial conditions y0 and a sampling model P (Yi+1 | θi, y0, ..., yi),

the dynamics of the model parameters can be assessed by integrating an

estimation step with the change-point test using the Kullback-Leibler statis-

tic (3). We illustrate the sequential Bayesian fitting and testing algorithm

starting from the first sample y1:

i) upon observing y1, derive the posterior f(θ1 | y0, y1);

ii) having observed y2, compute KL(y0, y1, y2) and its critical cutoffs un-

der H0, (l1,α, u1,α) given the type-1 error probability α, as described

in Section 1.2.

iii.1) if KL(y0, y1, y2) ∈ (l1,α, u1,α), return to i) and derive the updated

posterior density

f(θ1 | y0, y1, y2) ∝ f(θ1 | y0, y1)P (y2 | θ1, y0, y1),

iii.2) otherwise, return to i) and derive the posterior density for the new

parameter

f(θ2 | y0, y1, y2) ∝ f(θ2)P (y2 | θ2, y0, y1).

iv) return to step ii).

2 Exponential family models

In this Section we assume that each set of data Yi is a 1×ni dimensional sam-

ple of conditionally independent observations with joint density (Diaconis
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and Ylvisaker [1979])

P (Yi | θi) =

ni
∏

j=1

a(Yi,j)e
Yi,jθi−b(θi), (5)

where θi is the canonical parameter. The properties of the Kullback-Leibler

divergence within the exponential family have been explored by McCulloch

[1988]. Here we show that also the Kullback-Leibler (3) has a closed form

for exponential familiy models. Therefore, in this case stochastic simulation

is necessary to approximate the value of the critical cutoffs (li,α, ui,α) under

H0 but the not value of the test statistic.

Diaconis and Ylvisaker [1979] show that each element of Yi has moments

E(Yi,j | θi) =
∂b(θi)

∂θi

, V (Yi,j | θi) =
∂2b(θi)

∂θ
′

i∂θi

.

Using the conjugate prior

f(θi | n0, y0) = c(n0, S0)e
S0θi−n0b(θi),

where S0 = n0y0 for scalars n0 and y0, the posterior for θi given the past

samples (y1..., yi) is

f(θi | n(i), y(i)) = c(n(i), S(i))e
n(i)

“

S(i)
n(i)

θi−b(θi)
”

(6)

where n(i) =
∑i

j=0 nj, S(i) =
∑i

j=0 nj ȳj and ȳj is the arithmetic mean of

sample yj. Using the results of Gutiérrez-Peña [1997], the posterior mean

and variance of θi under (5) are

E(θi | n(i), S(i)) =
∂H(n(i), S(i))

∂S(i)
, V (θi | n(i), S(i)) =

∂H(n(i), S(i))

∂S(i)2
,

where H(n(i), S(i)) = − log (c(n(i), S(i))), and the posterior mean and vari-

ance of the function b(θi) are

E(b(θi) | n(i), S(i)) =
∂H(n(i), S(i))

∂n(i)
, V (b(θi) | n(i), S(i)) =

∂H(n(i), S(i))

∂n(i)2
.
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When the posterior for θi has form (6), given the data up to and including

yi+1 the Kullback-Leibler statistic (3) has form

KL(y0, ..., yi+1) = log

(

c(n(i), S(i))

c(n(i + 1), S(i + 1))

)

− Si+1
∂H(n(i), S(i))

∂S(i)
+

+ ni+1
∂H(n(i), S(i))

∂n(i)
. (7)

Proof : by letting the posterior densities f(θi | n0, ni, S0, Si) and f(θi |

n0, ni, ni+1, S0, Si, Si+1) have form (6), the Kullback-Leibler divergence (3)

becomes

KL(y0, ..., yi+1) = log

(

c(n(i), S(i))

c(n(i + 1), S(i + 1))

)

− Si+1E(θi) + ni+1E(b(θi)). (8)

For exponential family models, the expectations of θi and b(θi) with respect

to f(θi | y0, ..., yi) are given in Gutiérrez-Peña [1997], as reported above. By

substituting these expressions in (8), equation (7) obtains. �

Example 2.1: when Yi is a scalar Gaussian random variable with mean

µi and precision λi, its distribution can be written in the Diaconis canonical

form using the two-dimensional statistic

Y ∗
i = [Yi, Y

2
i ],

and the two-dimensional canonical parameter

θi = [θ1,i, θ2,i] =

[

λiµi,−
λi

2

]

.

with

a(Y ∗
i ) = (2π)−

1
2 ,

b(θi) = = −
1

2
log(−2θ2,i) −

θ2
1,i

θ2,i
.

The conjugate prior for (µi, λi) is the Normal-Gamma N(µi | γ, λi(2α −

1))Ga(λi | α, β) with coefficients α > 0.5, β > 0, γ ∈ R and normalising
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constant (Bernardo and Smith [2007])

c(n0, S0) =

(

2π

n0

)
1
2

1
2S

S1,0
2

2,0

Γ
(

n0+1
2

) ,

where n0 = 2α − 1, y∗0 = [y∗1,0, y
∗
2,0] = [γ, 2β

2α−1 + γ2], S1,0 = n0y
∗
1,0 and

S2,0 = n0y
∗
2,0. Upon observing the realisations (y1, ..., yi), the normalising

constant of the conjugate posterior (5) is

c(n(i), S(i)) =

(

2π

n(i)

)
1
2 1

2S(2, i)
S(1,i)

2

Γ
(

n(i)+1
2

) ,

where n(i) = n0 + i, S(1, i) = S1,0 +
∑i

j=1 yj and S(2, i) = S2,0 +
∑i

j=1 y2
j .

When also yi+1 is observed, using (7) the Kullback-Leibler statistics can be

written as

KL(y0, ..., yi+1) = log

(

Γ
“

n(i+1)+1
2

”

Γ
“

n(i)+1
2

”

)

+ 1
2 log

(

n(i+1)
n(i)

)

+ log

(

S(2,i)
S(1,i)

2

S(2,i+1)
S(1,i+1)

2

)

−

−yi+1

2 log
(

S(2,i)
2

)

− y2
i+1

S(1,i)
S(2,i) + 1

2n(i) + Γ
(

n(i)+1
2

) ∂Γ
“

n(i)+1
2

”

∂n(i) .

Example 2.2: let Yi be a sample of size ni of conditionally independent

Bernoulli random variables with success probability πi. The canonical rep-

resentation of the Bernoulli probability mass function obtaines by letting

θi = log
(

πi

1−πi

)

, b(θi) = log
(

1 + eθi
)

and a(Yi) = 1. The conjugate prior for

πi is Beta(S0,m0) where m0 = n0 − S0. Upon observing (y1, .., yi) the con-

jugate posterior is Beta(S(i),m(i)), where S(i) =
∑i

j=0 Sj, n(i) =
∑i

j=0 nj

and m(i) = n(i) − S(i). When also yi+1 is observed, (7) has form

KL(y0, ..., yi+1) = log

(

Qni
k=1(n(i)+k)

Qni−Si
w=1 (n(i)−S(i)+w)

QSi
j=1(S(i)+j)

)

−

−Si+1
Γ(S(i))

Γ(n(i)−S(i))

∂
Γ(n(i)−S(i))

Γ(S(i))

∂S(i) + ni+1

∂(Γ(n(i))Γ(n(i)−S(i)))
∂n(i)

Γ(n(i))Γ(n(i)−S(i))) .
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Example 2.3: let Yi represent the random number of events of a given

kind observed within a time interval (ti,1, ti,ni
]. For this example we assume

that the length of the latter is identical for all samples i = 1, ..., N . Let the

random event times be generated by a homogeneous Poisson process with

intensity λi, so that the distribution of Yi is Poisson with parameter λ∗
i =

λi(ti,ni
− ti,1). The canonical form of the Poisson distribution has parameter

θi = log(λ∗
i ) and functions a(Yi) = 1

Yi!
, b(θi) = eθi . The conjugate prior

for λ∗
i is Gamma(S0, n0) with mean y0 and variance y0

n0
. Upon observing

(y1, .., yi) the conjugate posterior for λ∗
i is Gamma(S(i), n(i)) with S(i) =

S0 +
∑i

j=1 yj, n(i) = n0 + i. When also yi+1 is observed, using (7) the

Kullback-Leibler statistic has form

KL(y0, ..., yi+1) = log
(

S(i)n(i)S(i)

n(i+1)S(i+1)

)

+ yi+1

(

log(n(i)) −
∂Γ(S(i))

∂S(i)

Γ(S(i))

)

− S(i)
n(i) .

2.1 Power and sample sizes

In general, the time series {Yi}
N
i=1 may have substantially different lenghts

{ni}
N
i=1. To demonstrate the applicability of the KL-based change-point test

in this case, this Section reports the results of a simulation study evaluating

empirically the power of the test for varying sample sizes (n1, n2). We use

the Bernoulli model presented in example 2.2 for its similarity with the

neuronal network model developed in Section 3.

One hundred thousand independent simulations were run. For each sim-

ulation, two sample sizes (n1, n2) were independently generated using the

discrete uniform distribution on the integers (1, ..., 100). A success proba-

biliy π was also independently generated for each simulation using a uni-

form distribution on (0, 1). Conditionally on (n1, n2, π), two independent

Bernoulli samples were generated Y1 ∼ Ber(π, n1) and Y2 ∼ Ber(π, n2).
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For each simulation, a sample of size 5000 was generated from the poste-

rior Beta(1 +
∑n1

j=1 Y1,j, 1 + n1 −
∑n1

j=1 Y1,j) to compute the Monte Carlo

approximations for the Kullback-Leibler statistic (3) under H0.

We fixed the type-1 error probability of the test to α = 0.2. Out of the

one hundred thousand simulations the null hypothesis was accepted 79743

times, which closely approximates the true value of the power 1 − α. The

top plot in Figure 1 shows the exact value of the Kullback-Leibler statistic

and of the end-points of its 80% equal tails frequency intervals for the first

fifty simulations. The Kullback-Leibler is represented with a dot when it

lies within its critical region and as a plus sign when it violates H0. The

plot on the bottom row Figure 1 shows the statistic Z = log
(

n∗
1

n∗
2

)

, where

n∗
1 = n1 − 1 and n∗

2 = n2 − 1, for the same fifty simulations. The value

of the Kullback-Leibler statistic and that of its critical cutoffs are large

for simulations where n1 is small compared to n2 and vice versa. In the

former case, large cutoff values reflect the fact that under H0 a larger sample

Y2 is expected to provide more information about π with respect to the

small sample Y1. In the latter case, small cutoff values reflect the opposite

expectation. Since the random variables n1−1
99 and n2−1

99 are independent

and approximately uniform on (0, 1), the distribution of Z = log
(

n∗
1

n∗
2

)

is

approximately standard double exponential with probability density f(Z) =

e−|Z|

2 for Z ∈ R. If the power of the Kullback-Leibler change-point test

is not affected by the values of (n1, n2, π), the distribution of Z for the

group of simulations where H0 is accepted should also be standard double

exponential. Figure 2 represents with a solid line the empirical cumulative

distribution function of Z for the 79743 simulations where H0 was accepted.

The two dashed lines in the same Figure represent the end-points of the

point-wise 99% sample frequency intervals for the cumulative distribution
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Figure 1: on top, values of the Kullback-Leibler statistic and of the end-points of

its 80% probability intervals for the first fifty simulations. At the bottom, values

of the statistic Z = log
(

n1−1

n2−1

)

for the same simulations. Dots indicate simulations

where H0 was accepted and plus signs mark the simulations where H0 was rejected.

The two plots show that under H0 the value of the discrepancy between f(π1 | y1)

and f(π1 | y1, y2) and those of its critical cutoffs adapt to the sample sizes (n1, n2).
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function of a standard double exponential random variable. The Figure

suggests that for the Bernoulli model the power of the change-point test is

not significantly affected by different sample sizes (n1, n2).
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Figure 2: the solid line represents the empirical cumulative distribution function

(CDF) of the random variable Z = log
(

n
∗

1

n
∗

2

)

for the 79743 simulations where H0

was accepted. The dashed lines represent the end-points of the point-wise 99%

sample frequency intervals for the CDF of a standard double exponential random

variable. Acceptance of the null hypothesis H0 did not cause a significant departure

of the distribution of Z from that of a standard double exponential distribution,

suggesting that the power of the change-point test is not significantly affected by

different sample sizes (n1, n2).
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3 Detecting neuronal networks functional dynam-

ics

Introductions to the neuronal physiology and to neuronal modelling are

presented in Fienberg [1974] and Brillinger [1988]. Recent surveys of the

state-of-the-art in multiple spike trains modelling can be found in Iyengar

[2001], Brown et al. [2004], Kass et al. [2005], Okatan et al. [2005], Rao [2005]

and Rigat et al. [2006]. Latham et al. [2000] illustrate the physiology of

spontaneous firing in networks of mammalian neurons and several modelling

strategies. Dynamic point process neuronal models based on state-space

representations have been proposed by Eden et al. [2004], Truccolo et al.

[2005], Brown and Barbieri [2006] and Srinivansan et al. [2006]. State-space

point process models relating the neural activity with a learning process are

presented in Smith et al. [2004] and Smith et al. [2006].

During the experiment considered in this Section a sheep is shown first

a dark screen and then two sheep images side by side. The sheep is then

rewarded if it identifies one of the two images as part of a set of “familiar

faces” by pressing a button. The available data are the multi-electrode

array (MEA) recordings of 59 neurons in the sheep temporal cortex, the

experimental phase (pre-trial, i.e. dark screen, or during-trial, i.e. images

shown) and whether the familiar images were recognised for each of the

during-trial experiments. Further details about the experiment are given in

Kendrick et al. [2001].

In this Section we aim at detecting changes in the functional connectiv-

ity of the 14 highest firing neurons during the first two experimental phases.

Changes occurring before the onset of the visual stimulus can be imputed

to spontaneous activities of the sheep such as head movements. If a change
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is detected immediately after the stimulus onset, it is most likely related

to the processing of the visual input. If a change is detected well after the

onset of the stimulus, then it is explained by the motor activity involved

in the button pressing. Although the possible biological mechanisms tuning

the neuronal functional connectivity are well understood, the expected mag-

nitude and smoothness of its changes are unknown. In such a context the

MEA recordings can be conveniently analysed using the sequential method

illustrated in Section 1 because it does not involve any explicit parametriza-

tion of the neuronal dynamics.

3.1 A binary network model

In what follows {Yi}
N
i=1 represents a sequence of N binary matrices of di-

mensions K ×ni with elements Yi,k,ti,j(i) = 1 if neuron k spikes at time ti,j(i)

during trial i and Yi,k,ti,j(i) = 0 otherwise. We model the joint sampling

distribution of the multiple spike data for trial i, Yi, as a Bernoulli process

with renewal as in Rigat et al. [2006]. The differences between the neuronal

network model adopted in this paper and that of Rigat et al. [2006] are the

absence of a multi-level hierarchical prior and the adoption of a different

autoregressive structure. Under this model the joint probability of a given

realisation yi is

P (Yi = yi | πi) =

ti,ni
∏

t=ti,1

K
∏

k=1

π
yi,k,t

i,k,t (1 − πi,k,t)
1−yi,k,t . (9)

For model (9) to be biologically interpretable, the spiking probability of

neuron k at time ti,j(i) during trial i, πi,k,ti,j(i) , is defined as a one-to-one

non-decreasing mapping of a real-valued voltage function vi,k,ti,j(i) onto the
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interval (0, 1). In this work we adopt the logistic mapping

πi,k,ti,j(i) =
e
vi,k,ti,j(i)

1 + e
vi,k,ti,j(i)

.

Let τi,k,ti,j(i) be the last spiking time of neuron k prior to time ti,j(i) during

trial i, that is

τi,k,ti,j(i) =











1 if
∑ti,j(i)

τ=1 Yi,k,τ = 0 or ti,j(i) = 1,

max{1 ≤ τ < ti,j(i) : Yi,k,τ = 1} otherwise.

The voltage function is modelled as

vi,k,ti,j(i) = ηi,k +

K
∑

l=1

βi,k,l

ti,j(i)−1
∑

w=τi,k,ti,j(i)

yi,l,we−(t−w). (10)

The neuron-specific coefficients ηi,k reflect the baseline firing rate of neuron

k during trial i. The coefficient βi,k,l represents the strenght of the functional

relationship from neuron l to neuron k during trial i. When βi,k,l is positive,

the spiking activity of neuron l promotes that of neuron k whereas when it is

negative firing of l inhibits that of k. The last term in the voltage equation,
∑ti,j(i)−1

w=τi,k,ti,j(i)
yi,l,we−(t−w), defines the auto-regressive structure of the net-

work model. The effect of the spikes produced by neuron l on the voltage

function of neuron i from its last spike decrease exponentially over time,

mimicking the occurrence of leakage currents across the neuronal membrane

(Plesser and Gerstner [2000]).

3.2 Analysis of sheep multiple spike trains

The MEA recordings from the first two experimental phases are binned

in contiguous windows of 300 milliseconds each. For each time window

we use the Gibbs sampler to compute approximate posterior inferences for
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the K(K + 1) parameters θi = (ηi,1, ..., ηi,K , βi,1,1, ..., βi,K,K) of model (9).

We use a component-wise update with independent Gaussian random-walk

proposals for twenty-five thousand iterations per time window. The prior

for the connectivity parameters of all experiments is Gaussian with mean

zero and variance 10. The prior for each intercept η is Gaussian with mean

−5 and standard deviation 1.0. The corresponding prior predictive mean

firing rate for each neuron has 95% sample frequency interval (0.004, 0.02),

which is a biologically plausible range. Given a set of posterior estimates for

θi conditionally on (y0, ..., yi), we use the Kullback-Leibler statistic (3) to

test whether a significant change occurred in any of the parameters during

the ith+1 time window.

Each dot in the top plot of Figure 3 represents the number of active

neurons for each millisecond during the two contiguous experimental phases.

A vertical dotted line separates the two phases. Two bursts of activity can

be noted at around 2300 and 6300 milliseconds, the first occurring during

the pre-trial phase and the second occurring late during the trial. The plot

at the bottom of Figure 3 shows as dashed lines the estimated critical cutoffs

for the Kullback-Leibler statistic for the type-1 error α = 0.05. The values

of the test statistic for each time window are reported as a dot for the first

experimental phase and as a plus sign for the second phase. Two change-

points are dectected, roughly matching the two bursts of spiking activity.

Since the first change-point occurs prior to the onset of the visual stimulus

and the second occurs towards the end of the second experimental phase,

both changes are most likely related to the sheep motor activity rather than

to the processing of the visual input. Figure 4 shows the posterior estimates

of the baselines firing coefficients of neurons 36 and 50. The former estimates

are significantly decreased by the occurrence of the second change-point

19



CRiSM Paper No. 07-07v2, www.warwick.ac.uk/go/crism

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

8

Time (milliseconds)

Nu
m

be
r o

f s
pi

ke
s

0 5 10 15 20 25
1

2

3

4

5

6

7

Time windows

Lo
g 

es
tim

at
ed

 K
L

Figure 3: on top, number of spiking neurons for each millisecond during the two

experimental phases. At the bottom, estimated KL statistic and its critical cutoffs

for each time window. The latter represent contiguous intervals of length 300

milliseconds. Bursts of spiking activity produce two peaks in the number of active

neurons on the left-hand side of the figure. The KL statistic detects two change-

points in correspondence to these two bursts.
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whereas those of the latter decrease at the first change-point. A change of

a parameter is considered significant if its estimated 95% highest posterior

density interval prior to the occurrence of a change-point does not overlap

with the same estimate after the change. None of the neuronal baseline firing

coefficients is significantly affected by the occurrence of both change-points.

Significant changes of 33 and 27 network coefficients characterise respectively

the first and the second change-point. The posterior estimates of the only

three network coefficients affected by both change-points are shown in Figure

5. In both cases the pair-wise functional connectivities defined by these

three coefficients become excitatory, which partially explains the increased

network activity taking place in correspondence to the change-points.

4 Discussion

This paper proposes a method for detecting significant changes in the pa-

rameters of time series models which combines Bayesian parametric mod-

elling with a sequential non-parametric test based on the Kullback-Leibler

statistic (3). Unlike state-space models, this approach does not involve an

explicit parametrization of the dynamics of the model parameters. The dif-

ference between this work and the Kullback-Leibler divergences constructed

for model selection is that instead of testing which of two competing model

formulations best predicts one given set of data, we focus on testing whether

successive sets of data accrued over time are adequately explained by a com-

mon set of parameters under the same model formulation.

Although inferences for the model parameters are derived using Bayes

theorem, the distribution of the change-point statistic under the null hy-
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Figure 4: posterior estimates of the baselines firing coefficients for neurons 36 (top)

and 50 (bottom). The former estimates decrease at the second change-point whereas

the latter decrease in correspondence to the first change-point. None of the neuronal

baseline firing coefficients explain the occurrence of both change-points.
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Figure 5: posterior estimates of the three pair-wise functional connectivities affected

by both change-points. In each plot, a vertical dotted line separates the two con-

tiguous experimental phases and a horizontal dotted line separates the negative and

positive abscissae, which respectively identify inhibitory and excitatory functional

connections. At both change-points cases the three functional connections become

excitatory, which partially explains the increased network activity corresponding to

the change-points.
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pothesis is defined over the sample space of the last set of data observed.

From this perspective, the methods developed in this paper follow the lines

of Box [1980], Gelman et al. [1996] and Carota et al. [1996]. The former

author defines the integration of the Bayesian and frequentist paradigms as

follows: ”sampling theory is needed for exploration and ultimate criticism of

entertained models in the light of data, while Bayes’ theory is needed for es-

timation”. The integration between the two inferential paradigms proposed

in this paper is slightly different from that defined by Box. Sampling theory

is in fact not used for model criticism but for evaluating whether sequential

Bayesian learning is supported by the data accrued over time.

A first remarkable consequence of the definition of change-point adopted

in Section 1 is that the sequential test proposed in this work is not re-

versible in time. Lack of reversibility is due to the fact that the evidence

in favour of the null hypothesis provided by the likelihood is weighted by

the Kullback-Leibler statistic (3) using all the information about the model

parameters accumulated since the occurrence of the last change-point. A

second consequence of our definition of change is that arising of multimodal-

ity, a larger than expected concentration of the posterior density and the

accrual of scarcely informative data are all detected as changes. Since the

Kullback-Leibler statistic does not distinguish between these cases, in all

cases a violation of the null hypothesis is detected and the learning process

is reset. This procedure is justified if one accepts a definition of change

based only on the expected information gain provided by the new data, as

proposed in Section 1. More detailed definitions need to be developed to

derive test statistics able to discriminate different types of departures from

a null hypothesis of no change.

The alternative hypothesis formulated in Section 1 may not be the only
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course of action available when a change-point is detected. For instance, if

the first change occurs upon observing the ith+1 set of data, a family of i

alternative hypothses obtains by letting

f(θi+1 | y0, ..., yi+1) ∝ f(θi+1)

i+1
∏

j=w

P (yj | θi+1, y0, ..., yj−1), (11)

with w = 2, ..., i + 1. The alternative hypothesis used in this paper corre-

sponds to letting w = i+1 in (11). Its interpretation is that a change-point

causes the loss of all information accrued in the past about all model pa-

rameters. Since a change typically affects some but not all model parame-

ters, this alternative hypothesis is not optimal because it discontinues the

Bayesian sequential learning for the coefficients not affected by a change.

This optimality can be achieved by specifying the null and the alternative

hypotheses in terms of the marginal posterior distributions rather than of the

joint posterior, leading to a multivariate generalisation of the change-point

test proposed in this paper. Although our methodology can be extended in

this direction, its computational cost would be high. For instance, for the

example presented in Section 3, upon observing a new set of data one would

have to compute 211 Kullback-Leibler statistics and to approximate their

distributions under the null hypothesis in order to test for the occurrence of

the corresponding marginal change-points.

Instead of selecting one alternative hypothesis, the null hypothesis of

no change could be compared pair-wise with each of its i alternatives us-

ing their Bayes factor (Kass and Raftery [1995]). This approach was not

considered in this work because for non-conjugate models computing the

marginal likelihood of the ith+1 data under each of the i alternatives is

rather cumbersome.

The simulation study reported in Section 2.1 shows empirically that for
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a simple model the power of the Kullback-Leibler change-point test does

not depend on the sample sizes of the data being compared. Proving this

property of the statistic (3) in general requires the development of an ap-

proximation of its distribution under mild conditions on the form of the data

sampling distribution. When both densities in (3) can be approximated as

Gaussian, the closed form of the Kullback-Leibler statistic reported in ex-

ample 2.1 provides a first step in this direction.

The analysis of the sheep data reported in Section 3 detects two change-

points taking place respectively during the first experimental phase and at

about three seconds after the onset of the visual stimulus. The occurrence

of both changes corresponds to an increased level of overall network activity,

which is partially explained by the activation of three excitatory functional

connections. Although the two changes may be due to motor activity rather

than to information processing, the small proportion of network coefficients

significantly affected in both instances suggests that different mechanisms

might be operating.
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