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Abstract

This paper studies the problem of covariance estimation when price observations are subject to non-
synchronicity and contaminated by i.i.d. microstructure noise. We derive closed form expressions for the
bias and variance of three popular covariance estimators, namely realized covariance, realized covariance plus
lead- and lag-adjustments, and the Hayashi and Yoshida estimator, and present a comprehensive investigation
into their properties and relative efficiency. The key finding of this paper is that the ordering of covariance
estimators in terms of efficiency depends crucially on the level of microstructure noise. In fact, for sufficiently
high levels of noise, the standard realized covariance estimator (without any corrections for non-synchronous
trading) can be most efficient. An empirical illustration using TAQ quote and transaction data confirms the
validity of our methodology and points to some avenues for future research.
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1 Introduction

The covariance structure of asset returns is fundamental to many issues in finance, and the importance of accu-
rate covariance estimation can therefore hardly be understated. In recent years, high frequency data have become
increasingly available for a wide range of securities (including all publicly traded US stocks, numerous exchange
rates, treasury bonds, etc) and together with this, we have witnessed a shift in focus away from parametric
conditional covariance estimation based on daily or weekly data to the model-free ex-post measurement of real-
ized quantities based on intra-day data (e.g. Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and
Labys, 2003; Barndorff-Nielsen and Shephard, 2004). While in theory the efficiency gains associated with high
frequency data are often considerable, particularly for variance/covariance estimation, practical implementation
is faced with the complications that arise from the emerging market microstructure noise effects which contami-
nate observed prices when sampled at high frequency. Early recognition of this issue is provided by Niederhoffer
and Osborne (1966) who document substantial serial correlation in returns that can, to a large extent, be attributed
to the presence of a bid-ask spread. More recently, the impact of microstructure noise has been studied exten-
sively in the context of realized variance measurement, see for instah&akalia, Mykland, and Zhang (2005);

Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006); Corsi, Zumibigth, M

and Dacorogna (2001); Hansen and Lunde (2006); Oomen (2006); Zhang, MyklandjteBahAlia (2005).

The main finding of this literature is that microstructure noise makes realized variance a biased and inconsistent
estimator for the integrated variance and various approaches have been suggested to deal with this, including
sparse sampling, pre-filtering, bias correction, time deformation, and alternative “second generation” realized
variance measures based on kernel smoothing or subsampling.

When turning to the multivariate problem of realized covariance measurement, matters don’t simplify be-
cause, in addition to noise, the impact of non-synchronous trading becomes a real concern. In short, when the
arrival times of trades are random and hence non-synchronous across assets, returns sampled at regular intervals
in calendar time will correlate with preceding and successive returns on other assets, even when the underlying
correlation structure is purely contemporaneous. This is known as the Fisher effect (Fisher, 1966). Moreover,

when the sampling interval is reduced, the covariance between any two asset return series matched in calen-
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dar time diminishes and, in the limit, converges to zero. This observation has first been made by Epps (1979).
Motivated by these profound consequences of non-synchronous ttadimyimber of alternative covariance
estimators have been suggested in the literature. Scholes and Williams (1977) modify the standard covariance
estimator by adding the first lead and lag of the sample autocovariance. Dimson (1979) and Cohen, Hawawini,
Maier, Schwartz, and Whitcomb (1983) generalize this estimator to indudads and lags. Here the choice

of how many leads and lags to include is determined by trading off a bias reduction against an increase in the
variance of the estimator when increasingMore recently, Hayashi and Yoshida (2005) propose a covariance
estimator that is computed by accumulating the cross-product of all fully and partially overlapping transaction
returns (see also de Jong and Nijman, 1997, for a similar estimator). Importantly, this estimator is free of any
biases due to non-synchronous trading but it does require the exact timing of transactions. Clearly, if these are
not available, one may still be forced to rely on the conventional realized covariance measure, with or without
lead-lag adjustments, as a necessary compromise.

The contribution this paper makes is to join the above two streams of literature, and analyze the properties
of the realized covariance (RC), the realized covariance plus lead-lag adjustment (RCLL), and the Hayashi-
Yoshida covariance estimator (HY) in a setting with non-synchronous tragidgnarket microstructure noise
contaminations. While both issues have been analyzed extensively in isolation, with the literature on variance
estimation focusing on microstructure noise and the literature on covariance estimation focussing on the non-
synchronicity of trades, the combined impact of both these effects is clearly of interest. Besides, there is no reason
to expect that the impact of noise on covariance estimation will be the same as that on variance estimation, and
a separate investigation of this issue is thus warranted. With regard to microstructure noise, we employ an i.i.d.
specification that is standard in the RV literature (see for instance Bandi and Russell, 2006; Zhang, Mykland, and
Ait-Sahalia, 2005). To generate non-synchronicity of trades, we assume that the transaction times are generated
by independent Poisson processes, with an arrival intensity that can vary across assets but is constant over time
(see e.g. Hayashi and Yoshida, 2005). In this setting, we present closed form expressions for the bias and variance

of the RC, RCLL, and HY covariance estimators. We provide a detailed discussion of the relative efficiency

1The impact of non-synchronous trading has also received considerable attention in the literature on beta estimation for asset pricing
(e.g. Shanken, 1987), index autocorrelation (e.g. Atchison, Butler, and Simonds, 1987; Lo and MacKinlay, 1990), and lead-lag patterns
(Chordia and Swaminathan, 2000; de Jong and Nijman, 1997).
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of these estimators and also discuss optimal sampling. Our findings can be summarized as follows: (i) i.i.d.
noise does not bias any of the covariance estimators but it does make them inconsistent, (ii) as predicted by the
Epps effect, non-synchronous trading leads to a substantial downward bias in realized covariance, which can be
extenuated by inclusion of lead-lag adjustments, (iii) a careful choice of sampling frequency is crucial for all
covariance estimators including HY (with i.i.d. microstructure noise the variance of the HY estimator increases
so that for sufficiently high levels of noise HY is best implemented with aggregated transaction returns) and
(iv) the ordering of competing covariance estimators in terms of their efficiency crucially depends on the level
of noise. This last point is perhaps the most surprising finding because it suggests that the “plain-vanilla” RC
estimator can — in certain circumstances — attain greater efficiency than either RC with lead-lag adjustments or the
HY estimator. We also present some empirical results, and find that they confirm the validity of our theoretical
framework. In particular, we find that the rate of decay in the empirical covariance signature plots for RC is
broadly consistent with that implied by our theory. For the HY estimator we detect a systematic downward bias
which, we conjecture, is caused by sluggish adjustment of prices.

To conclude, it is emphasized that a number of recent papers have addressed similar issues to those studied
here. For instance, Martens (2004) uses simulations to investigate the relative performance of alternative covari-
ance estimators, including RC, RCLL, and HY, in the context of the Lo and MacKinlay (1990) non-synchronous
trading model. Bandi and Russell (2005) provide a formal analysis of realized covariance in the presence of
noise (but abstract from the non-trading issue) whereas Sheppard (2005) introduces the concept of “scrambling”
to study non-synchronicity and realized covariance (but abstracts from the noise issue). Zhang (2006) provides
an analytic treatment of the RC estimator in a general framework that includes non-synchronous trading and
microstructure noise, Hayashi and Yoshida (2006) study the joint distribution of HY covariance estimator and
RV in the absence of noise, Corsi (2006) studies the HY estimator using the HAR model allowing for time vary-
ing covariance structure, while Voev and Lunde (2005) use simulations to study the properties of the RC and
HY estimators (and extensions thereof) for general noise dependence and non-trading scenarios. This paper is
distinguished from the above literature in that it presents a comprehensive investigation of the three competing
covariance estimators simultaneously within a unified framework that incorporates both non-synchronous trad-

ing and microstructure noise. Because closed form expressions for the bias and MSE are available, the relative
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efficiency of the RC, RCLL and HY estimators can be studied.

The remainder of this paper is organized as follows. Section 2 introduces the modeling framework that
incorporates non-synchronous trading and microstructure noise. This is then used to study the properties of RC
in section 2.1, RCLL in section 2.2, and HY in section 2.3. A detailed investigation into the relative efficiency of
the covariance estimators can be found in section 2.4. Section 3 presents an empirical illustration using NYSE
guote and transaction data for five randomly selected Dow Jones 30 components. It also points at some directions

for future research. Section 4 concludes and proofs are collected in the Appendix.

2 Covariance estimation with non-synchronous and noisy returns

Let S (¢) denote the timet efficient (logarithmic) price of asset for t € [0,1]. It is assumed that prices
of assetj are observed at a set of discrete tirr{efé)}f\f;l with 0 < tgj) < ... < tg\]j] < 1 and are subject to

observation error:

P = s 4 () for m=1,..., M, 1)

m m

wheres?) = S(j)(t%)) andu is a “noise” process to be specified. In practice, the observation times typically

correspond to the occurrence of transactions or quote-revisions whereas the observation noise is due to market
microstructure effects such as the bid-ask spread. Thus, the efficient price process is latent and all inference about
the process in general, and the variance/covariance structure in particular, is necessarily based on the discretely

sampled and noisy observatiomsThroughout the remainder of this paper we make the following assumptions:

Assumption 1 [Brownian motion] The efficient price proces$ is a correlated Brownian motion, i.e5\/) =

O'jW(j) with dW(Z)dW(]) = pijdt.

Assumption 2 [Poisson samplingrhe observation times of asgget.e. {t%)}f\n@l, are generated by a Poisson
process with intensity;, and are independent of observation times of other assets

Assumption 3 [I.1.D. noise] The noise process) is i.i.d. (0, §]2) and independent of the efficient price process.

In the above, the efficient price is specified as a martingale allowing for contemporaneous correlation between the

different assets. The two salient features that are central to this paper, namely non-synchronicity of observation
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times (also referred to as hon-synchronous trading or non-trading) and microstructure effects are captured through
the independent Poisson sampling and i.i.d. noise specification respectively. Note that Assumptions 1 and 2
constitute a special case considered by Hayashi and Yoshida (2005) whereas assumption 3 is standard in the
realized variance literature (see for instance Bandi and Russell, 2006; Zhang, Myklandi-&adha&lia, 2005).

Of course, the specification of the price, noise, and sampling processes necessarily reflects a balance between
generality and analytic tractability and constitutes, at best, a first order approximation of reality. Still, it should

be pointed out that the assumptions may not be as restrictive as they appear at first sight for at least two reasons,
namely (i) seemingly dependent noise may often arise as an artefact of the sampling scheme, even when the actual
noise process is i.i.d. (see Griffin and Oomen, 2005, for further discussion) and (ii) non-homogeneity of trade
arrivals and stochastic volatility can be accounted for by appropriately deforming the time scale. The implicit
independence between the price innovations and the trade arrival process is the more restrictive assumption but,

as discussed by de Jong and Nijman (1997), is difficult to relax in the current context.

2.1 Realized covariance

To compute realized covariance (RC), the multivariate price process needs to be sampled on a common grid. In
this paper we assume that the “previous tick” method is used where at each sampling point the most recently

observed price for each asset is recorded, i.e.

PV = P%J)- ®) whereN; (t) = Sgp{n!tg )<t}

It is important to emphasize that sampling prices in this fashion doesliminate the non-trading problem but

merely ensures that returns across assets are measured over matching intervals. For ease of exposition, we focus
on two assets only, i.ej € {1,2} and usep as a shorthand fgy;;. The object of econometric interest in the
covariance estimation is thys 0. With M returns sampled at regular intervais= 1/M, the RC for asset

and2 is computed as:

M
RCy = Z 7“7(,1)7“7(,%) 2)
m=1
whererﬁﬂ;) = anj)M — P((£_1)/M (suppressing dependence bf). In the absence of noise and non-synchronous

trading, we have thall(RCy;) = poioe andV (RCy) = M~1(1 + p*)o?03 so that RC is unbiased and

5
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Figure 1: Impact of non-synchronous trading on cross correlations and RC
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Note. Panel A plots the correlation betw: andr,filh (i.e. Eq. 4) as a function df. Panel B plots the mean of RC,
given by Eq. (5) as a function a#/ .
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consistent when/ — oo. See Barndorff-Nielsen and Shephard (2004) for a comprehensive treatment of the
asymptotic distribution theory of RC for continuous semi-martingales. When adding i.i.d. noise to the process

through assumption 3, RC remains unbiased (unlike realized variance!) but is now inconsistent:
V(RCwm) = M™H(1+ p*)otos + 20163 + 20367 + (6M — 2) §163. (3

Note that when only one asset is contaminated with noise, RC remains inconsistent but it is optimal to sample as
frequent as possible from a MSE criterion viewpoint. See Bandi and Russell (2005) and Voev and Lunde (2005)
for further discussion of the impact of noise on RC.

When introducing non-synchronicity of price observations through assumption 2, regularly sampled returns
are no longer correlated only contemporaneously, but will also correlate with leads and lags of sampled returns

of other assets. Under assumptions 1 and 2, the autocovariance function of returns can be expressed as:
AM(l—e 2282 o (h—1)A
(2) ) . palagme 2( ) for h >0

- Ao(l—e— 182 _
,0010'2%6 Ar(h=1)A for h <0

(4)

See Appendix A.2 for details on the derivation. To illustrate the lead-lag dependence due to non-trading, we
plot the covariance function of returns in Eq. (4) with sampling frequevicy= 5000 and for two scenarios of

the observation arrival frequency, namely Xi) = Ao = 1000 and (i) Ay = 1000, A2 = 5000. The result can

6
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be found in Panel A of Figure 1. Because the number of sampled retdrisslarge relative to the number of

observations, cross correlations are substantial and extend to a large number of leads and lags. As expected, with
equal arrival rates the dependence structure is symmetric. When increasing the arrival rate on asset 2, the lead
dependence is reduced relative to the lag dependence: the non-synchronicity is now primarily caused by asset 1,

hence the asymmetric pattern. The following result makes the impact of non-synchronous trading on RC explicit.

Theorem 2.1 Given Assumptions 1, 2, and 3, the expectation of RC is equal to:
E(RCwn) = po102Bu, (5)

where

M A1 A2
5M—1—7)\1+)\2 <)\ Ehbw M1>

andp; = 1 — e %/M, The variance of RC is equal to:

( +2p ) o202 p*olo? 12 A1 A2 1 (A1 A
V (RC = 7 — = 4+ 4AM - R A
( M) i )\1+)\2 )\1+)\ +A2/’L2+A%u1 M A2+)\1
_pPoiasfi
Tap o 20T + 2ol + AM €l + 2(M = 1) piuseiss. (6)

Proof See Appendix A.1R

Eqg. (5) indicates that non-synchronous trading makes RC a biased estimator for the covariance and the Epps
effect is apparent: becaukeny;_., O3 = 0, the expectation of RC tends to zero when the sampling frequency
increases. In fact, sindim,; .., V(RC) = 0, RC is equal to zero with certainty in the limit, even in the
presence of noise! To illustrate the magnitude of the bias, Panel B of Figure 1 plots the expectation of RC as
a function of the number of sampled returh§ for various combinations of. As expected, when is small
relative toM, the impact of non-synchronicity is more prominent than whes large relative ta\/. Also, the
magnitude of the bias is primarily determined by the slowest trading asset, which in itself has of course important
implications for high dimensional covariance measurement in practice.

Next, using the variance expression in Eqg. (6), we draw the mean squared error (MSE) of RC as a function

of M in Figure 2. From Panel A we can see that the minimum attainable MSE is largely determined by the

2WhenM — oo, thenBar — 0, j1; — 0, Mpu; — A\j
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Figure 2: Mean squared error of RC
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2.1.
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slowest trading asset. In particular, the optimal sampling frequency (i.e. the chaldetlsft minimizes the

MSE criterion), remains roughly unchanged whenis increased and keeping fixed. Of course, increasing

the trade intensity of both assets leads to a higher optimal sampling frequency and a lower minimum MSE.
Because of the rather lengthy and complicated variance expression it is not possible to characterize the optimal
sampling frequency in closed form, but in practice it can be obtained numerically in a straightforward fashion.

To isolate the impact of non-synchronous trading and microstructure noise, Panel B draws the MSE of RC
under the following three scenarios (i) absence of non-synchronicity and noise, (ii) non-synchronicity only, and
(iif) microstructure noise only (herg = aj/\/m which implies a noise ratio of 1 whel = 1000 and is in
line with empirical estimates for transaction data of US large cap stocks, see Oomen, 2006). As expected, under
scenario (i) the MSE decays monotonicallyfifi because RC is unbiased and consistent. Comparing the MSE
under scenarios (ii) and (iii) indicates that the impact of noise is quite different from that of non-synchronous
trading. Specifically, while the penalty of sampling at (too) low frequency in terms of MSE is comparable in
the presence of noise or non-synchronous trading, the penalty of sampling at (too) high frequency is much more
severe for non-synchronous trading. Put differently, a careful choice of sampling frequency is paramount with

non-trading.
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2.2 Realized covariance plus leads and lags

A natural way to mitigate the biases induced by non-synchronicity is to add leads and lags of the empirical
autocovariance function of returns to the realized covariance measure. This approach was first proposed by
Scholes and Williams (1977), and later extended by Dimson (1979), and Cohen, Hawawini, Maier, Schwartz,
and Whitcomb (1983). The modified covariance estimator with lead lag adjustment (RCLL) is specified as:
M U
RCLLy =Y > v r2). 7)
m=11=—1L
Considering Panel A of Figure 1, it is quite intuitive that such a lead-lag correction can be effective in reducing
the bias of RC. In the absence of non-synchronous trading, the optimal choidesiwd L is zero as the leads
and lags don't contain any useful information regarding the contemporaneous covariance structure. When there
is non-synchronicity, however, the leads and lags are informative and the chdicaraf L will be determined
by trading off a bias reduction against an increase in variance of the estimator. Recent empirical application of

the RCLL estimator can be found in Bollerslev and Zhang (2003) and Bandi and Russell (2005).

Theorem 2.2 Given Assumptions 1, 2, and 3, the expectation of RCLL is equal to:
E(RCLLy) = por1o2fy, (8)

where

. M A oA, A2 aoa
g 1 N — — 2 = 1 X
Bm S <A2u26 + e

The variance of RCLL is equal to:

2 2
ojo5(U+L+1 N oio
V(RCLLy) = 193 U ) + 2Mp20%a§u1ug(p1a1 + paag + p3ag) — P’ 1M26

+2(M — 1) (i + p7 — p)p3éies — 2(M — 1) p3&307 (U + L) A

+201201€5 (U + L+ 1) + 270367 + 4M pipaéi 3 9)

wherepj = 1 — e MAUTERD, = (1 — e7UN2) /it py = e UN8 /g, py = A (1 — e H2)R)
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Figure 3: Bias and MSE of RCLL
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Proof See Appendix A.2H

The bias of RCLL is characterized Ig},, from which it is clear that at a given sampling frequedythe bias

can be made arbitrarily small by settibgand L sufficiently high (at the cost of higher variance). Also, with

equal observation frequencigas = ), inclusion of either a lead or a lag adjustment reduces the bias by the
same amount. However, with unequal observation frequencies the effectiveness of a bias correction varies, e.g.
when)\, > )\ a lead adjustment on asset 1 is more effective than a lag adjustment. This is illustrated in Panel

A of Figure 3. The intuition is simple: whek, > X\; non-synchronicity is primarily caused by the relatively

10
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infrequent trading of asset 1 so that returns of asset 1 are more likely to correlate with lagged returns of asset 2
rather than with lead returns of asset 2. Hence, a lead adjustment on asset 1, or equivalent a lag adjustment on
asset 2, delivers the greater bias reduction.

To gain some insights into the efficiency of RCLL, Panel B of Figure 3 draws the MSE using the expressions
in Egs. (8) and (9). Here, the benchmark is RC as represented by the solid line. It is clear from the graph that
with non-synchronous trading, a first order lead-lag adjustment enables one to sample at a higher frequency and
substantially reduce the minimum attainable MSE. For the chosen parameters in this example, a second order
lead-lag adjustment is of little value: while the optimal sampling frequency increases further, the reduction in
minimum attainable MSE is negligible. Of course, whémnd L are set sufficiently high it can happen that RC
attains a lower MSE than RCLL because the bias reduction due to the lead-lag adjustment is more than offset by
an increase in the variance of the estimator (see Section 2.4 for further comparisons between the performance of
RC and RCLL). In practice, the optimal sampling frequei¢yand optimal choice of lead-lag adjustménand
L can be determined in a straightforward fashion using Egs. (8) and (9), albeit that they need to be determined
numerically since closed form expressions are not available.

To conclude, we point out that the RCLL estimator in Eq. (7) is similar in spirit to the bias-corrected realized
variance measure of Zhou (1996) or the kernel based realized variance measure of Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2006). Thus, a natural extension of the estimator would take the form:

M U
ROLLY =Y N w(rll, r?. (10)
m=11=—L

wherew(-) specifies the kernel weights. A nice property of the above estimator is that it can be combined with

a kernel-based RV estimator to deliver a positive definite covariance matrix. Also, the empirical analysis below
suggests that “sluggish” price adjustment exacerbates the lead-lag dependence of returns in practice, and a kernel-
based RC estimator such as the one above is sufficiently flexible to counter such effects. Within our framework

it is possible to extend Theorem 2.2 to include general kernel weight, albeit with considerable complexity of

notation. Moreover, the choice of optimal kernel is a non-trivial issue and this is therefore left for future research.

11
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2.3 Hayashi-Yoshida covariance estimator

In a recent paper Hayashi and Yoshida (2005) propasew covariance estimator that is free of any non-trading
bias and can be computed directly with observed prices, without first sampling them on a common grid as is
required for RC and RCLL. The HY covariance estimator is specified as follows:
- 1) p(@)
1 2
HY =) Y Ry'R; (11)
i=1 j€A;

P : j_l,tf)) # 0}. In words, HY accumulates the cross-

product of all fully and partially overlapping returns. Here, the returns are sampled at the highest available

observation frequency, and are therefore irregularly spaced in calendar time and asynchronous across assets.
Theorem 2.3 Given Assumptions 1, 2, and 3, the expectation of HY is equal to:
E(HY) = po0102. (12)

The variance of HY is equal to:

9 A1z
AN+ A

(13)

A1+ Ao p20202 Ao A1
VIHY) = 26202 g L7010y (A2 AL 90262 4+ 25262 4 4¢2
(HY) 0103 g + M+ Wy +)\2 + 20785 + 20587 +467€

Proof See Appendix A.3m

In the absence of noise, unbiasedness of the HY estimator is not surprising and has already been discussed in
detail by Hayashi and Yoshida (2005). Moreover, Eq. (13) suggests that the HY estimator is consistent when
A1, A2 — o0, i.e. the higher the observation frequency of the process, the higher the accuracy of the HY estimator.
Keep in mind, however, that in this limiting case the non-synchronicity issue disappears and the HY estimator
reduces to RC. With i.i.d. noise, the HY estimator remains unbiased but is how inconsistent. Interestingly,
depending on the level of noise, it may not be optimal to sample prices at the highest available observation

frequency because this leads to an accumulation of noise that more than offsets the gains from using more data.

3The HY estimator is also studied by Hayashi and Kusuoka (2004) in a more general semi-martingale setting. Hayashi and Yoshida
(2006) establish joint asymptotic normality of the HY estimator and RV. The covariance estimator of de Jong and Nijman (1997) is very
similar to the one proposed by Hayashi and Yoshida, see Martens (2004) for further discussion. In independent work, Corsi (2006)
proposes a “tick-by-tick realized covariance estimator” which coincides with the HY estimator. He shows that the estimator performs
well, both in simulations and in practice.
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Figure 4: MSE of HY estimator in presence of noise
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Note. This figure plots the log MSE of the HY estimator for varying levels of microstructure
noise as a function of the sampling frequendf.e. everykt" return is sampled).

To develop some further insights into this, consider the case where we samplé:&vebservation for both

assets. The variance of HY is then simply obtained by replakjngth \;/k in the above expression, i.e.

9 AMA2 oy
YD

A+ A 2 A
V(Hyk)zza%a§<1+2 P <2 !

4 I k, 92 262 9 2+2 4 )
A1 A2 AL+ A2 \ A * )\2>> + 20785 + 20567 +461€
From this, it follows that the optimal — MSE minimizing — aggregation or sampling frequency for the HY esti-

mator is equal to:

k= argminV (HY}), (14)
Lk* ], [k~

where
o — V21 A27172
A+ 02 (3 +23) + 220

andy; = \;&?/o? denotes the noise ratio. The interesting case is of course ihenl because then it may be

optimal not to use all available data but aggregate rettifrisnes. This occurs when:

1 Ao A\
1+=(14+p2) = +22).
Y172 > +2(+P)</\1+)\2>

For instance, when the trade intensities and noise ratios are equal for both assets, then a sufficient condition for

k* > 1isthaty > /3 (more generally, fok* > ¢ we requirey > ¢v/3) which is not uncommon in practice,
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particularly for transaction data (see e.g. Oomen, 2006). Keep in mind hererlbatls to be a strictly positive
integer and if we were to compute that daty= 1.4 this would not necessarily imply that we should aggregate
returns because the MSE jat= 1 may still be smaller than d@ = 2. Of course, whet* > 2 aggregation is
certainly optimal in this framework. To illustrate the above, Figure 4 plots the MSE of the HY estimator as a
function of k& for Ay = Ay = 1000 and varying levels of noise with between 1 and 5. Foy = 1.0 the MSE
declines monotonically i and the minimum MSE is attained by using data at the highest available frequency.

Fory = 2.5 (v = 5.0) this pattern changes and the minimum MSE is attained by aggregating returns with

To conclude this discussion, we point out that a natural way to further improve the performance of the HY
estimator is with the use of subsampling (see Zhang, Mykland, an8atalia, 2005). One possibility would
be to subsample at frequengy although the method would of course remain valid at different frequencies
determined by other criteria. While an in-depth study of the properties of such a sub-sampling version of the HY

estimator is of great interest, it is beyond the scope of this paper and we defer it to future research.

2.4 Relative efficiency of competing covariance estimators

The real benefit of imposing the somewhat restrictive assumptions 1, 2, and 3 above is that it allows us to derive
closed form MSE expressions for all three competing covariance estimators in a unified framework. As a result,
we can address the question which estimator is most efficient and under which conditions. It turns out that in this
comparison the key parameter is the level of noise j;gbecause it determines the ordering of the estimators

in terms of their efficiency. The level of correlatiop) (or asymmetries in the arrival intensity,} or level of
volatility (¢;) do not play a noteworthy role here.

Figure 5 plots the MSE of the RC, RCLL(2,2), and HY covariance estimators as a function of the sampling
frequency, keeping in mind that the variance of the HY estimator is not a functidh. dflotivated by the dis-
cussion above, we compute the HY estimator in the standard fashioi with and at its “optimal” aggregation
frequencyk = k*. The choice of/ and L for RCLL is arbitrary in this example but the results remain qualita-
tively the same if this is altered. First consider Panel A of Figure 5. Here, microstructure noise is absent and the

relative ranking of the estimators is determined by their ability to deal with the impact of non-synchronous trad-
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Figure 5: Relative efficiency of competing covariance estimators in presence of noise
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Note. This figure plots the log MSE of RC, RCLL(2,2), and HY covariance estimators as a function of sampling frequency
M. The HY estimator is computed at= 1 (solid horizontal line) and & = k* (dashed horizontal line).

ing. The result is clear and unsurprising: HY performs best and RC performs worst, with RCLL improving over
RC thanks to the lead-lag correction but not able to attain the efficiency of the HY estimator. In Panel B noise
is introduced which leads to a narrowing of the estimators in terms of efficiency, albeit that the relative ranking
remains unchanged. In Panel C the level of noise is increased, and we reached a point where RC outperforms
both RCLL and the standard HY estimator! Here, the benefit of the non-trading bias correction through lead-lag

adjustments (in calendar time for RCLL and in transaction time for HY) does not outweigh the associated noise
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accumulation, making the plain vanilla RC measure the preferred estimator. Still, if we take the level of noise
explicitly into account when calculating the HY estimator, we find thiat= 3 and a substantial MSE reduc-

tion can be achieved by aggregating returns. This “noise optimized” HY estimator outperforms all alternatives.
Finally, in Panel D the level of noise is increasedhte= 10 in an attempt to further accentuate the behavior

of the estimators. Compared to case without noise (Panel A), the situation is now completely reversed with RC
outperforming RCLL and RCLL outperforming the standard HY estimator. Optimizing the HY estimator by
aggregating returns tg* = 6 substantially reduces the MSE but the simple RC estimator cannot be beaten.

So allin all, the main finding here is that the level of microstructure noise determines the relative efficiency of
the competing covariance estimators. This situation stands in sharp contrast to that of RV where a bias correction
generally improves matters (see e.g. Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2006; Oomen, 2005;
Zhang, Mykland, and A-Sahalia, 2005). For covariance estimation, the non-trading bias correction comes
with a noise accumulation and it is the balancing of this trade-off that determines the relative efficiency of the

estimators.

3 Empirical illustration: covariance signature plots

In order to illustrate some of the issues discussed above, and to gauge the impact of non-synchronous trading in
practice, we now turn to some descriptive analysis of TAQ data for five randomly selected large cap companies.
Here, the focus is on simple covariance signature plots (that is, the average covariance estimates as a function of
the sampling frequency) because this will give us a sense whether or not the theory derived above matches up
with reality.

The TAQ quote and transaction data is obtained for Alcoa (AA), Altria Group (MO), Citigroup (C), General
Electric (GE), and International Business Machines (IBM) over the period January 2, 2004 through December 31,
2004 (252 trading days). Following Hansen and Lunde (2006), we only consider data for the main NYSE market
during the time interval 9.45 — 16.00. For quotes, we apply a filtering algorithm that selects an observation if it
satisfies the following conditions (i) the bid price and / or the offer price are improved relative to the prevailing

best quote and (ii) the spread between the offer and the bid is les§thd&ecause the securities we consider
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are very liquid, spreads in excess of one dollar are rare, and if they do occur often indicate a recording error or
unreliable quote. The first condition filters out quotes that are wide and those which are the same as the best
prevailing quote but with different volume (we refer to the latter as “liquidity quotes”).

Table 1 present some summary statistics of the data and gives details of the quote filtering. A couple of
points are worth highlighting. First, about 90% of the raw quote data constitute liquidity quotes that reinforce
the best available quote by altering its volume. Only a small proportion of the quotes is uncompetitive. However,
since we cannot keep track of quote deletions, the wide quotes could in fact be competitive quotes when the best
available quote is withdrawn. Given their relatively infrequent occurrence, it is unlikely that this filtering will
have a substantive impact on the results. Second, the magnitude of serial correlation in both the transaction data
and the mid-quote data is relatively modest. This is due to the fact that we only consider NYSE data, thereby
avoiding potential contamination of “noisy” quotes/transactions from satellite markets. Still, for transactions the
first order serial correlation ranges fromi 5% for IBM, AA, and MO to —35% for GE. Second and higher order
correlations are much smaller. For quotes we observe a similar pattern with the only exception that second order
correlations are more sizeable and consistently positive. Because the quote data are sampled only when revisions
occur, this is in essence equivalent to tick sampling and thereby ensures that the long sequences of “zero-returns”
commonly found in transaction data do not arise. As discussed in Griffin and Oomen (2005), tick sampling leads
to substantial high order serial correlation with alternating sign. This is consistent with the results presented here.

Turning to the covariance signatures, Figures 7 and 8 plot the daily RC and RCLL(1,1) measures, averaged
across days, for sampling frequencies ranging from 1 seche:(22500) to 5 minutes {4 = 75). The dashed
lines indicate the theoretical signatures based on Egs. 5 and 7 above. Here, estimates fimply obtained as
the average number of observations per day for each asset (see Table 1), and estimgtes fare computed
from the 5 minute data. For ease of presentation, all graphs are rescaled. Given the relatively stylized setting in
which the theoretical results have been derived, the correspondence between empirical and theoretical signature
plots is striking. The rate at which the RC decays with an increase in sampling frequency matches up almost
perfectly with that predicted by the simple model with independent Poisson sampling. Also for RC with an ad
hoc first order lead and lag adjustment, the results look good. Of course, deviations can be expected but it is

difficult to spot any systematic discrepancies in these graphs.
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Table 1;

Summary statistics of NYSE quote and transaction data 2004

AA MO C GE IBM
Panel A: quote data
Raw quotes 2,448,107 2,621,171 3,230,580 3,587,421 3,276,757
liquidity 2,148,380 2,173,275 2,855,562 3,377,937 2,617,084
wide 67,398 74,871 56,083 29,246 159,298
spread- $1 22 10 0 0 0
# Quotes 232,318 273,024 318,935 180,238 500,375
Quote intensity\ 922 1,083 1,265 715 1,986
Correlationp; -10.1 -10.5 -14.7 -16.3 -11.1
P2 7.46 6.11 5.37 10.0 3.95
03 1.30 0.62 -2.36 -4.21 0.22
Noise ratioy 0.109 0.110 0.305 0.339 0.190
Average spread (cents) 1.54 1.69 1.40 1.21 2.08
Panel B: transaction data
# Trades 834,857 927,783 1,329,289 1,333,754 1,230,409
Trade intensityA 3,313 3,682 5,275 5,293 4,883
Correlationp; -17.4 -16.8 -23.3 -35.0 -14.8
P2 -1.32 -2.41 -2.18 -1.76 -3.55
03 1.86 2.06 0.97 1.26 0.46
Noise ratioy 0.358 0.375 0.561 0.905 0.356

Note. NYSE quotes and transactions between 9.45 and 16.00 from January 2, 2004 through to December 31, 2004. Noise
ratio measures level of market microstructure noise (see Oomen, 2006, for more details). Intensity estimates are equal to
number of quotes / transactions divided by total number of days in sample period.

Figure 9 presents the signature plots for the HY estimator. Here the daily HY estimator, averaged across
days, is computed as a function/ofto facilitate presentation, all graphs are rescaled to ensure that the average
lies at 1). Of course, from the theory we expect no significant departures in the HY estimates as the aggregation
frequency is varied because it's expectation has been shown to be unaffected by non-synchronicity and i.i.d.
noise. The empirical results, however, indicate that this is not the case at the very highest frequencies. In fact, a
sizable systematic downward bias of ab®0; is detected in the HY estimator computed with quote-to-quote
mid prices. Interestingly, sampling every 2—3 quotes seems to eliminate this bias.

Figures 10, 11, and 12 present the corresponding results for the transaction data. A similar pattern to the

guote data emerges with two important differences. First, the decay of the RC and RCLL sighature plots appears
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Figure 6: IBM return dependence with leads & lags of GE returns (2004)

Panel A: quote-update returns Panel B: transaction returns

Note. This figure plotgh(h) as a function of: for IBM and GE quote-update returns (Panel A) and transaction returns
(Panel B).
somewhat faster which we suspect has to do with the relatively frequent occurrence of zero returns in transaction
data (see Griffin and Oomen, 2005), a feature that is clearly not captured in our framework. Second, the bias
of the HY estimator is substantially larger (about 50%!) and is only eliminated after aggregating returns to a
frequency of about 10 transactions.

To gain some further insights into the bias of HY, consider the stati$tig defined as _, Rz(l)Rfj;X A, fOT
h > 0and), REI)REEBHAZ,M forh <Oandd_; > .ca, REI)R?) for h = 0 (whereA; is as defined in Eq. 11).
Intuitively, ¢(h) measures the sample covariance of quote/transaction returns between asset 1 and 2. Note that in
the modeling framework adopted hefg[p(0)] = E[HY| = poi1o2, andE[¢(h)] = 0 for h # 0 because leads
and lags of returns that share no overlap in time carry no information about the underlying correlation structure.
This is precisely the reason why HY is unbiased in theory. However, cross dependence between non-overlapping
returns can arise in practice when price adjustment is not instantaneous and it takes some trading before prices
fully reflect the currently available information. In such a scenario, one would of course expect HY to be biased
because it misses out on cross dependence that extends beyond the overlapping transaction or quote returns. To

illustrate that this may be a reasonable conjecture, Figure 6 plétsaveraged day-by-day over 2004 for IBM
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and GE quote and transaction returns in Panels A and B respectively. The lead-lag dependence is evident and the
pattern appears much stronger for transaction returns than for quote returns. Based on Figure 6 we can derive an
“implied bias” for the HY estimator as— ¢(0)/ > -, #(h). Doing so for IBM and GE, using the first 10 leads and

lags, we calculate a bias ©8.0% for quotes and5.4% for transactions which is very much in line with the bias
reported in Figures 9 and 12. So all in all, we find that at least part of the observed HY bias can be accounted for
by cross dependence of non-overlapping returns that arise from “sluggish” adjustment of quotes and transaction
prices.

Given the above, it seems natural to modify the HY estimator as follows (ignoring end-effects):

My, max A;+U
ayrL=> Y RYRY. (15)

i=1 j=min A;—L
This estimator can of course be further extended to include kernel weights. Séttnd L sufficiently high

would eliminate the bias at the cost of a higher variance, paralleling the case for RCLL discussed above. However,
an obvious drawback of HYLL (one that RCLL importantly does not suffer from) is that because it is implemented

in “event time” it is not invariant to the ordering of assets, meaning that covariance estimates between asset 1
and 2 will not be the same as those between asset 2 and 1, even after appropriately sWithilig While a

detailed study of the lead-lag return dependence and extensions of the HY estimator are clearly of interest, this
would necessitate more complicated models that bring us outside the realm of arbitrage free pricing and, as such,

pose a substantial challenge that we do not attempt to address in this paper.

4 Conclusion

This paper studies the statistical properties of three popular covariance estimators, hamely realized covariance
(RC), realized covariance plus lead-lag adjustments (RCLL), and the Hayashi-Yoshida (HY) estimator, in a set-
ting where prices are observed with noise and non-synchronously in time. We derive closed form bias and
variance expressions for all estimators and use these to provide a detailed discussion of their relative efficiency.
The main finding of this paper is that the ordering of the competing covariance estimators in terms of their effi-
ciency is primarily determined by the level of microstructure noise. The empirical results indicate that the rate

of decay in the covariance signature plots is roughly consistent with that implied by our theory. Interestingly, the
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HY estimator is severely downward biased at the highest sampling frequencies and we present some evidence
that this is probably caused by “sluggish” adjustment of prices. Various kernel-based and subsampling extensions

of the RC and HY estimators are suggested but a formal analysis of these is left for future research.
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A Proofs

Let tj(h) denote the timing of the most recent observation (i.e. transaction / quote-update) éfgsetot = iA. Define
M = iA— 7™ anda; = max{r",7*} andb; = min{r", 7?}. Let E™ denote the event that assetrades at least
once over the time interval(i — 1)A,iA]. Letv (I; N I) denotes the length of the intersection between intdivahd ;.
In sections A.1 and A.2 below we also use the following short-hatds: r", Z; = r*, u; = ug\}f(m), v; = “ﬁz(m)
andy;, = 1 — e~ for simplicity of notation.

A.1 Proof of Theorem 2.1

To calculateF (R;Z;) we condition on a trade of assBtandZ in interval ((i — 1) A, iA].

E(R;Z;) = P{EY nEPVE(R;Zz|EY nE®)
= N1M2P0102E(V((t§1_)17tgl)) N (tv(:z)pt?)))‘Ei(l) n Ei(Q))

= ﬂlNQPUIUZE(bi—l +Afai\ai < A)

A2 + A3y
= A — 12) )
po1a2 ( Az (A1 4+ A2)

To deriveE(b;) andE(a;|a; < A), we use that for exponential variablewith mean\; * the following holds:

Fuin (u) = Pr(min{z;,z} <u)=1-Pr(z; >uNz >u)=1-—e Mitrae
Frax (u) = Pr(max{zi,2z2} <u)=Pr(z <uNz <u)= (1 — e*/\lu) (1 — e*)‘zu) .
Thus,
> (A14+A2) 1
E(b) = DO P OO . —
) = [ uOieae T
andk; = E (a;]a; < A) is equal to:
1 A
K1 = / u ()\16_“Al + Aoe7"2 — (A 4 Ag) e_(AH')‘?)“) du
Hip2 Jo
A 1 A1 Ao )
— + + +1]. 16
M1tz A1+ A2 (M1)\2 H2A1 (16)

The expression in Eq. (5) now follows frofi (RC) = M E (R;Z;). To prove unbiasedness in presence of noise, simply
note thatF’ (R; 4+ u; + u;—1) (Z; + v; + vi—1) = E (R;Z;) due to the i.i.d. noise assumption.

To work out the variance of RC proceed as follows:

M M

(RCum)* =) > RiZiR;Z;.

i=1 j=1

(2

First consider the case where-= j. If we condition onEi(l) NE; ) and the transaction arrival times then returns are jointly

normal and so we have:

B (R?z?) = Pr{BY nEPNE(RE)E(ZEY) + 20*E (R Z,| B N EP))?)
= Mlﬂzafo‘%((t:(l) - t:g))(t:(?) - t:@) + 2% (bic1 + A —a;)?).
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Now taking expectations ovemwe get:

E(R}Z}) = o0303A% +2u1p0p alazE(bf,l+2bi,1A—2bi,1ai+A2—2Aai+a$|ai<A)
202 A A AA
— 0202 (1 +92%) A2 4P 0103 M2 1H2 2 (AL A2 A
oio? (1+2p%) o w2 T b :

USing thatE(ai,lbi|ai,1 < A) = E(ai,l\ai,l < A)E(bz), E (b?) =2 ()\1 + )\2)72 andky = F (a?|ai < A) with

AQ _ A —A1A _ A —X2A —A(A1+A2)A —A()\1+>\2) _ 1
Ky = A% — P - bz — Xz 42— +25 5. (17)
iz JCYRY; P12 pipe (A1 +A2) gy (A + o)
To work out the off-diagonal elements (i&5# j), condition on the trade arrival times:
E;|Z;RiZ;R;]| = E; |Z;R;| E; |[Z;R;] + E; | Z;Z;] E¢ |[RiR;] + E; [R:Z;] E; | ZiR;) .
The second and third term are zero. The first term can be written as:
E(E¢|Z;R;| E¢ [Z;Rj]|F1) = (E (ZZRZ-))2 + 0. (18)

In section A.1.1 below we show thatis negligible and thus we ignore it for simplicity of exposition. Collecting all terms,
the variance of RC is now equal to:

U%U§1+2P2*P2/Bz2w 740 otos <)\1 >\2> +4MP20%0§ < P12 +)\1M2 /\2,u1)7

M A1+ A )\2+/\1 A+ A2 \ A1+ Ao A3 " A

V(RCy) =

which corresponds to Eq. (6) wifj = & = 0.

With i.i.d. noise let the contaminated returns be denotell;asu; — u;_1 andZ; +v; — v;_1. Then, the noise contribution
to the variance of RC can be expressed as follows:

M M
V(RCJ(\?d)) —V(RC]W) = EZZ((Rl-F’LLZ —ui,l) (Zz +’U7; —'Uifl) (RJ +Uj —’U,jfl) (ZJ +'Uj —’Ujfl) —RZZlRJZJ)
=1 j=1
M M-1
= upe Y BuIRY + 20222 + 4o} B 0 BP) + 2033 Z B N B

i=1

= 2020765 + 210567 + AMp1pa&PES +2 (M — 1) i p63 63,

using thatE(v?RﬂEi(l) N EZ@)) = €207 A /1. Collecting terms gives the required expression in Eq.M6).

A.1.1 A note on the approximation in Eq. (18)
LetF; = EZ.(I) N Ei(Q) N E§1) N E]@). Assumingj > 4, we have:
EE|ZR)E|ZiRy)] = pPoiospipsEl(bioy + A = a;) (bj1 + A —a;) |[F]
= pPolos i3 E[A? — ajA + b1 A — a;A —b;_ja; + a;a;|Fy]
+pPoiospips (Ebi-1 + AR Eb;j1|F] — Elabj—1|F1]) .
Using previous results, the first term is easily worked out as:

A—K,l
AL+ Ao

E[AQ — ajA +b; 1A —a; A — bi_laj + aiaj|F1] = (A — 51)2
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Similarly,
1

AL+ A2
The non-trivial terms are those involvig_; because conditional of;, b;_1 < (j —i)Aandifb;_; > (j —i—1)A
thenb;_; is not independent af;. First, consider the case wherg ; < (j —i — 1) A. Then:

E[A+bia|Fi]=A+

1— e MFA)U==DA (N 4 X)) (j —i — 1) A+ 1)

Elbjalbjr <G =i-1)A ] = (AL +A2) (1 — e=atA)G=i=1)A)

Also, we have:

E[bj_l‘(jf’ll*].)A<bj_1 <(j*i)A,F1]
= (j—i—-1)A+E |aZ<A

A1 Ao e— A —22) Y S S
G—i—-1)A+ AT ] dzy + zoge AN TR o0 d 2y
H1pe2 0 Jo

e AR (A AZA + A2+ A0A + A7) — AZemMA — \ZemheA
A1+ /\2 p1 e A1 A (A1 + Ag) .
Combining the above, we get:

= (j-i-DA+

ElbalF] = Bl <(-i-1)4R](1-e Mo
+Ebj 1| (f—i—1)A<bj1 < (j—i) A, Fy]e”MHAG=ima

1 .
_ —(A1tA2)(—i—1)A
= -|- e K3,
A1+ Ao 3

where

K3 =

! <€(>\1+>\2)AA C MppeMA Ay e AQA) (19)

1 b2 PYIDVIEED VR VD VRED WS
To work out the second term, we distinguish among the same cases, rgmely (j —i—1)Aand(j —i—1)A <
bj,1 < (] — Z) A.

E [aibj,1|bj,1 < (j — 17— 1) A, Fl] = F [ai\Fﬂ FE [bj,1|bj,1 < (] -7 — 1) A, Fl]
1— e~ AU =i=DA (\) + Xg) (j —i — 1) A+ 1)

- M (M + Ag) (1 — e~ OaPr)G—i-DA) ’

and
E [aibj,1| (j — 17— 1) A< bj,1 < (] — ’L) A,Fl] = K1 (] —1— 1)A —|—E[aibi|F1] s
where
1 A
Rg4 = E [albl|F1] = / / 2122/\1€_Z1>\1/\26_Z2>\2dZ1d2’2
12
—Aae2AA) (1 — AeMAA
_ (N2 2€ ) ( 1€ ) (20)
H1f2 A1 A2

Combining the above terms we have:
E [aibj_l\Fl] = F [aibj_1|bj_1 < (] — 17— 1) A, Fl] (1 — 6_(>\1+)\2)(j_i_1)A)
+Eaibj 1| (j—i—1)A<bjy < (j—i)A, Fy]e”MtA)G=imDa

— K1 —(At+A)(G—i-1)A K1
= +e VT2 Kq — .
A1+ A2 HEDYEDY
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Thus:

1+ (A = k1) (A1 + ) Ky + K1\ _ s
E[E|Z;RE|Z;R;]] = ploioiuul ( + Ko — ks + o~ (A+A2)(j—i—1)A
(B[ |E4[Z; R;]] P 010317 o ()\1+/\2)2 3 4 M+
2 2
_ p20202 A — )\%Nzﬁ-)\%ﬂl [ PO1O2[1 2 o~ (MHr2)(G—i—DA
b Ade (A1 + A2) A+ Do
2
PO102 b1 [h2 — i
= E ZiRi 2 _ | EZiT2rp2 A1+A2)(5—1 l)A. 21
(R - () @y

In the summation ovej # i up to M, the first term is of ordef/? whereas the second term is of ordérand negative.
Hence,E[E,[Z; R,|E;[Z; Ri]] is very accurately bounded WY (Z; R;))°.
A.2 Proof of Theorem 2.2

To calculateE (R;_ 1, Z;) we condition onEi(Ph ﬂEi@) plus no trade for asset over the interval(i — h — 1) A, (i — 1) A].
The expectation can then be expressed as:

E(szhZz) = pPO1021l2€ —Aa(h— I)AE( | (1)h < T < A —‘rT(l)h 1)
+p0—10—2:u1:u2€ Az(h= 1)AE( z(l)h 1 Ti— h‘ >A+T()h 1)
A
_ p0102/\1 (1—e? ) o~ H2(h-1)A
A2(A1 + A2) ’

using thatr is exponential and

E(w2—21|21 < w2 <A+’LU1)

oo A A+wq )\lefAlzl )\167)\11111 /\267)\2102
(wg — 21) 1 A dwodz1dw,
0o Jo 1 —-e

) A [e%S) -1z 1w — X w
A 121 )\ 1W1 )\ 2W2
E(wl +A721|ZU2 > A+U}1) = / / / (w2 721) 1€ 1€ 2¢ dwgdzldwl,
A+wq

1 —e M4

wherews, z1 ~ Exp(1/A1), wa ~ Exp(1/)y) for 0 < z; < A and0 < wy, we < co. By symmetry we have

ISVNY
Az (1 —e? A) “Ai(h=1)A
A (A1 + A2)

Using the above, the expectation of RCLL in Eq. (8) directly follows.

E(Rz+hzz) = pO102

To work out the variance of RCLL proceed as follows:
M M
(RCLL)? Z > RiZR;Z
=1 j=1

whereR; = ZIU:_L R;.;. Below we redefinaEi(l) to denote the conditioning event where there is a trade of &ssethe
interval[(i — L — 1)A, (i + U)A]. First consider the case where- j. If we condition onEZ.(l) N EZ.(Q) and the transaction
arrival times, then returns are jointly normal and we have:

EiR; 73] = Pr{EY nEPVE(REV)E(Z2E®) + 20*(B(R: Zi| EY 0 EP))?)
* *(1 *(1 *(2 *(2
= 0505#1#2( 1—5—[} -t ( ) 1)( '( ) - '( ))

*(1 *(2) *(1) *(2
+2p2 0202 i pa (max [0, min{e7 ), 17} — max{t])_ | 17312,
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Now taking expectations overthe first term on the right hand side is:
Elotoduine(t;iy — 1)) (6" )] = ofod (U + L+1) A%

To simplify notation, define; = T-(i)U,wl =71z =7% andw, = 7%, To work out the expectation of the

K2

second term, distinguish among following four conditioning states:

A 0<z1 <UA

Ay : UA<z <(U+1A

As @ U+1D)A<z<min{(U+1)A+ws,(U+L+1)A}

Ay 2 min{(U+1)A+w,, U+L+1)A} <z <(U+L+1)A

To calculate the state probabilities we use that wq, z2, w2} are jointly exponential and in particular thatz,, ws) =
AAgexp{—A1z1 — Dawa}/pifor0 < z; < (U4 L+ 1)Aand0 < wy < 0.

Prid) = (1-eUM8)/u]
Prid} = e UM
Pr{As} = )\1);1)\2 (1 — e~ LOaTA)dyo—(UFDNA /)
Pr{A4} Me PR 4 Ny _enyan, _ Lo si
(A + A2) i 1w
Note thatwher/ = L = 0thenPr {A,} = 1 and whenl = 0thenPr {4,} = 0. Also in stated,, max{0, min{tjf[)], t:,‘@)}f

max{tfflgfl,tfg)}} = 0 and so to work out the expectation we only need to consider the first three states.

In cased; we have:

min{t; ), 6P} —max{t;) | £V =A -2 +B

with z5 independent 0B = min {wsy, LA + w1 }.

E[(A—2+B)’] = A?-2AE(z)+2AE(B)+ E(22) — 2E (2) E(B) + E (B?)
2
_ 32 LA _2)\1A(Lu2+1) (M +2/\2)+u26_kzm 22)
Az p2 A2 (A1 4+ A2)” po
using that
1— (14 XA)e 28
E A) =
(22|Z2 < ) Ao (1 _ e,)\ZA)
2 (2 + AaA) e 28
E (2 A = S -A
(22‘22 < ) )\% Ao (1 — e‘>‘2A)
1 —A2 LA
E(B) = —-— e
Ao Ao (Ao + )
— A2 LA
E(BQ) _ 32 _2/\1 (/\QLA (/\2+>\1)+/\1 —2|-2)\2)6
A3 A3 (A2 + A1)
and the distribution 0B = min {wy, LA + w1 } is given as:
Age A2t b< LA
f5(b) = _ N _
(/\2+)\1)e A2LA, (A1+X2)(b—LA) b> LA

26

CRIiSM Paper No. 06-06, www.warwick.ac.uk/go/crism



In caseA, we have:

#(1) (

+U Vi } - max{t:

min{t¢
wherez; = z;

E[(A — A+ B)?|

3

iy =A-A+B

— AU andA = max {Z1, 22} is independent oB = min {wa, LA + w1 }.

A? —2AE(A) +2AE(B) + E(A%) —2E(A)E (B) + E(B?)

AQ 2 1 12 )\1 )\2 ()\1 >\2)>
= + + Chpn + A2
Hife A1+ A2 pr1pe (Al IVY = z2 e A2 A
)2 _ L —/\2LAA
oM (A1 A+ A2) (paps + )\QA)z Atz — A (1— Rl _ A1 Le (23)
pape (A1 + A2)” A3 A2 A+ A

using thate (4) = x, andE (A?) = k, are as given in Egs. (16) and (17) above.

Finally, in caseAs; we have:

*(1) t

mln{tz-{-U’ 7 }—max{t;k —1> 7, 1

wherez; = 21— (U + 1)
the conditiond < z; < ws.

P (51, w1, w2|21 < LA)

p(El,wl,w2|21 <LANZ < wg)

using that

+#+2

} = min {ws, LA+ w1} — %

A. Inthis cas&; andC' = min {wq, LA + w; } are notindependent anymore because we impose

/\18_>\121 )\1€_>\1w1 )\26_>‘2w2

1 _ e*)\lLA
P (Z1, w1, w2[Z1 < LA)
Pr {51 < ’LU2|§1 < LA}

>‘1A2 ()\1 + )\2) 67)‘121*)\1101*)\2102
1 — B_LA(Al-")\Q)

-\1Z )\167)\171)1 )\2€7>\2w2

Pr {21 < ’U.)2|21 < LA}

LA

N

[

1_ e_)\lLA d?ldwgdwl

/\ e )\121/\ e—)\lwl)\ e—)\gulg

With this we derive:

E(Z1)

/OO /LA /71)2 _ )\1A2
21

- MNIA cfldwgdwl
)\1 1 _ e—LA >\1+/\2))
()\1 —+ )\2) (1 — e AlLA)
—A1Z1—A1w1—Aws
(/\11-1-_)\6222A()\1+>\2) dz1 dwadw;
) —A1Z1—A1wi —Aqws -
led’dewl

LA /\ e (A + Ao zi-
A e— LA +X2)

1- LA >\1 +X2) +1)e —LA(MW)

()\1 + )\2) (1 —e LA(/\1+)‘2))

and similarly
— ((LA (/\1 + )\2)

+ 1)2 + 1) e~ LA 1+X2)
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The expectation of the minimum can be expressed as:

E(mln{wg,LA+w1}\A3) = E(w2|w2 < LAﬂAg)PI‘{’LUQ <LA‘A3}
+ (LA + E (min {ws, w1 } |A3)) Pr{ws > LA|As}

LA pwsy As /\ A )e—)\151—)\1w1—>\2wz
1 2 1 2 —
/ / / 1— e—LA()\r‘r)\z) dzldwgdwl

1 (M + Ag) (1 — e LAM) em LAY
A1+ /\2) A (1 — 6_LA(/\1+>‘2))

A F 200 — Ao (14 LA (A + o)) e  EAGuHA2) () 4 ) e LAN
Ao ()\1 i /\2) (1 _ e—LA(/\1+>\2))

+(LA+

and the squared minimum:

E(min {wy, LA + w1}’ |43) = B (w}lws < LAN Az) Pr{ws < LA|A3}
+ (LA + E (min {@y, w1 } |A3))” Pr {wy > LA|As}

LA wo —A121—A1wi— w2
= / / / )\1>\2 /\1 + /\2) ¢ ledU)gdwl

1— e—LA(Al-‘r)\z)

LA n 2 ()\1 + )\2) (1 — eiLA)‘l) e~ LA
ALt A2 (A4 Ag)? A (1 — e~ LAGu+X2)

+ <L2A2 +2

/\% ((LA ()\1 + )\2) + 1)2 + 1) e~ LA +A2) _ 2)\% — 6M )\
—6AZ + 2 (A1 + A2) (LA (AL 4 A2) Ag + 2Xg + \p) e 1AM
A2 (A1 + Aa)? (=1 +exp (=LA (A + A2)))

Finally, the cross product

E(Zl min{wg,LAerlHAg) = E(Elw2|w2 < LAﬂAg)Pr {w2 < LAlAg}
+ (LA + E (min {wa, w1} |A3)) E (1) Pr{ws > LA|A3}

Az (A1 + A2) LA w2
= ! 2 Lt 2 / / / Z1wae “Az—Awn - A2w2d2’1dw2dw1

1— —LA(A1+)\2)
ae L) L MEA R e O dg) (1 e FAN A
M+ o A (1 — e—MIA) M (1= e FADTA)

)\1 (3A2 + )\1) — ()\1 -+ AQ)Q 67LA)\2
A2 (A1 = Ao+ AMLA (A + Xo) (LA (A + Ng) + 2)) e LAG+A)
AtA (A + )\2)2 (1 — e_LA(/\l"‘)‘?))

Combining all terms we get:

1— e—)\zLA _ AQLAe—)\QLA ) (1 _ 67)\1LA> 67>\2LA
A3 (1 — e~ (atAn)La) A (hg 4 Ap) (1 — e~ QatanZa)

E (min {wg, LA + w } — 21)2 =2 (24)

Analogous to the discussion in section A.1.1, it can be shown (after tedious calculations omitted hrepthat, E(R.Z;R; Z;)
is tightly bounded byM (M — 1)(E(R;Z;))? and so for simplicity of exposition we equate these terms. The variance ex-
pression in Eq. (9) witl§; = & = 0 then directly follows.
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The noise contribution to the variance of RCLL is analogous to the RC case with the only difference that now reRirns on
are serially correlated (up to a displacementof L) due to lead-lag adjustment. In particular, we have:

- U U min{U,U—h}
E(R;Ritn) = E Z Riy; Z Riyjon | = Z E (R j4n)
j=—L j=—L j=max{—L,—L—h}

= oimax{0,U+L+1— ||} A.

Assuming, as before, that the contaminated return&are u;, — u;—; andZ; + v; — v;_1, then

V(RCLL™) = V(RCLLy) = piue Y EQ2uPR; + 20222 + 4u??[EX) n EP)
M—-1 M-—1
+2(/-[‘1</J/1 + /’(‘T - /’[’1)/-1/3 Z ( |E'L(12+1 N Ez Z)Jrl) - 2“’% E ( R Rl-‘rl‘Ez z+1)
=1 =1

= 220783 (U + L+ 1) + 2050567 + AM i p2&3 €3
+2 (M — 1) (i + pf — pa)pséiés —2(M — 1) p5&507 (U + L) A

using thatZ(v2R. |EY N E®)) = 202 (U + L+ 1) A/ k.
|

A.3 Proof of Theorem 2.3

To prove unbiasedness of HY simply note that:

E(HY) —-polagjij > Bt 50 0 (1, 67)) = poros
i=1jEA,

The variance can be expressed as:

M,

VHY) = > ) Z > Cov(RiZ;, RnZy)

i=1jEA; h=11€A),
My

= > Y Z > Cov(Ri, Ry)Couv(Z;, Z1) +Z > Z > Cov(Ri, Z))Cov(Z;, Ry)
i=1jEA; h=11€A), i=1j€A; h=11€A,
M, My

= Y Y vrvizp+> > Z > Cov(Ri, Z)Cov(Z;, Ry)
i=1j€A; i=1j€A; h=11€A,

= o0l03E () + p*oio3E (1)

where

_ (1) (1) (2) (2)
R S
i=1 jEA,
M,

1 2 2 1 2 2
3E Y3 3 w0 4 0 2 2 ) 1 (247

i=1jEA;, h=11€A,

I
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The expectation of the first term, conditional fi, is equal to:

- M) Wy, 0 2 12
L :ZE(V(tiflvti Jw(t; 2y, t7) + %)) = <)\%+ N )\2>M1

wherea* = 3 w(t$, 1) — (V) ). Throughout the proof we assume that the inter-arrival times are indepen-

J 151
dent exponentially distributed random variables. Strictly speaking, when conditioning; pthe process is binomial but
this distinction will be immaterial for typical values af and )\, when taking expectations of functions of the inter arrival

times. Next, taking expectations w.r/; we have:
1 1
IL)=2
B =2(5 45 )

M1 ]\/[1

1 1 2 2 (1) 1 2 2 1 1 2 2
L= | > vl ) n @2y, 67) +2ZZZZ (2 N2 6N B NED 1)),

i=1 \jEA; h=1j€A; i=1 €A

The second term can be expressed as:

Conditional onM/;, we have:

ZMl S (10 10 1 (12,12 Z (0, )2y 20
E tz 1’tz ) ( — 7t] )) E z 1’t2 ) - A%
i=1 \jEA;

Taking expectations w.r.f\/1, this termis equal td/ ;. Next, ifi < h the expectation of((t(l)l, tEl)) (tl(i)l, tl@)))u((tﬁf_)l, tg))ﬂ

(t §2)1, ;2))) is non-zero only if asset 2 does not transact on the mtéNéj tfll)l Conditional ort(*) we then have:

B (vt 1) 0 620 ), 10) 0 (152,67

1—17%% j—1%5

1= (ot = D) 4 1) 7207 =20
A2

= exp{-Aa(ty”, — )} fexp{-Aa (e — V)3V — M) +

1= (e — 60, + 1) 0842
A2

x |exp{=Xa(t}) — i) )} — ) +

(

Using thattl(.l) (1)1 is exponentially distributed with parameter andt(l) Vs gamma distributed with parameters

(h—i—1,A1), we get:

)\ h—i—1
B (ew{=ra( — 1)) = (A2+1A1>
L0 (1) _ 4 _ A1
E((ti t;i21) exp{—Aa(t; ,1)}) = min)

Using this we obtain:

h—i—1
(1) (1) (2) (2 (1) (1) (2) (2 1 ( A1 >
E (v((t,, t@ ¢ s t@ 4
( (( 1—1 ) (l 1271 )) ((} 1 ) (] 1% ))) ()\2 A1) )\2 )\1

Summing and taking expectations w.AM; we get:

My h—1 h—i—1 2 2 My
1 A AL+ A AL+ A A
Y () - et (e Gl Gl (A
)\2+)\1 he=1i=1 )\2+A1 ()\2+)\1) AQ AQ AQ )\2+A1
1 A 1 )\**
= — 1+tx2 — 1
>\1+>\2/\2+>\2(e )
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The leading term in this expression is the first. For reasonable valuedhs second term is negligible and we suspect it is

accounting for end-effects so we ignore it. Collecting terms we then get the required expression in Eq. (13) for the no-noise
case.

With i.i.d. noise,V(HY) = E(HY?) — E(HY)?, whereE(HY) is as before.

My M,

E(HY2) = Z Z Z Z E((Rl + u; — ui,l)(Zj +v; — ’l}jfl)(Rh + up — ’U,hfl)(Zk + v — 'kal))

i=1j€A; h=1kEA)

If 2 = h then

S E((Ri+wi — wim1)*(Z; + v — vj1) (Zk + v — vk-1))

JEA; k€A,
=Y Y EBR}ZZ)+ Y Y BR)E((v; —vj1)(vk — vk_1))
JEA; kEA,; JEA; kEA,;
+ 3 B —wie))E(Zi Ze) + )Y E((ws — wim1)?)E((v; — vj—1) (v — vk—1))
JEA; kEA; JEA; kEA,

The first-order MA structure of; — v;_; implies that

DY B((vy —vi1)(ok —ve—1)) = (2#A; — 2(#A; — 2) — 2)&5 = 263

JEA; kEA;

where# B denotes the number of distinct elements in theiedo that

D> E((Ri+wi — wim1)*(Z + v — vj1) (Zk + v — vk-1))

JEA; kEA;
=Y Y E(RIZ;Z)) + 25 E(R;) + 26 Y B(Z7) + 466
JEA; kEA,; JEA;
and it follows that
My

DD D B((Re 4w —ui1)*(Z5 4+ v; = v5-1)(Zk + v — vp1))

i=1 j€A~ k€A,

7222 (R2Z;Zy) + 28307 + 2¢}0 (1+2;)+4A1§1£2

i=1 jEA;, kEA;

If i # h

Z Z E((RZ + u; — uifl)(Zj +v; — Ujfl)(Rh + up — uhfl)(Zk + v — kal))

j€A~k€Ah
=Y > B(RiZjRnZx) + E((un —un—1)(ui —ui1)) Y, > E(Z;Z)
JEA; kEA JEA; k€A
+E(( - Ui— 1 Uh_uh 1 Z Z i — Vj—1 (Uk—vk_l))
JEA; KEA,
=Y Y ERiZRnZy) - I(h=i+1)+I(h=i-1)§ > Y E(Z;Z)
JEA; kEA), JEA; kEA),
—(U(h=i+1)+I(h=i—1)& > > E((v; — vj—1)(vx — ve_1))
JEA; keAy
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The MA structure ob; —v;_; implies thatE((v; —v;j—1)(vk —vk—1)) Will be non-zeroonly itk = j—1,k = j, k = j+1.
Forj € A; andk € A; 11, then there is only one for which= j = z, and if#A4,,; > 1 thenx + 1 must also be iM; ;.

> D Bl —vm) (v — 1)) = GU(h =i+ 1) + I(h=i = 1)2 ~ T(#A; > 1) ~ I(#A > 1))
JEA; k€A

S E(ZiZk) =

JEA; kEA

Itis easy to show thalb[I(#A4;) > 1)] = 5; H and so

o> B(Ri+wi —uwia)(Z5 + vy — vj-1)(Ri + un = up—1)(Zg + vk = vg-1))
JEA; kEA
1
=Y Y E(RiZiRnZy) — (I(h=i+1)+I(h=i- 1))5572

JEA; keAy
A1
—2(I(h=i+ 1)+ I(h=1i—1))E2¢2
(( Z+ )+( ? ))6162)\1+>\2

Thus:
M, M,
Z Z Z Z E((Ri +wi —ui—1)(Z; + v —vj_1)(Rp +up — up—1)(Zk + vk — vp—1))
i=1 h=1j€A; k€A,
M My ) N
Z Z Z Z E(R;Z;RnZy) — £1072(M ))\* —4E7E5 (M — 1))\ iy
i=1 jEA; h=1 k€A, 2 1A
and o
V(HY) = V(HY™ "9 4 26307 + 26107 + 467632
A1+ A2
]
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Figure 7: Empirical and model-implied RC signature plots - NYSE quotes
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Figure 8: Empirical and model-implied RCLL(1,1) signature plots - NYSE quotes
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MO

Figure 9: Empirical HY covariance signature plots - NYSE quotes
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Figure 10: Empirical and model-implied RC signature plots - NYSE transactions
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Figure 11: Empirical and model-implied RCLL(1,1) signature plots - NYSE transactions
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Figure 12: Empirical HY covariance signature plots - NYSE transactions
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