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Abstract 
 
 In this paper the concept of later waiting time distributions for patterns in multi-state trials is 

generalized to cover a collection of compound patterns that must all be counted pattern-specific 

numbers of times, and a practical method is given to compute the generalized distribution.  The 

solution given applies to overlapping counting and two types of non-overlapping counting, and 

the underlying sequences are assumed to be Markovian of a general order.  Patterns are allowed 

to be weighted so that an occurrence is counted multiple times, and patterns may be completely 

included in longer patterns.  The probabilities are computed through an auxiliary Markov chain.  

As the state space associated with the auxiliary chain can be quite large if its setup is handled in a 

naïve fashion, an algorithm is given for generating a “minimal” state space that leaves out states 

that can never be reached.  For the case of overlapping counting, a formula that relates 

probabilities for intersections of events to probabilities for unions of subsets of the events is also 

used, so that the distribution is also computed in terms of probabilities for competing patterns.  A 

detailed example is given to illustrate the methodology. 
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1. Introduction 

 This paper addresses the computation of generalized later waiting time distributions.  

Traditionally, later waiting time problems deal with the time until the occurrence of all of the 

members of a group of patterns, whereas sooner waiting time problems deal with the time to the 

first occurrence of one of them.  Research on these distributional problems was pioneered by 

Ebneshahrashoob and Sobel (1990), and includes Ling (1992), Ling and Low (1993), Kolev and 

Minkova (1999a, 1999b), and Fu and Chang (2003). 

 The computation of distributions associated with increasingly complex patterns is driven by 

statistical applications in many fields, such as reliability of engineering systems, national and 

computer security, quality control, and psychology.  The reader is referred to Balakrishnan and 

Koutras (2002) for a survey of the theory and applications of distributions of patterns.  Below, we 

consider a prototypical application in the field of bioinformatics.   

 The survival and replication of cells depends on the recognition, by many different agents, of 

sites (patterns or words) on DNA.  For example, polymerases recognize promoters and start 

transcription, the first step of protein synthesis, which is in turn regulated by other agents, like 

repressors or activators.  Since the extent, chronology, and cell specificity of transcription are 

modulated by the interaction of transcription factors and their binding sites, the location of 

binding sites for unknown factors that regulate a collection of co-regulated genes is an important 

task, though not a simple one.  Binding sites of the same transcription factor are generally short 

and degenerate (similar but not identical) patterns, called motifs, that can vary greatly, and may be 

located quite far from the corresponding coding region, either upstream, downstream, or in the 

introns.  The binding sites of multiple interacting factors often play a role in the regulation of a 

single gene (Pavesi et al., 2004; Sinha and Tompa, 2002).  An example is the developmental gene 

CYIIIa from the sea urchin Strongylocentrotus purpuratus, the promoter region of which is 2,300 
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base pairs upstream from the coding region, and whose expression is regulated by at least nine 

different transcription factors that bind at over 20 specific sites (Kirchhamer et al., 1996).  Also, a 

single isolated pattern occurrence may be insufficient to properly exert the regulatory function 

(van Helden et al., 1998).       

 One method that biologists use to identify potential binding sites is to search for patterns that 

are significantly over-represented in regulatory regions of sets of genes sharing common 

properties such as expression profile or biological function (see, for example, van Helden et al., 

2000; Hampson et al., 2002; Mariño-Ramirez et al., 2004; Sumazin et al., 2005).  The 

exceptionality of the pattern counts is determined using a model (typically a Markov model of 

some order) for the background noise.  The parameters of the model are determined from the 

sequence used to obtain the pattern count, and the model is then used to determine what is 

“expected.”    

 Robin et al. (2005) gave a description of the rationale behind modeling DNA sequences and 

using statistical methods to locate exceptional patterns along them.  In that book, results are given 

on both exact and approximate (normal, Poisson, or compound Poisson) probabilities for counts 

of single patterns, where overlapping occurrences are counted.  In contrast, Biggins and Cannings 

(1987) considered a model for a restriction enzyme that cuts the DNA sequence in such a way 

that doesn’t recognize a pattern that overlaps a previous one, and in such a model, a non-

overlapping counting technique would be used.   

 In the spirit of the previous references, we develop a tool for computing pattern distributions 

in data modeled as being Markovian of a general order.  In doing so, we take into account 

specific features that may be encountered in difficult computational problems such as determining 

exceptional patterns in DNA sequences: variation of patterns and interaction among patterns that 

serve a single role, the need for multiple pattern occurrences in a small region to carry out a 
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function, and the different counting techniques that may be used.  However, since the authors 

cannot anticipate all of the types of pattern systems whose occurrence probabilities a researcher in 

bioinformatics or another field may want to quantify, we pose the problem in more generality 

than may have been encountered in any specific problem to date.  Instead of restricting the pattern 

search to similar patterns, we allow collections of patterns that are grouped based on any criteria.  

The count for a group of patterns is incremented whenever one of the patterns of the group is 

counted.  Several groups of patterns are allowed, and each group must be counted a pattern-

specific number of times.  By allowing “or” relations among pattern groups, and “and” relations 

between groups, great flexibility in modeling systems of patterns is realized.  In addition, 

different methods of counting patterns is allowed: overlapping counting, and also two types of 

non-overlapping counting, system-wide, and within-patterns.  Finally, patterns are allowed to be 

repeated either within groups or in different groups, and patterns can be completely included in 

longer patterns of the system.   

 The setup of this paper is similar to that in Aston and Martin (2005), where the waiting time 

distribution of interest is the first time that a group of patterns is counted its specified number of 

times.   However, in addition to the fact that the state space required to compute the “later” 

waiting time is larger than the state space for the “sooner” waiting time of the latter reference, and 

in fact contains it, in that paper weighted patterns were not allowed, and completely included 

patterns were not dealt with explicitly.   

 An auxiliary Markov chain is developed to make a rather intractable combinatorial problem 

one that can be handled.  Cox (1955) used a similar approach, converting a stochastic process 

representing lifetimes into an auxiliary Markov process to simplify the analysis, and noted that 

the technique was well known at the time.  Fu and Koutras (1994) reformulated the method for 
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processes with a finite state space in discrete time (calling it finite Markov chain imbedding), 

providing an elegant framework for handling intricate run and pattern distributions.   

 Due to the generality that we allow, the state space associated with the auxiliary Markov 

chain used to compute the generalized later waiting time distribution can be quite large.  To make 

computation more efficient, we determine a “minimal” state space by leaving out states that have 

zero probability of occurring.  We also drop states that can occur only in the initialization stage 

(for times t  less than the order of Markovian dependence m ) after time t m= .  Efficient 

computation is an important feature of this work.     

 In the case of overlapping counting, a formula for the probability of the intersection of events 

totally in terms of probabilities of unions of subsets of the events is used, in conjunction with 

previous results for competing patterns (Aston and Martin, 2005), to give an alternative method 

of computing the waiting time distribution of generalized later patterns. 

 The paper is organized as follows.  The next section gives formal definitions of the system of 

patterns under study and some preliminary material needed for the description of the 

computational method that is laid out in Section 3, most notable of which is the automation of 

setting up the state space of the auxiliary Markov chain.  A detailed example is used in Section 3 

for pedagogic purposes.  The final section is a discussion.  

 

2. Definitions and preliminaries 

 For notational purposes, let 1 2 0 1 2, ,..., , , ,...m mX X X X X− + − +  be a multi-state m -th order 

Markovian sequence with finite state space XS  of cardinality 2XS ≥ .  The associated initial 

probabilities and time-invariant transition probabilities of the sequence are respectively denoted 

by   

  1 0 1 1 0 0( , , ) ( , , )m m mx x P X x X xπ − + − + − +≡ = =… …  ; 
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  1 1 1( ,..., ) ( ,..., )t t m t t t t m t m t tp x x x P X x X x X x− − − − − −≡ = = = . 

2.1 Notation for patterns 

 A simple pattern ,1 , ii i i kΛ = Λ Λ…  is composed of a specified sequence of ik  symbols of XS , 

where the symbols may be repeated.  A compound pattern ( )( )
1, ,

j

j
ηΛ = Λ Λ…  is a collection of 

jη  simple patterns, such that the occurrence count of the compound pattern is incremented 

whenever one of its simple patterns is counted as having occurred.  No restrictions are placed on 

the simple patterns making up the compound patterns.  Simple patterns may be repeated either 

within the same compound pattern or within different ones.  The effect of repeating a simple 

pattern within a compound pattern is that the occurrence of the repeated simple pattern can lead to 

the count of the compound pattern being incremented multiple times.  Also, the case where one or 

more simple patterns lie completely within a longer pattern of the same compound pattern or of a 

different one is not excluded.  Such patterns are referred to as completely included simple patterns 

(CISP). 

  Let { }(1) ( )
1, , , ,c

cr rΨ = Λ Λ… , 1c ≥ , be a system consisting of a collection of c  compound 

patterns (1) ( ), , cΛ Λ… , along with associated numbers of occurrences 1, , cr r… , respectively.  

Without loss of generality, the compound patterns are assumed to be unique since if two 

compound patterns are identical, say 1 2( ) ( )j jΛ = Λ  with 
1 2j jr r≥ , then the waiting time for the 

occurrence of all of the compound patterns of the system Ψ  is the same if ( )2

2

( ) ,j
jrΛ  is removed.   

 In the situation where the c  compound patterns “compete” to be the first to be counted their 

specified number of times, with certain restrictions on the allowed patterns, Aston and Martin 

(2005) called Ψ  competing patterns, and computed the associated generalized sooner waiting 
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time distribution.  Here we require that all of the compound patterns of Ψ  be counted their 

specified numbers of times, and call the system generalized later patterns.    

 If the generalized later pattern is denoted by L , then the waiting time distribution of interest 

is given by 

  ( )P L t≤ , t∈ . (2.1) 

  

 If 1c = , then (2.1) reduces to the waiting time for the 1r -th count of the compound pattern 

(1)Λ .  If 1jr =  for all j , and, in addition, each compound pattern consists of only one simple 

pattern, then (2.1) reduces to the later waiting time distribution considered in the literature.  

Considering the generality of patterns allowed, counting techniques, and model orders, the theory 

presented here, in conjunction with the work on competing patterns, provides a general 

framework encompassing a wide range of waiting time distributions associated with patterns. 

 Before discussing the various counting techniques that will be used, we give additional 

notation dealing with overlap of patterns.  For a simple pattern ,1 ,, ,
ii i i kΛ = Λ Λ…  of length ik , 

sub-patterns of the form ,1 ,, ,i i dΛ Λ… , 1, , 1id k= −… , are called prefixes, and sub-patterns of the 

form , ,, ,
ii q i kΛ Λ… , 1, , iq k= … , are called suffixes.  Notice that the full pattern is a suffix of itself. 

 Also note that the definition of a prefix, suffix, or CISP applies to any simple pattern, and is not 

restricted to simple patterns of the system Ψ .  In particular, the definitions also apply to m -

tuples 1( , , )t m tx x− + …  that will be encountered later.      

 Patterns are said to overlap if a suffix of one is a prefix of the other (a pattern can overlap 

itself as well).  For example AT  overlaps TT  since T  is a suffix of AT  and a prefix of TT , 

whereas TT  overlaps itself, since T  is both one of its suffixes and prefixes. 
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 A CISP ,1 ,, ,
ii i i kΛ = Λ Λ…  can be a suffix to a longer simple pattern ,1 ,, ,

ll l l kΛ = Λ Λ… , lie 

within lΛ  as a non-suffix ( ( ) ( )1 2,1 , , ,, , , ,
ii i k l q l qΛ Λ = Λ Λ… … , 1 21 lq q k≤ ≤ < ), or both (if it is 

included in lΛ  more than once and is one of its suffixes).  For example, TT  is included in 

CTTT  as both a suffix and a non-suffix, the two occurrences of TT  overlapping.     

 We define E  to be the set of prefixes for Ψ , and let jE  denote the set of prefixes of 

compound pattern ( )jΛ , with ,j iE  being the set of prefixes for the simple patterns of ( )jΛ , 

1, , ji η= … .  Then ,1 1 1
jc c

j j ij j i
E E Eη

= = =
= =∪ ∪ ∪ .   Analogous definitions are given for suffix sets 

F , jF , and ,j iF .   

 By the inclusion-exclusion principle, the number of prefixes in jE  is given by   

  
1 2 1 2 3

1 2 1 2 3

1
, , , , , , ,

1 1

( 1)  
jj

j
j j i j i j i j i j i j i j i

i i i i i i
E E E E E E E E

ν

ηη
η

ν

−

= < < < =

= − ∩ + ∩ ∩ − + −∑ ∑ ∑ … … ∩ . (2.2) 

In (2.2), , 1j i iE k= − , and for 1 jl η< ≤  
1 2

,
1

 
l

l

j i
i i i

E
ν

ν< < < =
∑
…
∩   gives the sum of the number of  

prefixes common to l  of the sets ,j iE , the sum taken over the j

l

η⎛ ⎞
⎜ ⎟
⎝ ⎠

 combinations of sets.  

Recalling that the longest prefix in ,j iE  is of length 1ik − , we have, for 1 jl η< ≤ ,   

  

{ }1 1 1 2,1 , ,1 ,
,

1

max : ( , , ) ( , , ) and 1 min( , , , )-1 
 

0   if there is no common prefix for the  sets
l l l

l
i i i i i i i

j i

k k k
E

lν

ω ω

ν

ω ω

=

⎧ Λ Λ = = Λ Λ ≤ ≤⎪= ⎨
⎪⎩

… … … … …∩ . 

  

 

2.2 Counting techniques   
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 We say that a simple pattern ,1 ,, ,
ii i i kΛ = Λ Λ…  occurs at position iq k≥  of the sequence 

1, , nX X…  if ( ) ( )1 ,1 ,, , , ,
i iq k q i i kX X− + = Λ Λ… … , but whether iΛ  is counted when it occurs is 

determined by the counting technique and whether it has a prefix that is the suffix of another 

simple pattern that is counted to re-start counting.  Both overlapping and non-overlapping 

methods of counting are used.  With overlapping counting, all simple patterns that occur are 

counted, regardless of whether they overlap another simple pattern or have CISP.  With system-

wide non-overlapping (SWNO) counting, when a simple pattern occurs and is counted, the 

reckoning of any simple pattern in the system Ψ  re-starts from that point, so that any simple 

pattern prefixes that are active are ignored.  With within-pattern non-overlapping (WPNO) 

counting, a simple pattern that occurs and is counted only re-starts pattern reckoning for the 

compound pattern of the simple pattern that has just been counted.   

   For (1) ( , , , )AGGTA CG GT CΛ = , (2) ( , , , )CGTT AG GT GTΛ = ,  (3) ( , , , )AT CT GT TTΛ = , 

and the DNA sequence CTCGTT  of length 6n = , the simple pattern C  occurs at position 1, 

CT  occurs at position 2, C  at position 3, CG  at position 4, GT  at position 5 , and both CGTT  

and TT  at position 6.  All of these occurrences are counted under overlapping counting, whereas 

for WPNO and SWNO counting, CG  is not counted because the simple pattern C  of the same 

compound pattern is counted at position 3, re-starting counting; and the occurrence of GT  at 

position 5 re-starts counting for all of the compound patterns since it lies in all of them, and thus 

CGTT  and TT  are not counted at position 6.  For SWNO counting, CT , which occurs at 

position 2, is also not counted since C  re-starts counting, whereas CT  is counted under WPNO 

counting, since it is in a different compound pattern from C .  The counted simple patterns for 

this example along with the corresponding occurrence locations are listed in Table 1.   
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 The assumption is made that only simple patterns of compound patterns that have not 

previously been counted their associated number ( jr ) of times re-start counting under non-

overlapping counting, since those are the only simple patterns that need to be considered when 

waiting for the occurrence of the generalized later pattern.  In this way, under non-overlapping 

counting, simple patterns that contain one or more CISP can be counted after the compound 

patterns containing the CISP have been counted their required number of times.  For example, 

CT  of (3)Λ  is counted under SWNO counting if (1)Λ  has previously been counted 1r  times.  

However, if a compound pattern has a simple pattern and also patterns that are completely 

contained in the simple pattern as non-suffixes, the simple pattern containing the CISP will never 

be counted, and thus is not included in the system when the computations are carried out.  As 

examples, for (1)Λ , (2)Λ , and (3)Λ  above, under non-overlapping counting, AGGTA , CG  and 

CGTT  may be dropped from the system, since they each contain a CISP that is of the same 

compound pattern that they are in as a non-suffix, and thus they can never be counted (e.g. GT  is 

included in AGGTA  and thus AGGTA  will never be counted).  

 If there are no overlapping patterns in the system and also no CISP that are contained as non-

suffixes, then every pattern that occurs will be counted, and the counts using the various counting 

techniques will coincide.   

 

Table 1 here 

 

 

 3. Computation of the Later Waiting Time Distribution 
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 The development of an auxiliary Markov chain 0{ }t tY ∞
=  that simplifies the computation of the 

later waiting time distribution for the generalized later pattern in 1 2, ,X X …  is now discussed, and 

formulas for computing the later waiting time distribution are then given.  The auxiliary chain 

0{ }t tY ∞
=  will be such that there is a one-to-one correspondence between classes of its states and 

states of 1{ }t t mX ∞
=− + , so that probabilities may be computed through 0{ }t tY ∞

=  using basic properties 

of Markov chains.  A detailed example is used to illustrate formation of the auxiliary Markov 

chain. 

 

3.1 Setup of Markov chain 0{ }t tY ∞
=  

 In general, the transient states of the state space YS  of 0{ }t tY ∞
=  are vectors of the form 

,1 ,1 , , 1, , , , , ( , , )t t t t c t c t m tY a b a b x x− +⎡ ⎤= ⎣ ⎦… … .  The last component, the m -tuple 1( , , )t t m tx x x− +≡ … , 

gives the last m  values of the sequence 1{ }t t mX ∞
=− +  at time t .  This component must be included 

to embed the m -th order Markovian sequence 1{ }t t mX ∞
=− +  into a Markov chain.  The other 

components are pairs ( ), ,,t j t ja b  for each compound pattern ( )jΛ , 1, ,j c= … .  Here ,t jb  is the 

number of counts of compound pattern ( )jΛ  by time t .  Also, ,t ja  denotes a prefix of jE  that 

keeps track of progress into the simple patterns of compound pattern ( )jΛ .  The state space YS  

also contains an absorbing state α  that denotes that all of the compound patterns have been 

counted their prescribed number of times.    

  We now consider the automation of the setup of the state space YS  of 0{ }t tY ∞
= , and its 

cardinality YS .  A simple but inefficient approach to setting up YS  would be to allow it to have 

1βδλ +  states, where β  is the total number of possible pattern-progress components ,t ja , 
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1, ,j c= …  for the c  compound patterns, δ  is the total number of possible values for pattern 

counts ,t jb , and λ  is the number of possible m -tuples 1( , , )t m tx x− + … , with β , δ , and λ  being 

determined in isolation of each other.  The one in 1βδλ +  is added for the absorbing state.  Note 

that ( )1
( 1) 1c

jj
rδ

=
= + −∏  (pattern ( )jΛ  can occur 0,1, , jr…  times, 1, ,j c= … , with the exception 

that not all patterns can have occurred jr  times, since that case is represented by the absorbing 

state α ).  Also, m
XSλ =  and ( )

1

1
c

j
j

Eβ
=

= +∏ , the one being added to account for the 

possibility of no pattern progress for simple patterns of the respective compound patterns, a case 

that is denoted by ∅  in this text.  Allowing all of the βδλ  transient states in the state space of 

the auxiliary chain is inefficient because many of the states have probability zero of occurring.  

For efficient computation, we seek a state space that leaves out non-realizable states.      

  We call vector state components consistent if no state component contradicts another, i.e. if 

they can occur simultaneously.  The “minimal” state space that we seek is one that has only 

consistent components, since states with components that are not consistent can never occur.  In 

what follows we give more specifics on what consistency implies for the various component 

types, and subsequently how consistent components are determined.  We first concentrate on 

determining sets 1 2( ) ( ) ( ) ( )t cx E E EΩ ⊂ ∪∅ × ∪∅ × × ∪∅…  of consistent pattern-progress 

components ,1 ,( , , )t t ca a…  as a function of tx .  For notation purposes, let ( )j txΩ , 1, ,j c= …  be 

minimal sets of prefixes of jE ∪∅  that are necessary for computing the later waiting time 

distribution, sets containing the values that the ,t ja  can be.   

  

3.1.1. Determining sets ( )txΩ  for pattern progress   
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  The steps below are carried out for each m -tuple tx  to populate sets ( )txΩ  of pattern-

progress components that are required to compute the later waiting time distribution.  For the 

pattern-progress components ,1 ,( , , )t t ca a…  to be consistent with each other, if 
1,t ja  and 

2,t ja  are of 

the same length, then they must be the same, whereas if 
1,t ja  is shorter than 

2,t ja , then 
1,t ja  must 

be a suffix of 
2,t ja  (with the understanding that a pattern-progress component equal to ∅  is 

consistent with all other ,t ja ).  For an ,t ja  to be consistent with tx , one must be a suffix of the 

other.  

   

Overlapping counting.   Under overlapping counting, only steps (1) and (2) below are needed to 

determine ( )txΩ .      

 

(1) In this step, exactly one value ,t ja  is entered into each ( )j txΩ .  The entered value is the 

longest suffix of tx  that is also an element of jE  (if no suffix of tx  is an element of jE , then 

,t ja =∅ ).   Note that we set ,t ja =∅  for a compound pattern ( )jΛ  that has been counted jr  

times.  The c -tuple ,1 ,( , , )t t ca a…  that results by taking the element of each ( )j txΩ  determined 

in this step is included in ( )txΩ .  Consistency of the c  pattern-progress values ,t ja , 1, ,j c= …  

follows since they are all suffixes of tx .     

 

(2) If tx  is completely included in one or more simple patterns of ( )jΛ , then any element of jE  

that ends with tx   is added to ( )j txΩ  (in addition to the one element of ( )j txΩ  from step (1) 

above).  The new states that are added to ( )txΩ  during this step are combinations that are formed 
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by taking any new elements ,t ja  of ( )j txΩ  and combining them with consistent elements of the 

other ( )j tx′Ω , j j′ ≠ .  We note that in all cases, we only add an ,t ja  to ( )j txΩ  or to ( )txΩ , and 

thus a state(s) to YS , if it is not already there.   

 Here and in the remainder of the paper, we use the compound patterns 

(1) ( , , , )AGGTA CG GT CΛ = , (2) ( , , , )CGTT AG GT GTΛ = ,  and (3) ( , , , )AT CT GT TTΛ =  that 

were introduced in Section 2.2 to illustrate the steps.  The state space { , , , }XS A C G T=  (possible 

values of DNA nucleotides) for the 'tX s .  We set 3m =  and 1 2r = , 2 3r = , 3 2r = , and thus  

{ }(1) (2) (3), 2, ,3, ,2Ψ = Λ Λ Λ . 

 The respective prefix sets for (1)Λ , (2)Λ  and (3)Λ  and overlapping counting method are 

{ }1 , , , , ,E A AG AGG AGGT C G= , { }2 , , , ,E C CG CGT A G= , and { }3 , , ,E A C G T= .  The pattern- 

progress components corresponding to the 64 possible 3-tuples 2 1( , , )t t tx x x− −  for this example 

and both overlapping and non-overlapping counting are listed in Tables 2a-2d of the Appendix.  

For the tables, we assume that none of the simple patterns of the system have occurred prior to 

the m -tuple.  Here we discuss the computation of pattern progress for 2 1( , , )t t tx x x− − = ( , , )G G T .  

The suffixes of ( , , )G G T  are GGT  itself, GT  and  T .  None of these are elements of 1E  or 2E , 

and only T  is in 3E , and thus during step (1), ,1 ,2t ta a= =∅  are entered into 1( , , )G G TΩ  and 

2 ( , , )G G TΩ , and ,3ta T=  is entered into 3 ( , , )G G TΩ , and thus ( , , ) ( , , )T G G T∅ ∅ ∈Ω .  In step 

(2), since GGT  is completely included in AGGTA  and is a suffix of the element 1AGGT E∈ , 

AGGT  is added to 1( , , )G G TΩ .  We combine AGGT  with the elements of 2 ( , , )G G TΩ  and 

3 ( , , )G G TΩ  to form ( , , )AGGT T∅ , which is needed in ( , , )G G TΩ  since its components are 

consistent.  The other 15 3-tuples of Table 2c require no elements to be added to an  
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2 1( , , )j t t tx x x− −Ω  in step (2) when counting is overlapping, and thus for them, 2 1( , , )t t tx x x− −Ω  

contains only one entry.        

 

Non-Overlapping counting.  When counting is non-overlapping there are additional 

considerations when forming pattern-progress components ,t ja , since counting re-starts with a 

completed (and counted) simple pattern.  In this case, the determination of pattern-progress 

components ,t ja  depends on whether or not the m -tuple tx  contains any CISP of Ψ  (SWNO 

counting) or of  ( )jΛ  (WPNO counting), and those two cases are discussed below.     

 Note that whenever counting is SWNO, one only needs to know one pattern-progress 

component for the whole system, and not c  of them.  Though this doesn’t represent a reduction 

in the number of states in YS , it does mean that there are less vector components in the states, 

reducing storage.   

     

 When there are no CISP in tx  

 If there are no CISP of ( )jΛ  (WPNO counting) or of Ψ  (SWNO counting) in tx , then all 

components for pattern progress determined by steps (1) and (2) above for overlapping counting 

are needed in ( )txΩ .  We do the following additional step to search for pattern-progress 

components that need to be added: 

 

(3) If a prefix of tx  (or the entire m -tuple) of the form 1, ,t mx xυ− + …  ( 1t m tυ− + ≤ ≤ ) is an 

element of jF  under WPNO counting, or of F  when counting is SWNO, then a pattern could 

end at xυ  to re-start counting.  In that case we apply step (1) above to the remainder 1, , tx xυ+ …  of 
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tx  after xυ  to determine an ,t ja  to be added to ( )j txΩ  under WPNO counting, and to ( )txΩ  

under SWNO counting (with ∅  added if tυ = ).  Under WPNO counting, ( )txΩ  is then formed 

as in step (2), by taking all consistent combinations formed by combining any new ,t ja  of ( )j txΩ  

with a consistent pattern progress component from each ( )j tx′Ω , j j′ ≠ .   

 

 

 When there are CISP in tx  

 Let 1λ  and 2λ  be integers with 1 21 mλ λ≤ ≤ ≤ .  A simple pattern 
1 2* ( , , )t m t mx xλ λ− + − +Λ = …  of 

( )jΛ  (WPNO counting), or of Ψ  (SWNO counting) that is completely contained in tx  means 

that either *Λ  is counted at 
2t mx λ− + , or another pattern is counted somewhere in 

1 2 1( , , )t m t mx xλ λ− + − + −…  to re-start counting.  In either case, a pattern counted after the beginning of 

tx  re-starts counting, rendering steps (1) and (2) as unnecessary. 

 

(4)  In this case, we search 1( , , )t t m tx x x− += …  for the included simple patterns, beginning with its 

left-most symbol 1t mx − + .  Whenever a CISP of the form 
1 2

( , , )t m t mx xλ λ− + − +…  is located, we repeat 

the search for included simple patterns in the remainder of tx  (
2 1, ,t m tx xλ− + + … ), until no more 

CISP are found.  Denote by 2t m λ′− +  the ending location of the last CISP that is found in tx , 

21 mλ′≤ ≤ .  Then, pattern-progress components are added to ( )j txΩ  under WPNO counting, or 

to ( )txΩ  under SWNO counting, by applying step (1) above to 
2 1, ,t m tx xλ′− + + … , (or ∅  is added if  

2 mλ ′ = ).  In addition, if a segment of tx  of the form 1, ,t mx xυ− + …  ( 1t m tυ− + ≤ ≤ ) is an element 

of jF  (WPNO counting) or of F  (SWNO counting), and 1, ,t mx xυ− + …  ends in the middle of the 
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first (leftmost) CISP 
1 2

( , , )t m t mx xλ λ− + − +…  of tx  ( 1 2t m t mλ ν λ− + ≤ < − + ), then counting could be 

re-started at xυ , and thus we repeat the search for CISP in 1, , tx xυ+ … , applying step (1) after the 

last CISP is found.   

 

 To illustrate these steps for non-overlapping counting, consider again the compound patterns 

{ }(1) (2) (3), 2, ,3, ,2Ψ = Λ Λ Λ , with (1) ( , , , )AGGTA CG GT CΛ = , (2) ( , , , )CGTT AG GT GTΛ = ,  

(3) ( , , , )AT CT GT TTΛ = , and 3m = .  As noted earlier, AGGTA , CGTT , and CG  may be 

deleted from the system because they contain CISP as non-suffixes.  The suffix sets for the 

reduced system are then { }1 , ,F T GT C= , { }2 , , ,F G AG T GT= , and { }3 , , , ,F T AT CT GT TT= , 

pattern endings for the respective compound patterns, and F  is the union of these three sets.  We 

consider pattern progress for  ( , , )tx G T T= .  Each compound pattern contains the CISP GT  as a 

non-suffix, and compound pattern (3)Λ  also has  TT  as a CISP.  Proceeding to search GTT  for 

CISP from left to right, GT  is located.  If GT  is counted, then pattern reckoning re-starts (TT  is 

not counted), and the portion of GTT  after the last CISP (the T ) is checked for pattern progress, 

leading to ( ) ( ),1 ,2 ,3, , , ,t t ta a a T= ∅ ∅  being placed in ( )txΩ  as pattern progress under WPNO 

counting (T  for SWNO counting), since the simple pattern TT  of (3)Λ  is the only pattern that 

begins with T .  We then check for possible additional pattern-progress components by looking 

for the possibility that patterns can end in the middle of the left-most CISP  of GTT , rendering 

the CISP to not be counted.  A simple pattern of (2)Λ  may end after the G  of GTT  to re-starting 

counting for (2)Λ , however the pattern progress from the remaining part of GTT  after the G  is 

still ∅ , and thus under WPNO counting there are no components to add to ( )txΩ .  However, 

under SWNO counting, the occurrence of a simple pattern of (2)Λ  does re-start counting for (3)Λ , 
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and thus in the possible case where a pattern ends at G , the CISP TT  of (3)Λ  would be counted, 

rendering the need to add ∅  to ( )txΩ , since there would be no pattern progress after GTT  if the 

TT  is counted.   

 For the 3-tuple ( , , )tx G A A= , there are no CISP, and a pattern that ends after the G  does not 

change pattern progress (step 3), i.e. pattern progress is the same for AA  as for the complete 3-

tuple GAA .  The change in pattern progress for ( , , )G A A  under non-overlapping counting as 

compared to overlapping counting using steps (1) and (2) is then due to the deletion of AGGTA  

from (1)Λ .   

  

 3.1.2 Determining values of ,t jb  that are necessary  

 We now give a method to determine pattern counts ,t jb , 1, ,j c= …  associated with pattern-

progress components ( )txΩ  and m -tuples tx  in vector states of YS .  One way that the number of 

pattern counts needed may be reduced from ( )1
( 1) 1c

jj
rδ

=
= + −∏  is if multiple patterns must be 

counted simultaneously.  Another is when m -tuples contain CISP of Ψ , which ensures that at 

least one simple pattern has occurred.     

 In general, for compound pattern ( )jΛ , 1 j c≤ ≤  and its distinct simple patterns 

,1 ,( , , )
ii i i kΛ = Λ Λ…  of length ik ,  define the coincidence number 

   , ,1 , , 1 ,{ :( , , ) ( , , ),   1 }  
i ij i k i k k i k jω ωω ω ωκ ω η− += Λ Λ Λ = Λ Λ ≤ ≤… …  ( )i wk k≥ , 

the number of simple patterns of ( )jΛ  that are suffixes of iΛ , and thus will be counted when iΛ  

is counted.  As iΛ  is always a suffix of itself, , 1κ ≥j i .  The number , 1κ >j i  if iΛ  is repeated in 

( )jΛ , or if it contains a CISP of ( )jΛ  as its suffix.  Now, the possible counts of ( )jΛ  needed in 
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components of states are those from the set of values { }j jχ ξ= , where j jrξ ≤   are formed by 

taking , ,j j i j ii
dξ κ=∑ , with the sum being taken over the distinct simple patterns of ( )jΛ , and 

{ }, ,0,1, , /j i j j id r κ⎢ ⎥∈ ⎣ ⎦…   ( ε⎢ ⎥⎣ ⎦  denotes the greatest integer less than or equal to ε ).  If jr  is not 

included in the set jχ  then it is added to indicate that the required number of pattern counts have 

been realized. 

 Notice that whenever one of the coincidence numbers ,j iκ  is equal to one, then 

{ }0,1, ,j jrχ = … , and thus no reduction in the number of necessary values of ,t jb  is obtained 

based on coinciding occurrences for patterns of ( )jΛ .  This is the case, e.g., for (1)Λ , (2)Λ ,  and 

(3)Λ  from above, which each have at least one simple pattern with , 1j iκ = .  This is also the case 

for the compound pattern { }(4) , , , ,T AT AT TAT TATΛ = , for which the simple pattern T  has 

coincidence number equal to one.  However, for { }(5) , , , , ,T T AT AT TAT TATΛ = , with distinct 

simple patterns 1 TATΛ = , 2 ATΛ = , and 3 TΛ = , and respective coincidence numbers 5,1 6κ = , 

5,2 4κ = , and 5,3 2κ = , if 5 13r =  then { }5 0,2,4,6,8,10,12,13χ = . 

 Coincidence numbers and sets jχ , 1, ,j c= …  are helpful for determining the values of 

( ),1 ,,t t cb b…  that are possible and thus required to be associated with m -tuples and pattern-

progress components in the minimal state space.  Steps (5) and (6) below are used to determine 

the counts ,t jb  associated with the pattern-progress components and m -tuples, for overlapping 

and non-overlapping counting, respectively.  
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(5) Overlapping counting.  For overlapping counting, if an m -tuple has no CISP, then all 

possible values jξ  of jχ  are needed as counts ,t jb  in states.  However, if one or more CISP are 

included in the m -tuple (or in any pattern-progress component that is longer than the m -tuple), 

then the specific coincidence numbers of CISP patterns need to be added to each value jξ  of jχ , 

with values less than or equal to jr  being retained to obtain the possible values of ,t jb .  (If one 

CISP is a suffix of another, then one adds the largest of the coincidence numbers to the jξ .)    

 As an example, again consider our sample system Ψ  and the 3-tuple GGT , which has the 

two possible sets of pattern-progress values, ,1 ,2 ,3( , , ) ( , , )t t ta a a T= ∅ ∅  and 

,1 ,2 ,3( , , ) ( , , )t t ta a a AGGT T= ∅ .  The 3-tuple itself contains the CISP GT , which has coincidence 

numbers equal to one, two, and one, respectively for (1)Λ , (2)Λ , and (3)Λ .  We add those 

coincidence numbers to { }0,1, ,j jrχ = … , 1,2,3j =  to obtain the possible values of ,t jb  

associated with the pattern-progress component  ( , , )T∅ ∅ , and thus { },1 1,2tb ∈ , { },2 2,3tb ∈ , and 

{ },3 1,2tb ∈ .  Recalling that not all of the ,t jb  can equal jr  simultaneously, the total number of 

possible counts ,1 ,2 ,3( , , )t t tb b b  needed for ( , , )T∅ ∅  is (2 2 2) 1 7× × − = .  For the pattern-progress 

component ( , , )AGGT T∅ , we instead search  AGGT for CISP.  There are two completely 

included simple patterns, AG  and GT .  Since  AG  is in  (2)Λ  along with two copies of  GT , 

we add 3 to all of the numbers { }2 0,1, ,3χ = … , and one to the numbers of  1χ  and 3χ  as before, 

keeping those values that are less than or equal to jr .  Thus { },1 1,2tb ∈ , ,2 3tb = , and { },3 1,2tb ∈ , 

and the total number of possible counts ,1 ,2 ,3( , , )t t tb b b  needed for ( , , )ATTG T∅  based on this 

analysis is 3, the possibilities being ,1 ,2 ,3( , , ) (1,3,1)t t tb b b = , (1,3,2) , or (2,3,1) .  However, 
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,1 ,2 ,3( , , ) (2,3,1)t t tb b b =  is also not possible for ( , , )ATTG T∅ , since any pattern-progress 

component ,t ja  associated with a compound pattern ( )jΛ  that has occurred jr  times is set to ∅ .   

 

(6) Non-Overlapping counting.    Non-overlapping counting is handled in a manner similar to 

step (5) above, with an additional consideration.  In the case of a state that enters the state space 

because a suffix of a simple pattern of the system is a prefix of the m -tuple and thus could re-

start counting, the largest coincidence number of a simple pattern that could end with the suffix 

must be added to the values of jχ , 1, ,j c= …  as before in step (5), so that the jχ  are all greater 

than zero.  We also note that the number of CISP of the m -tuple that are counted may be less 

with WPNO than with overlapping counting, and less under SWNO counting than under WPNO 

counting, leading to a larger number of possible counts.     

 We illustrate using   the 3-tuple GTT , which contains the CISP GT .  Under WPNO 

counting, similar to the case of overlapping counting , adding coincidence numbers of GT  gives 

possible values { },1 1,2tb ∈ , { },2 2,3tb ∈ , and { },3 1,2tb ∈ , for a total number of ,1 ,2 ,3( , , )t t tb b b  count 

values of seven, four associated with ,1 ,2 ,3( , , ) ( , , )t t ta a a T= ∅ ∅ , the other three associated with 

,1 ,2 ,3( , , ) ( , , )t t ta a a = ∅ ∅ ∅  (when ,3 2tb = ).  The difference for WPNO counting is that the simple 

pattern AG  can end at the first G  of the 3-tuple and re-starting counting for (2)Λ  so that  GT  is 

not counted.  Thus there are four other possible values for counts under WPNO counting, (those 

with ,2 1tb = ).  For SWNO counting, in addition to the seven counts from { },1 1,2tb ∈ , { },2 2,3tb ∈ , 

and { },3 1,2tb ∈ , since AG  could end at G  so that GT  is not counted, coincidence numbers for 

AG  of (2)Λ  and TT  of (3)Λ  (but not those of GT ) are added to the possible count values of 

(2)Λ  and (3)Λ , respectively, giving  { },1 0,1,2tb ∈ , { },2 1,2,3tb ∈ , and { },3 1,2tb ∈ , for an additional 
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(3 3 2) 1 17× × − =  possible values counts (associated with ∅ ), and a total of 24 for the 3-tuple.  

However, some of these are not possible due to interactions among patterns, which will be 

discussed below.        

 

 

Pattern interactions.  In the above, we have not considered the effect of interactions of simple 

patterns, which could render other count values ,1 ,( , , )t t cb b…  as impossible.   We give an example 

using our sample patterns Ψ  to illustrate the complexity of this phenomenon is as follows.  

Consider overlapping counting and the state ( ,1, ,0, ,0,( , , ))A A A G A A , which would appear to be a 

valid state from the above algorithm, but can never be entered due to simple pattern interaction.  

For  (1)Λ  to be counted only once, neither AGGTA  nor CG  can have been counted as they both 

contain CISP.  GT  also cannot have been counted,  since it lies within  all of the compound 

patterns, and ,t jb = 0 for 1j > .  Thus the only simple pattern in (1)Λ  than might have been 

counted is C .  However the C could not directly precede the 3-tuple GAA  since it begins with 

G , CG  is a pattern of (1)Λ , and (1)Λ  has been counted only once.  As CT  is also a simple 

pattern of Ψ ,  A  is the only possible symbol that can follow the C .  Also, since AG  and AT  

are both patterns and C  can’t have occurred to be counted another time, the only symbol that 

could possibly follow the A  is another A , a contradiction, since a string of A ’s before the 3-

tuple would leave an A  before G , forming AG .  Thus the state ( ,1, ,0, ,0,( , , ))A A A G A A  is not 

possible under overlapping counting.  However, the state is possible under both types of non-

overlapping counting since in that case CG  isn’t needed in Ψ  since it contains C  as a non-

suffix. 
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 Due to the variety of patterns types that are allowed in Ψ , it would be extremely difficult to 

give a general description of how to determine which counts are rendered impossible by 

interactions of states.  Thus, we use a different strategy.  We set up the state space based on steps 

(1)-(6) above, and then also form the transition probability matrix as described in the next section.  

Any state with entrance probabilities all equal to zero (i.e. the corresponding column of the 

transition probability matrix is all zeroes) is then removed from the state space.  

 The number of values of the ( ,1tb , ,2tb , ,3tb ) that are needed in states of YS  (other than 

initialization states) for the various values of tx  and each counting method are listed in Tables 2a-

2d.   They are to be compared with 35δ = , the number that would be used with the naïve 

approach.  

 Note also that if ,t j jb r=  and counting is SWNO, pattern-progress components that enter 

( )txΩ  because of the possibility that some simple pattern of ( )jΛ  is counted to re-start pattern 

reckoning are no longer needed.  For example, under SWNO counting, for the m -tuple ( , , )G T T , 

if (2)Λ  has occurred 2r  times and (3)Λ  has occurred less than 3r  times, then there is no need to 

have ∅  as a component in ( , , )G T TΩ , since the occurrence of pattern AG  of (2)Λ  will no 

longer re-start counting, rendering GT  to be counted and not TT . 

 

  

3.1.3  Determining initialization states and initial distribution 

    The states of  YS  determined above cover time points for which all of the entries of the m -

tuple 1( , , )t t m tx x x− += …  must be considered when searching for patterns.  Initialization states may 

need to be added for time points 0, , 1t m= −… , when some (or all) of the entries of tx  are before 
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1x , and thus do not count, rendering pattern-progress components to possibly be different than 

those based on the full m -tuple .  The most obvious of these states is at time 0t = , when the 

complete m -tuple is before 1x , and thus there is no progress towards a pattern.  Therefore when 

0t = , for each of the m
XS  possible m -tuples 0x  and each compound pattern, any pattern-

progress component 0, ja  is set to ∅ , and the number of pattern occurrences 0, jb  are set to zero.   

A row vector 0ξ  (of dimension equal to YS ) is formed to hold the initial distribution of 0Y , with 

1 0( , , )mx xπ − + …  as its non-zero entries at locations corresponding to the states of the form 

1 0( ,0, ,0, ,0,( , , ))mx x− +∅ ∅ ∅ … .   

 When 1m > , to handle times 1t =  to 1t m= − , initialization states are added (if necessary) to 

YS  with pattern-progress components that are determined by applying steps (1)-(4) given above, 

as appropriate, to 1( , , )tx x… , the part of the m -tuple tx  that is used for pattern reckoning. 

 In most cases, the states that are added during the initialization stage have components ,t jb  

set to zero.  The reason is as follows.  Any pattern counted in the initialization stage 

(1 1t m≤ ≤ − ) must lie in 1( , , )tx x… , and thus it must lie within an m -tuple.  The determination 

of pattern-progress components ,t ja  when there is a pattern within an m -tuple is dealt with for 

times t m≥ , as described above.  The only time when an additional state with a , 0t jb >  may be 

needed during initialization is when a simple pattern of Ψ  is completely included in another 

simple pattern.  Then, the length of an ,t ja  for t m≥  could be longer than a CISP, rendering 

different pattern progress than for initialization times 1 1t m≤ < −  for states with positive entries 

for a ,t jb  emanating from the occurrence of the CISP.  For example, the 3-tuple ( , , )C G T  

represents progress into the pattern CGTT  of (2)Λ  for times 3t ≥ .  When 2t = , the C  doesn’t 
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count, whereas the CISP GT  of (2)Λ  does.  The initialization state that is added to YS  under 

overlapping counting has ( ) ( ),1 ,2 ,3, , , ,t t ta a a T= ∅ ∅  as its pattern-progress components, with 

2,1 2,3 1b b= =  and 2,2 2b = , the number of times the compound patterns of Ψ  contain GT  (no 

initialization state needs to be added if counting is WPNO).   

 Any states that are added in the initialization stage are deleted from YS  after time t m= , as 

they will no longer be needed.     

 

3.1.4  Determining transition probability matrices of 0{ }t tY ∞
=    

 With states formed as described above, probabilities for the state of tY  are uniquely 

determined, given the state of 1tY − .  For 1 1,1 1,1 1, 1, 1, , , , , ( , , )t t t t c t c t m tY a b a b x x− − − − − − −⎡ ⎤= ⎣ ⎦… … , with the 

occurrence of tx  at time t , the state of tY  is determined as follows: 

• 1( , , )t m tx x− −…  becomes  1( , , )t m tx x− + … ; 

•  tx  is added to the end of 1,t ja −  (overlapping and WPNO counting), and the longest suffix 

of the resultant that is an element of jE  gives ,t ja  ( ,t ja =∅  if no suffix of the resultant is 

in jE , if ,t j jb r= , or if the result of concatenating tx  to 1,t ja −  is a pattern of ( )jΛ  under 

WPNO counting); 

• , 1, ,min[ max ( ),  ]t j t j i j i jb b rκ−= +  if concatenating tx  to the pattern-progress component 

renders it as a pattern of ( )jΛ , and  , 1,t j t jb b −=  otherwise, where ,max ( )i j iκ  is the 

maximum of all coincidence numbers for the simple patterns iΛ  of ( )jΛ  that occur at 

time t . 
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For SWNO counting, there is only one pattern-progress component, and ,t ja  is replaced by the 

one component for the system, jE  is replaced by  E , and ( )jΛ  by Ψ  in the discussion above for 

WPNO counting.     

 Since the transition of 1tY −  to tY  is determined by the transition of 1tX −  to tX  in the original 

sequence, the probability 1( , , )t t m tp x x x− −…  is assigned as the entry of the transition probability 

matrix for the transition from 1tY −  to tY .  For 1 1t m≤ ≤ −  the transition probability matrix is 

denoted by *
YT , and is of dimension Y YS S× .  When t m≥ , since the “initialization states” 

introduced above are dropped from the state space, the new transition probability matrix YT  is of 

dimension Y YS Sς ς− × − , where ς  is the number of initialization states.     

 We illustrate the setup of the transition probability matrices using our example system Ψ , 

assuming that 1 ( ,0, ,0, ,0,( , , ))tY A G G− = ∅ ∅ ∅ .  First, let 1t = .  There are four possible 

destinations for 0Y , based on the value of 1x .  For overlapping counting, conditional on this value 

of 0Y , we have: 

  1

( ,0, ,0, ,0,( , , )) with probability ( ( , , ))

( ,1, ,0, ,0,( , , )) with probability ( ( , , ))

( ,0, ,0, ,0,( , , )) with probability ( ( , , ))

( ,0, ,0, ,0,( , , )) with probability ( ( , ,

A A A G G A p A A G G

C C C G G C p C A G G
Y

G G G G G G p G A G G

T G G T p T A G

=

∅ ∅ ))G

⎧
⎪
⎪
⎨
⎪
⎪
⎩

. 

If 1x C= , the pattern C  of (1)Λ  occurs, and thus 1,1 1b = .  If counting is WPNO, 

1 ( ,1, ,0, ,0,( , , ))Y C C G G C= ∅  with probability ( ( , , ))p C A G G , because counting re-starts when 

pattern C   of (1)Λ  is counted (and 1 ( ,1,0,0,( , , ))Y G G C= ∅  under SWNO counting).  If 1x T= , 

though the last two values of ( )2 1, ,t t tx x x− −  are  GT , a simple pattern that lies in all three 

compound patterns, no pattern is counted because the G  at time 0t =  does not count.  These 
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transition probabilities are entered into the appropriate locations of *
YT  for the initialization stage, 

since t m< .  However, if t m≥  and tx T=  so that GT  is being counted for the first time, then 

( ,1, ,2, ,1,( , , ))tY T G G T= ∅ ∅  under overlapping counting, ( ,1, ,2, ,1,( , , ))tY G G T= ∅ ∅ ∅  if 

counting is WPNO, and the value ( ( , , ))p T A G G  is entered into YT  in the appropriate location.     

 

3.2 Formulas for the waiting time distribution 

 We now give a formula to compute waiting time probabilities for the generalized later pattern 

using basic properties of Markov chains.  For overlapping counting, we also show how to 

compute the distribution through probabilities for competing patterns. 

 

Theorem 3.1. For an m -th order Markovian sequence 1{ }t t mX ∞
=− +  and associated auxiliary 

Markov chain 0{ }t tY ∞
= , for overlapping, WPNO, and SWNO counting, the waiting time 

distribution of the generalized later pattern is given by: 

  
* *

0 ( ) ( )                1 1
( )

( ) ( )              

t
Y

t m
m Y

T U t m
P L t

T U t m

ξ α

ϕ α−

⎧ ≤ ≤ −⎪≤ = ⎨
≥⎪⎩

, (3.1) 

where * ( )U α  is a 1YS ×  column vector with a one at the location corresponding to the absorbing 

state α  and zeroes elsewhere, and the 1YS ς− ×  column vector ( )U α  is the same as * ( )U α  

except that the entries corresponding to initialization states have been deleted.  Also, the 

1 YS ς× −  row vector mϕ  results by deleting the entries of zero corresponding to initialization 

states from the product  *
0 ( )m

YTξ .  
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Proof.  The right-hand side of the equality in (3.1) gives the probability that tY α=  for times 

1t ≥ .  Since there is a one-to-one correspondence between tY  lying in its absorbing state and the 

occurrence of the generalized later pattern by time t , the result follows.       

 

 Notice that the vector mϕ  for time m  serves to initialize the part of the Markov chain  

{ } 0t t
Y ∞

=
 that travels only through non-initialization states.  By the end of the initialization stage 

the probability of being in any of the initialization states is zero.    

 

Theorem 3.2. For an m -th order Markovian sequence 1{ }t t mX ∞
=− + , under overlapping counting, 

the waiting time distribution of the generalized later pattern may be computed in terms of 

probabilities for competing patterns through the equation 

  ( ) ( ) ( )
1 1 11

( ) ( ) ( ) ( ) ( ) ( ) ( )
c c

i i i j i j k
i i j c i j k ci

P C t P C t P C t C t P C t C t C t
= ≤ < ≤ ≤ < < ≤=

⎛ ⎞ = − ∪ + ∪ ∪∑ ∑ ∑⎜ ⎟
⎝ ⎠
∩  

  ( ) 1

1 1
( ) ( ) ( ) ( ) ( 1) ( )

cc
i j k l i

i j k l c i
P C t C t C t C t P C t−

≤ < < < ≤ =

⎛ ⎞− ∪ ∪ ∪ + + −∑ ⎜ ⎟
⎝ ⎠
∪ , (3.2) 

where ( )jC t , 1, ,j c= …  denotes the event that, by time t , the compound pattern ( )jΛ  occurs jr  

times. 

 

Proof   Formula 3.2 follows by algebraic manipulation after applying DeMorgan’s laws to the 

analogous result in the case of probabilities for unions of sets (see, e.g., Feller, 1968, pp. 60-62).  

Under overlapping counting, unions of events ( )iC t  correspond to waiting time probabilities of 

competing patterns, the first time point where a compound pattern is occurs (and is counted) its 

specified number of times, thus giving the result.   
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 Notice that throughout the text we have differentiated between patterns occurring and being 

counted.  Theorem 3.2 applies to the occurrence of arbitrary events, and thus to overlapping 

counting, when all simple patterns that occur are counted.  However, when counting is non-

overlapping, the occurrence of patterns that are counted on the right hand side (3.2) may not be 

counted on the left hand side, and thus (3.2) may not be used in that case. 

 Theorem 3.2 requires the extension of the definition of competing patterns to include cases of 

multiple repeated simple patterns within the same compound pattern.  Though probabilities for 

these patterns were not dealt with in Aston and Martin (2005), they may be computed by 

definitions and setups analogous to the ones given above.  Note that if the system contains no 

overlapping patterns and no pattern completely included in a longer pattern as a non-suffix, 

Theorem 3.2 may be used to compute the generalized later waiting time distribution under non-

overlapping counting as well since, in that case, all simple patterns that occur are counted under 

all counting methods.     

 

3.3. Results for example patterns 

 Here we give results for the waiting time distribution of the system of patterns 

{ }(1) (2) (3), 2, ,3, ,2Ψ = Λ Λ Λ , with 3m = .  The initial probabilities used were from a discrete 

uniform initial distribution 2 1 0( , , )x x xπ − −  (i.e. 2 1 0( , , ) 1/ 64x x xπ − − =  for each 3
2 1 0( , , ) Xx x x S− − ∈ ), 

and transition probabilities 1( ,..., )t t m tp x x x− −  were determined using a random number generator.  

The transition probabilities used in the example are available from the authors.  The waiting time 

distribution ( )P L t≤  is depicted in Figure 1, for 1, ,100t = … .  
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[Figure 1 here] 

 

 To illustrate the state space reduction attained by searching for pattern-progress components 

( )txΩ  and determining possible occurrence numbers ,t jb  in the manner described in Section 3.1, 

YS = 1644, 1264, or 1129 states under SWNO, WPNO or overlapping counting, respectively, 

totals that include the respective number of initialization states, ς  = 128, 126, and 126.  The 

numbers of states required for each individual m -tuple (not including initialization states) are 

given in Tables 2a-2d of the Appendix.  On the other hand, for this example,  

(7)(6)(5) 210β = = , 1 2 3( 1)( 1)( 1) 1 35r r rδ = + + + − = , and 34 64λ = =  possible 3-tuples, so that 

1 470,401βδλ + = , the number of states that would have been needed to compute the distribution 

using the simple, but very inefficient naïve approach mentioned earlier.   

 

4. Discussion 

 In this paper the concept of later waiting time distributions is generalized to a system of 

compound patterns, called generalized later patterns.  Generalized later patterns are compound 

patterns that are each required to be counted pattern-specific numbers of times.  Probabilities are 

computed under overlapping counting and also using two types of non-overlapping counting, 

within-pattern and system-wide, and a general order of Markovian dependence is assumed.  No 

restrictions are placed on the structure of the simple patterns making up the system.  The patterns 

may be repeated within compound patterns (in effect, weighted to count multiple times) or 

included in longer patterns of the system.  The very general framework, in conjunction with 

results on competing patterns, encompasses and generalizes previous results for waiting time 

distributions of patterns. 
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 The very general setup allows the computation of many pattern distributions as special cases.  

For example, the joint distribution of the numbers of occurrences 1( ), , ( )cN t N t…  of specific 

patterns 1, , cΛ Λ…  in a DNA sequence may be computed through the relationship 

 

  1 1( ( ) , , ( ) ) ( )c cP N t n N t n P L t≥ ≥ = ≤…  , 

 

where the later waiting time L  is defined by allowing each compound pattern ( )jΛ  to be 

composed of only the simple pattern jΛ , and setting the number of pattern counts jr  that are 

required equal to jn .  However, much more generality is built into our setup to increase its 

applicability.     

 The later waiting time distribution is computed using an auxiliary Markov chain that has the 

property that waiting time probabilities of interest correspond to probabilities of the chain lying in 

its absorbing state.  For overlapping counting, it is also shown that the later waiting time 

distribution may be computed in terms of waiting time probabilities for competing patterns.  

 Other pattern distributions not derived explicitly by the results of this paper may be computed 

by using the ideas outlined.  For example, Stefanov et al. (2007) computed the waiting time 

distribution for the number of occurrences of structured motifs 1 1 2 2( : )w d d= Λ Λ , strings of DNA 

nucleotides with the property that the simple pattern 1Λ  is followed by simple pattern 2Λ , with a 

gap of between 1d  and 2d  nucleotides between them.  In that paper it was assumed that neither of 

the patterns occur within the gap.  In future work we plan to compute the exact distribution of the 

number of structured motif occurrences with structured motifs being defined in more general 

terms, with compound patterns replacing simple patterns, and without the assumption of the latter 

reference.  It should also be possible to compute exact waiting time distributions using our setup 
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when clump counting (Stefanov et al., 2007) is used, extending the definition so that clumps of 

compound patterns are allowed.  Even waiting time distributions for “competing generalized later 

patterns” (a collection of generalized later patterns that compete to be the first to occur their 

pattern-specific number of times) or “generalized later competing patterns” (a collection of 

competing patterns, each of which must occur pattern-specific numbers of times) may be 

computed by a simple extension of YS .   

 It is possible to set up the transient states of the state space YS  in such a manner that the 

pattern-progress components, number of pattern occurrences, and m -tuples each vary through 

their individually-determined set of possible values.  Though the size of the state space may be 

easily quantified if this were done, we show that this method is very inefficient because many if 

not most of those states do not occur because their vector components cannot occur 

simultaneously.   Instead, an algorithm has been presented that determines a minimal set of states, 

all of which may be visited with positive probability.  By the nature of the setup, all of the states 

determined are necessary for computing the later waiting time distribution.  In the example, using 

the minimal state space resulted in a reduction in the state space by a factor of more than 200, an 

increase in efficiency that could be very instrumental in the types of problems that the 

methodology addresses.      
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Table 1. Simple patterns of (1) ( , , , )AGGTA CG GT CΛ = , (2) ( , , , )CGTT AG GT GTΛ = , and 

(3) ( , , , )AT CT GT TTΛ =  that are counted in the DNA sequence CTCGTT  of length 6n =  under 

the various counting methods, with the locations where they are counted in parenthesis.  

Whenever a simple pattern is counted, the compound pattern containing it is counted as well.   

 

 Compound Pattern 

Counting 
method 

(1)Λ  (2)Λ  (3)Λ  

Overlapping C (1), C (3), 
GT  (5), CG  (4) 

GT  (5), GT  (5), 
CGTT  (6) 

CT  (2), GT  (5), 
TT  (6) 

WPNO C (1), C (3), 
GT  (5) 

GT  (5), GT  (5) CT  (2), GT  (5) 

SWNO C (1), C (3), 
GT  (5) 

GT  (5), GT  (5) GT  (5) 
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Appendix 

Table 2a. Pattern-progress components for times t m≥  and { }(1) (2) (3), 2, ,3, , 2Ψ = Λ Λ Λ , with 3m = , 

{ }(1) , , ,AGGTA CG GT CΛ = , { }(2) , , ,CGTT AG GT GTΛ = , and { }(3) , , ,AT CT GT TTΛ = .  Starred entries 

are those for which at least one of the compound patterns must have occurred its prescribed number of 
times; in the other entries, it is assumed that no compound pattern has occurred its prescribed number of 
times.  Also given is the total number of states (not including initialization states) associated with each tx  

(including those when one or more compound patterns have occurred the prescribed number of times.)   
tx   ( ),1 ,2 ,3, ,t t ta a a  under  

overlapping counting 
 ( ),1 ,2 ,3, ,t t ta a a  under  
WPNO counting 

 Components  
under  SWNO 

counting 

Number of states 
Overlap / WPNO 

/ SWNO 
(A,A,A) ( , , )A A A  ( , , )A A∅  A  35 / 35 / 35 

(A,A,C) ( , , )C C C  ( , , )C∅ ∅  ∅  23 / 23 / 31 

(A,A,G) ( , , )AG G G  ( , , )G G∅  ∅  26 / 26 / 34 

(A,A,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  ∅  23 / 23 / 23 

(A,C,A) ( , , )A A A  ( , , )A A∅  A  23 / 23 / 23 

(A,C,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 11 / 11 / 19 

(A,C,G) ( , , )∅ CG G * ( , , )G G G  G  11 / 23 / 23 

(A,C,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  T  15 / 15 / 27 

(A,G,A) ( , , )A A A  ( , , )A A∅  A  26 / 26 / 26 

(A,G,C) ( , , )C C C  ( , , )C∅ ∅  ∅  17 / 17 / 23 

(A,G,G) ( , , )AGG G G  ( , , )G G G  G  26 / 26 / 26 

(A,G,T) ( , , )T∅ ∅ * ( , , )∅ ∅ ∅  T  3 / 11 / 28 

(A,T,A) ( , , )A A A  ( , , )A A∅  A  23 / 23 / 23 

(A,T,C) ( , , )C C C  ( , , )C∅ ∅  ∅  15 / 15 / 19 

(A,T,G) ( , , )G G G  ( , , )G G G  G  23 / 23 / 23 

(A,T,T) ( , , )∅ ∅ ∅ * ( , , )T∅ ∅  T  11 / 23 / 23 

 * at least one pattern is guaranteed to have occurred its prescribed number of times 
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Table 2b. Pattern-progress components for times t m≥  and { }(1) (2) (3), 2, ,3, , 2Ψ = Λ Λ Λ , with 3m = , 

{ }(1) , , ,AGGTA CG GT CΛ = , { }(2) , , ,CGTT AG GT GTΛ = , and { }(3) , , ,AT CT GT TTΛ = .  Starred entries 

are those for which at least one of the compound patterns must have occurred its prescribed number of 
times; in the other entries, it is assumed that no compound pattern has occurred its prescribed number of 
times.  Also given is the total number of states (not including initialization states) associated with each tx  

(including those when one or more compound patterns have occurred the prescribed number of times.)   
  

tx   ( ),1 ,2 ,3, ,t t ta a a  under  
overlapping counting 

 ( ),1 ,2 ,3, ,t t ta a a  under  
WPNO counting 

 Components  
under  SWNO 

counting 

Number of states 
Overlap / 

WPNO / SWNO 
(C,A,A) ( , , )A A A  ( , , )A A∅  A  23 / 23 / 23 

(C,A,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 11 / 11 / 19 

(C,A,G) ( , , )AG G G  ( , , )G G∅  ∅  17 / 17 / 22 

(C,A,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  ∅  15 / 15 / 15 

(C,C,A) ( , , )∅ A A * ( , , )A A∅  A * 11 / 11 / 11 

(C,C,C) ( , , )∅ C C * ( , , )C∅ ∅ * C * 11 / 11 / 11 

(C,C,G) ( , , )∅ CG G * ( , , )∅ CG G * G * 11 / 11 / 11 

(C,C,T) ( , , )T∅ ∅ * ( , , )∅ ∅ ∅ * T * 7 / 7 / 15 

(C,G,A) ( , , )A A∅ * ( , , )A A∅  A  11 / 23 / 23 

(C,G,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 11 / 11 / 19 

(C,G,G) ( , , )∅ G G * ( , , )G G G  G  11 / 23 / 23 

(C,G,T) ( , , )CGT T∅ * ( , , )∅ ∅ ∅ * ∅ * 3 / 3 / 3 

(C,T,A) ( , , )A A A  ( , , )A A∅  A  15 / 15 / 23 

(C,T,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 7 / 7 / 19 

(C,T,G) ( , , )G G G  ( , , )G G G  G  15 / 15 / 23 

(C,T,T) ( , , )∅ ∅ ∅ * ( , , )T∅ ∅  ∅  7 / 15 / 19 

* at least one pattern is guaranteed to have occurred its prescribed number of times  
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 Table 2c. Pattern-progress components for times t m≥  and { }(1) (2) (3), 2, ,3, , 2Ψ = Λ Λ Λ , with 3m = , 

{ }(1) , , ,AGGTA CG GT CΛ = , { }(2) , , ,CGTT AG GT GTΛ = , and { }(3) , , ,AT CT GT TTΛ = .  Starred entries 

are those for which at least one of the compound patterns must have occurred its prescribed number of 
times; in the other entries, it is assumed that no compound pattern has occurred its prescribed number of 
times.  Also given is the total number of states (not including initialization states) associated with each tx  

(including those when one or more compound patterns have occurred the prescribed number of times.)   
   

tx   ( ),1 ,2 ,3, ,t t ta a a  under  
overlapping counting 

( ),1 ,2 ,3, ,t t ta a a  
under  WPNO 
counting 

 Components  
under  SWNO 

counting 

Number of states  
Overlap / WPNO 

/ SWNO 

(G,A,A) ( , , )A A A  ( , , )A A∅  A  34 / 35 / 35 

(G,A,C) ( , , )C C C  ( , , )C∅ ∅  ∅  23 / 23 / 31 

(G,A,G) ( , , )AG G G  ( , , )G G∅  ∅  25 / 26 / 34 

(G,A,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  ∅  22 / 23 / 23 

(G,C,A) ( , , )A A A  ( , , )A A∅  A  23 / 23 / 23 

(G,C,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 11 / 11 / 19 

(G,C,G) ( , , )∅ CG G * ( , , )G G G  G  11 / 23 / 23 

(G,C,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  T  15 / 15 / 27 

(G,G,A) ( , , )A A A  ( , , )A A∅  A  34 / 35 / 35 

(G,G,C) ( , , )C C C  ( , , )C∅ ∅  ∅  23 / 23 / 31 

(G,G,G) ( , , )G G G  ( , , )G G G  G  34 / 35 / 35 

(G,G,T) ( , , )T∅ ∅ , ( , , )AGGT T∅  ( , , )∅ ∅ ∅  ∅  9 / 7 / 7 

(G,T,A) ( , , )A A A  ( , , )A A∅  A  7 / 11 / 26 

(G,T,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅  3 / 5 / 23 

(G,T,G) ( , , )G G G  ( , , )G G G  G  7 / 11 / 26 

(G,T,T) ( , , )∅ ∅ ∅ * ( , , )T∅ ∅  ,T ∅  3 / 11 / 21 

* at least one pattern is guaranteed to have occurred its prescribed number of times  
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Table 2d. Pattern-progress components for times t m≥  and { }(1) (2) (3), 2, ,3, , 2Ψ = Λ Λ Λ , with 3m = , 

{ }(1) , , ,AGGTA CG GT CΛ = , { }(2) , , ,CGTT AG GT GTΛ = , and { }(3) , , ,AT CT GT TTΛ = .  Starred entries 

are those for which at least one of the compound patterns must have occurred its prescribed number of 
times; in the other entries, it is assumed that no compound pattern has occurred its prescribed number of 
times.  Also given is the total number of states (not including initialization states) associated with each tx  

(including those when one or more compound patterns have occurred the prescribed number of times.)   
   

tx   ( ),1 ,2 ,3, ,t t ta a a  under  
overlapping counting 

 ( ),1 ,2 ,3, ,t t ta a a  under  
WPNO counting 

 Components  
under  SWNO 

counting 

Number of states  
Overlap / WPNO / 

SWNO 
(T,A,A) ( , , )A A A  ( , , )A A∅  A  24 / 24 / 35 

(T,A,C) ( , , )C C C  ( , , )C∅ ∅  ∅  16 / 16 / 31 

(T,A,G) ( , , )AG G G  ( , , )G G∅  ∅  18 / 18 / 34 

(T,A,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  ∅  12 / 12 / 23 

(T,C,A) ( , , )A A A  ( , , )A A∅  A  16 / 16 / 23 

(T,C,C) ( , , )∅ C C * ( , , )C∅ ∅ * ∅ * 8 / 8 / 19 

(T,C,G) ( , , )∅ CG G * ( , , )G G G  G  8 / 16 / 23 

(T,C,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  T  8 / 8 / 27 

(T,G,A) ( , , )A A A  ( , , )A A∅  A  24 / 24 / 35 

(T,G,C) ( , , )C C C  ( , , )C∅ ∅  ∅  16 / 16 / 31 

(T,G,G) ( , , )G G G  ( , , )G G G  G  24 / 24 / 35 

(T,G,T) ( , , )T∅ ∅  ( , , )∅ ∅ ∅  ∅  4 / 4 / 7 

(T,T,A) ( , , )A A A  ( , , )A A∅  A  12 / 23 / 23 

(T,T,C) ( , , )C C C  ( , , )C∅ ∅  ∅  8 / 15 / 19 

(T,T,G) ( , , )G G G  ( , , )G G G  G  12 / 23 / 23 

(T,T,T) ( , , )∅ ∅ ∅ * ( , , ), ( , , )T∅ ∅ ∅ ∅ ∅  ,T ∅  11 / 12 / 23 

 * at least one pattern is guaranteed to have occurred its prescribed number of times 
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Figure 1: Later waiting time probabilities ( )P L t≤ , for 1, ,100t = … .  The probabilities are associated 

with the system { }(1) (2) (3), 2, ,3, ,2Ψ = Λ Λ Λ , for a third-order Markovian sequence with random 

transition probabilities and a discrete uniform initial distribution.   


