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Abstract

This paper studies the problem of covariance estimation when price observations are subject to non-

synchronicity and contaminated by i.i.d. microstructure noise. We derive closed form expressions for the

bias and variance of three popular covariance estimators, namely realized covariance, realized covariance plus

lead- and lag-adjustments, and the Hayashi and Yoshida estimator, and present a comprehensive investigation

into their properties and relative efficiency. The key finding of this paper is that the ordering of covariance

estimators in terms of efficiency depends crucially on the level of microstructure noise. In fact, for sufficiently

high levels of noise, the standard realized covariance estimator (without any corrections for non-synchronous

trading) can be most efficient. An empirical illustration using TAQ quote and transaction data confirms the

validity of our methodology and points to some avenues for future research.
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1 Introduction

The covariance structure of asset returns is fundamental to many issues in finance, and the importance of accu-

rate covariance estimation can therefore hardly be understated. In recent years, high frequency data have become

increasingly available for a wide range of securities (including all publicly traded US stocks, numerous exchange

rates, treasury bonds, etc) and together with this, we have witnessed a shift in focus away from parametric

conditional covariance estimation based on daily or weekly data to the model-free ex-post measurement of real-

ized quantities based on intra-day data (e.g. Andersen and Bollerslev, 1998; Andersen, Bollerslev, Diebold, and

Labys, 2003; Barndorff-Nielsen and Shephard, 2004). While in theory the efficiency gains associated with high

frequency data are often considerable, particularly for variance/covariance estimation, practical implementation

is faced with the complications that arise from the emerging market microstructure noise effects which contami-

nate observed prices when sampled at high frequency. Early recognition of this issue is provided by Niederhoffer

and Osborne (1966) who document substantial serial correlation in returns that can, to a large extent, be attributed

to the presence of a bid-ask spread. More recently, the impact of microstructure noise has been studied exten-

sively in the context of realized variance measurement, see for instance Aı̈t-Sahalia, Mykland, and Zhang (2005);

Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006); Corsi, Zumbach, Müller,

and Dacorogna (2001); Hansen and Lunde (2006); Oomen (2006); Zhang, Mykland, and Aı̈t-Sahalia (2005).

The main finding of this literature is that microstructure noise makes realized variance a biased and inconsistent

estimator for the integrated variance and various approaches have been suggested to deal with this, including

sparse sampling, pre-filtering, bias correction, time deformation, and alternative “second generation” realized

variance measures based on kernel smoothing or subsampling.

When turning to the multivariate problem of realized covariance measurement, matters don’t simplify be-

cause, in addition to noise, the impact of non-synchronous trading becomes a real concern. In short, when the

arrival times of trades are random and hence non-synchronous across assets, returns sampled at regular intervals

in calendar time will correlate with preceding and successive returns on other assets, even when the underlying

correlation structure is purely contemporaneous. This is known as the Fisher effect (Fisher, 1966). Moreover,

when the sampling interval is reduced, the covariance between any two asset return series matched in calen-
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dar time diminishes and, in the limit, converges to zero. This observation has first been made by Epps (1979).

Motivated by these profound consequences of non-synchronous trading1, a number of alternative covariance

estimators have been suggested in the literature. Scholes and Williams (1977) modify the standard covariance

estimator by adding the first lead and lag of the sample autocovariance. Dimson (1979) and Cohen, Hawawini,

Maier, Schwartz, and Whitcomb (1983) generalize this estimator to includek leads and lags. Here the choice

of how many leads and lags to include is determined by trading off a bias reduction against an increase in the

variance of the estimator when increasingk. More recently, Hayashi and Yoshida (2005) propose a covariance

estimator that is computed by accumulating the cross-product of all fully and partially overlapping transaction

returns (see also de Jong and Nijman, 1997, for a similar estimator). Importantly, this estimator is free of any

biases due to non-synchronous trading but it does require the exact timing of transactions. Clearly, if these are

not available, one may still be forced to rely on the conventional realized covariance measure, with or without

lead-lag adjustments, as a necessary compromise.

The contribution this paper makes is to join the above two streams of literature, and analyze the properties

of the realized covariance (RC), the realized covariance plus lead-lag adjustment (RCLL), and the Hayashi-

Yoshida covariance estimator (HY) in a setting with non-synchronous tradingand market microstructure noise

contaminations. While both issues have been analyzed extensively in isolation, with the literature on variance

estimation focusing on microstructure noise and the literature on covariance estimation focussing on the non-

synchronicity of trades, the combined impact of both these effects is clearly of interest. Besides, there is no reason

to expect that the impact of noise on covariance estimation will be the same as that on variance estimation, and

a separate investigation of this issue is thus warranted. With regard to microstructure noise, we employ an i.i.d.

specification that is standard in the RV literature (see for instance Bandi and Russell, 2006; Zhang, Mykland, and

Aı̈t-Sahalia, 2005). To generate non-synchronicity of trades, we assume that the transaction times are generated

by independent Poisson processes, with an arrival intensity that can vary across assets but is constant over time

(see e.g. Hayashi and Yoshida, 2005). In this setting, we present closed form expressions for the bias and variance

of the RC, RCLL, and HY covariance estimators. We provide a detailed discussion of the relative efficiency

1The impact of non-synchronous trading has also received considerable attention in the literature on beta estimation for asset pricing

(e.g. Shanken, 1987), index autocorrelation (e.g. Atchison, Butler, and Simonds, 1987; Lo and MacKinlay, 1990), and lead-lag patterns

(Chordia and Swaminathan, 2000; de Jong and Nijman, 1997).
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of these estimators and also discuss optimal sampling. Our findings can be summarized as follows: (i) i.i.d.

noise does not bias any of the covariance estimators but it does make them inconsistent, (ii) as predicted by the

Epps effect, non-synchronous trading leads to a substantial downward bias in realized covariance, which can be

extenuated by inclusion of lead-lag adjustments, (iii) a careful choice of sampling frequency is crucial for all

covariance estimators including HY (with i.i.d. microstructure noise the variance of the HY estimator increases

so that for sufficiently high levels of noise HY is best implemented with aggregated transaction returns) and

(iv) the ordering of competing covariance estimators in terms of their efficiency crucially depends on the level

of noise. This last point is perhaps the most surprising finding because it suggests that the “plain-vanilla” RC

estimator can – in certain circumstances – attain greater efficiency than either RC with lead-lag adjustments or the

HY estimator. We also present some empirical results, and find that they confirm the validity of our theoretical

framework. In particular, we find that the rate of decay in the empirical covariance signature plots for RC is

broadly consistent with that implied by our theory. For the HY estimator we detect a systematic downward bias

which, we conjecture, is caused by sluggish adjustment of prices.

To conclude, it is emphasized that a number of recent papers have addressed similar issues to those studied

here. For instance, Martens (2004) uses simulations to investigate the relative performance of alternative covari-

ance estimators, including RC, RCLL, and HY, in the context of the Lo and MacKinlay (1990) non-synchronous

trading model. Bandi and Russell (2005) provide a formal analysis of realized covariance in the presence of

noise (but abstract from the non-trading issue) whereas Sheppard (2005) introduces the concept of “scrambling”

to study non-synchronicity and realized covariance (but abstracts from the noise issue). Zhang (2006) provides

an analytic treatment of the RC estimator in a general framework that includes non-synchronous trading and

microstructure noise, Hayashi and Yoshida (2006) study the joint distribution of HY covariance estimator and

RV in the absence of noise, Corsi (2006) studies the HY estimator using the HAR model allowing for time vary-

ing covariance structure, while Voev and Lunde (2005) use simulations to study the properties of the RC and

HY estimators (and extensions thereof) for general noise dependence and non-trading scenarios. This paper is

distinguished from the above literature in that it presents a comprehensive investigation of the three competing

covariance estimators simultaneously within a unified framework that incorporates both non-synchronous trad-

ing and microstructure noise. Because closed form expressions for the bias and MSE are available, the relative
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efficiency of the RC, RCLL and HY estimators can be studied.

The remainder of this paper is organized as follows. Section 2 introduces the modeling framework that

incorporates non-synchronous trading and microstructure noise. This is then used to study the properties of RC

in section 2.1, RCLL in section 2.2, and HY in section 2.3. A detailed investigation into the relative efficiency of

the covariance estimators can be found in section 2.4. Section 3 presents an empirical illustration using NYSE

quote and transaction data for five randomly selected Dow Jones 30 components. It also points at some directions

for future research. Section 4 concludes and proofs are collected in the Appendix.

2 Covariance estimation with non-synchronous and noisy returns

Let S(j)(t) denote the time−t efficient (logarithmic) price of assetj, for t ∈ [0, 1]. It is assumed that prices

of assetj are observed at a set of discrete times{t(j)m }Mj

m=1 with 0 ≤ t
(j)
1 < . . . < t

(j)
Mj

≤ 1 and are subject to

observation error:

p(j)
m = s(j)

m + u(j)
m for m = 1, . . . ,Mj (1)

wheres
(j)
m = S(j)(t(j)m ) andu

(j)
m is a “noise” process to be specified. In practice, the observation times typically

correspond to the occurrence of transactions or quote-revisions whereas the observation noise is due to market

microstructure effects such as the bid-ask spread. Thus, the efficient price process is latent and all inference about

the process in general, and the variance/covariance structure in particular, is necessarily based on the discretely

sampled and noisy observationsp. Throughout the remainder of this paper we make the following assumptions:

Assumption 1 [Brownian motion] The efficient price processS is a correlated Brownian motion, i.e.S(j) =

σjW
(j) with dW (i)dW (j) = ρijdt.

Assumption 2 [Poisson sampling]The observation times of assetj, i.e. {t(j)m }Mj

m=1, are generated by a Poisson

process with intensityλj , and are independent of observation times of other assets.

Assumption 3 [I.I.D. noise]The noise processu(j) is i.i.d. (0, ξ2
j ) and independent of the efficient price process.

In the above, the efficient price is specified as a martingale allowing for contemporaneous correlation between the

different assets. The two salient features that are central to this paper, namely non-synchronicity of observation
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times (also referred to as non-synchronous trading or non-trading) and microstructure effects are captured through

the independent Poisson sampling and i.i.d. noise specification respectively. Note that Assumptions 1 and 2

constitute a special case considered by Hayashi and Yoshida (2005) whereas assumption 3 is standard in the

realized variance literature (see for instance Bandi and Russell, 2006; Zhang, Mykland, and Aı̈t-Sahalia, 2005).

Of course, the specification of the price, noise, and sampling processes necessarily reflects a balance between

generality and analytic tractability and constitutes, at best, a first order approximation of reality. Still, it should

be pointed out that the assumptions may not be as restrictive as they appear at first sight for at least two reasons,

namely (i) seemingly dependent noise may often arise as an artefact of the sampling scheme, even when the actual

noise process is i.i.d. (see Griffin and Oomen, 2005, for further discussion) and (ii) non-homogeneity of trade

arrivals and stochastic volatility can be accounted for by appropriately deforming the time scale. The implicit

independence between the price innovations and the trade arrival process is the more restrictive assumption but,

as discussed by de Jong and Nijman (1997), is difficult to relax in the current context.

2.1 Realized covariance

To compute realized covariance (RC), the multivariate price process needs to be sampled on a common grid. In

this paper we assume that the “previous tick” method is used where at each sampling point the most recently

observed price for each asset is recorded, i.e.

P
(j)
t = p

(j)
Nj(t)

whereNj(t) = sup
n
{n|t(j)n ≤ t}

It is important to emphasize that sampling prices in this fashion doesnot eliminate the non-trading problem but

merely ensures that returns across assets are measured over matching intervals. For ease of exposition, we focus

on two assets only, i.e.j ∈ {1, 2} and useρ as a shorthand forρij . The object of econometric interest in the

covariance estimation is thusρσ1σ2. With M returns sampled at regular intervals∆ = 1/M , the RC for asset1

and2 is computed as:

RCM =
M∑

m=1

r(1)
m r(2)

m (2)

wherer
(j)
m = P

(j)
m/M −P

(j)
(m−1)/M (suppressing dependence onM ). In the absence of noise and non-synchronous

trading, we have thatE(RCM ) = ρσ1σ2 and V (RCM ) = M−1(1 + ρ2)σ2
1σ

2
2 so that RC is unbiased and
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Figure 1: Impact of non-synchronous trading on cross correlations and RC

Panel A: cross-covariance function Panel B: mean of RC (ρ = 0.75)
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Note. Panel A plots the correlation betweenr
(1)
m andr

(2)
m+h (i.e. Eq. 4) as a function ofh. Panel B plots the mean of RC,

given by Eq. (5) as a function ofM .

consistent whenM → ∞. See Barndorff-Nielsen and Shephard (2004) for a comprehensive treatment of the

asymptotic distribution theory of RC for continuous semi-martingales. When adding i.i.d. noise to the process

through assumption 3, RC remains unbiased (unlike realized variance!) but is now inconsistent:

V (RCM ) = M−1(1 + ρ2)σ2
1σ

2
2 + 2σ2

1ξ
2
2 + 2σ2

2ξ
2
1 + (6M − 2) ξ2

1ξ
2
2 . (3)

Note that when only one asset is contaminated with noise, RC remains inconsistent but it is optimal to sample as

frequent as possible from a MSE criterion viewpoint. See Bandi and Russell (2005) and Voev and Lunde (2005)

for further discussion of the impact of noise on RC.

When introducing non-synchronicity of price observations through assumption 2, regularly sampled returns

are no longer correlated only contemporaneously, but will also correlate with leads and lags of sampled returns

of other assets. Under assumptions 1 and 2, the autocovariance function of returns can be expressed as:

E(r(1)
m r

(2)
m+h) =





ρσ1σ2
λ1(1−e−λ2∆)2

λ2(λ1+λ2) e−λ2(h−1)∆ for h > 0

ρσ1σ2
λ2(1−e−λ1∆)2

λ1(λ1+λ2) e−λ1(h−1)∆ for h < 0
(4)

See Appendix A.2 for details on the derivation. To illustrate the lead-lag dependence due to non-trading, we

plot the covariance function of returns in Eq. (4) with sampling frequencyM = 5000 and for two scenarios of

the observation arrival frequency, namely (i)λ1 = λ2 = 1000 and (ii) λ1 = 1000, λ2 = 5000. The result can
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be found in Panel A of Figure 1. Because the number of sampled returnsM is large relative to the number of

observations, cross correlations are substantial and extend to a large number of leads and lags. As expected, with

equal arrival rates the dependence structure is symmetric. When increasing the arrival rate on asset 2, the lead

dependence is reduced relative to the lag dependence: the non-synchronicity is now primarily caused by asset 1,

hence the asymmetric pattern. The following result makes the impact of non-synchronous trading on RC explicit.

Theorem 2.1 Given Assumptions 1, 2, and 3, the expectation of RC is equal to:

E(RCM ) = ρσ1σ2βM , (5)

where

βM = 1− M

λ1 + λ2

(
λ1

λ2
µ2 +

λ2

λ1
µ1

)
,

andµj = 1− e−λj/M . The variance of RC is equal to:

V (RCM ) =

(
1 + 2ρ2

)
σ2

1σ
2
2

M
+ 4M

ρ2σ2
1σ

2
2

λ1 + λ2

(
µ1µ2

λ1 + λ2
+

λ1

λ2
2

µ2 +
λ2

λ2
1

µ1 − 1
M

(
λ1

λ2
+

λ2

λ1

))

−ρ2σ2
1σ

2
2β

2
M

M
+ 2µ2σ

2
1ξ

2
2 + 2µ1σ

2
2ξ

2
1 + 4Mµ1µ2ξ

2
1ξ

2
2 + 2 (M − 1)µ2

1µ
2
2ξ

2
1ξ

2
2 . (6)

Proof See Appendix A.1.

Eq. (5) indicates that non-synchronous trading makes RC a biased estimator for the covariance and the Epps

effect is apparent: becauselimM→∞ βM = 0, the expectation of RC tends to zero when the sampling frequency

increases. In fact, since2 limM→∞ V (RC) = 0, RC is equal to zero with certainty in the limit, even in the

presence of noise! To illustrate the magnitude of the bias, Panel B of Figure 1 plots the expectation of RC as

a function of the number of sampled returnsM , for various combinations ofλ. As expected, whenλ is small

relative toM , the impact of non-synchronicity is more prominent than whenλ is large relative toM . Also, the

magnitude of the bias is primarily determined by the slowest trading asset, which in itself has of course important

implications for high dimensional covariance measurement in practice.

Next, using the variance expression in Eq. (6), we draw the mean squared error (MSE) of RC as a function

of M in Figure 2. From Panel A we can see that the minimum attainable MSE is largely determined by the

2WhenM →∞, thenβM → 0, µj → 0, Mµj → λj
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Figure 2: Mean squared error of RC

Panel A: non-synchronous trading Panel B: non-synchronous trading + noise
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Note. Panels A and B draws the log MSE of RC as a function ofM using the mean and variance expressions in Theorem

2.1.

slowest trading asset. In particular, the optimal sampling frequency (i.e. the choice ofM that minimizes the

MSE criterion), remains roughly unchanged whenλ2 is increased and keepingλ1 fixed. Of course, increasing

the trade intensity of both assets leads to a higher optimal sampling frequency and a lower minimum MSE.

Because of the rather lengthy and complicated variance expression it is not possible to characterize the optimal

sampling frequency in closed form, but in practice it can be obtained numerically in a straightforward fashion.

To isolate the impact of non-synchronous trading and microstructure noise, Panel B draws the MSE of RC

under the following three scenarios (i) absence of non-synchronicity and noise, (ii) non-synchronicity only, and

(iii) microstructure noise only (hereξj = σj/
√

1000 which implies a noise ratio of 1 whenM = 1000 and is in

line with empirical estimates for transaction data of US large cap stocks, see Oomen, 2006). As expected, under

scenario (i) the MSE decays monotonically inM because RC is unbiased and consistent. Comparing the MSE

under scenarios (ii) and (iii) indicates that the impact of noise is quite different from that of non-synchronous

trading. Specifically, while the penalty of sampling at (too) low frequency in terms of MSE is comparable in

the presence of noise or non-synchronous trading, the penalty of sampling at (too) high frequency is much more

severe for non-synchronous trading. Put differently, a careful choice of sampling frequency is paramount with

non-trading.
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2.2 Realized covariance plus leads and lags

A natural way to mitigate the biases induced by non-synchronicity is to add leads and lags of the empirical

autocovariance function of returns to the realized covariance measure. This approach was first proposed by

Scholes and Williams (1977), and later extended by Dimson (1979), and Cohen, Hawawini, Maier, Schwartz,

and Whitcomb (1983). The modified covariance estimator with lead lag adjustment (RCLL) is specified as:

RCLLM =
M∑

m=1

U∑

l=−L

r
(1)
m+lr

(2)
m . (7)

Considering Panel A of Figure 1, it is quite intuitive that such a lead-lag correction can be effective in reducing

the bias of RC. In the absence of non-synchronous trading, the optimal choice forU andL is zero as the leads

and lags don’t contain any useful information regarding the contemporaneous covariance structure. When there

is non-synchronicity, however, the leads and lags are informative and the choice ofU andL will be determined

by trading off a bias reduction against an increase in variance of the estimator. Recent empirical application of

the RCLL estimator can be found in Bollerslev and Zhang (2003) and Bandi and Russell (2005).

Theorem 2.2 Given Assumptions 1, 2, and 3, the expectation of RCLL is equal to:

E(RCLLM ) = ρσ1σ2β
∗
M , (8)

where

β∗M = 1− M

λ1 + λ2

(
λ1

λ2
µ2e

−λ2L∆ +
λ2

λ1
µ1e

−λ1U∆

)
.

The variance of RCLL is equal to:

V (RCLLM ) =
σ2

1σ
2
2(U + L + 1)

M
+ 2Mρ2σ2

1σ
2
2µ
∗
1µ2(p1α1 + p2α2 + p3α3)− ρ2σ2

1σ
2
2β
∗2
M

M

+2 (M − 1) (µ∗1µ1 + µ∗1 − µ1)µ2
2ξ

2
1ξ

2
2 − 2 (M − 1) µ2

2ξ
2
2σ

2
1 (U + L)∆

+2µ2σ
2
1ξ

2
2 (U + L + 1) + 2µ∗1σ

2
2ξ

2
1 + 4Mµ∗1µ2ξ

2
1ξ

2
2 (9)

whereµ∗1 = 1 − e−λ1∆(U+L+1), p1 = (1 − e−Uλ1∆)/µ∗1, p2 = µ1e
−Uλ1∆/µ∗1, p3 = λ1

λ1+λ2
(1 − e−L(λ1+λ2)∆)

9

CRiSM Paper No. 06-06, www.warwick.ac.uk/go/crism



Figure 3: Bias and MSE of RCLL

Panel A: Bias Panel B: MSE
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Note. Panel A (B) plots the expectation (log MSE) of RCLL(L,U) as a function ofM for various choices ofU andL. In

Panel A we setλ1 = 1000, λ2 = 5000 andρ = 0.75. In Panel B we setλ1 = λ2 = 1000, ρ = 0.75, σ1 = σ2, and

ξ1 = ξ2 = σ1/
√

λ1.

e−(U+1)λ1∆/µ∗1, and

α1 =
2
λ2

2

+
∆2

µ2
− 2λ1

∆(Lµ2 + 1) (λ1 + λ2) + µ2

λ2 (λ1 + λ2)
2 µ2

e−λ2L∆

α2 =
∆2

µ1µ2
+

2
λ1 + λ2

1
µ1µ2

(
µ1µ2

λ1 + λ2
+

λ1

λ2
2

µ2 +
λ2

λ2
1

µ1 −∆
(

λ1

λ2
+

λ2

λ1

))

+2
λ1 (λ1 + λ2) (µ1µ2 + λ2∆)− λ2

1µ2 − λ2
2µ1

µ1µ2 (λ1 + λ2)
2 λ2

2

(1− e−λ2L∆)− 2
λ1

λ2

Le−λ2L∆∆
λ1 + λ2

α3 =
2
λ2

2

1− e−λ2L∆

1− e−(λ2+λ1)L∆
− 2

L∆λ1 (λ1 + λ2)− λ2

(
1− e−λ1L∆

)

λ1λ2 (λ1 + λ2)
(
1− e−(λ1+λ2)L∆

) e−λ2L∆.

Proof See Appendix A.2.

The bias of RCLL is characterized byβ∗M , from which it is clear that at a given sampling frequencyM the bias

can be made arbitrarily small by settingU andL sufficiently high (at the cost of higher variance). Also, with

equal observation frequenciesλ1 = λ2, inclusion of either a lead or a lag adjustment reduces the bias by the

same amount. However, with unequal observation frequencies the effectiveness of a bias correction varies, e.g.

whenλ2 > λ1 a lead adjustment on asset 1 is more effective than a lag adjustment. This is illustrated in Panel

A of Figure 3. The intuition is simple: whenλ2 > λ1 non-synchronicity is primarily caused by the relatively
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infrequent trading of asset 1 so that returns of asset 1 are more likely to correlate with lagged returns of asset 2

rather than with lead returns of asset 2. Hence, a lead adjustment on asset 1, or equivalent a lag adjustment on

asset 2, delivers the greater bias reduction.

To gain some insights into the efficiency of RCLL, Panel B of Figure 3 draws the MSE using the expressions

in Eqs. (8) and (9). Here, the benchmark is RC as represented by the solid line. It is clear from the graph that

with non-synchronous trading, a first order lead-lag adjustment enables one to sample at a higher frequency and

substantially reduce the minimum attainable MSE. For the chosen parameters in this example, a second order

lead-lag adjustment is of little value: while the optimal sampling frequency increases further, the reduction in

minimum attainable MSE is negligible. Of course, whenU andL are set sufficiently high it can happen that RC

attains a lower MSE than RCLL because the bias reduction due to the lead-lag adjustment is more than offset by

an increase in the variance of the estimator (see Section 2.4 for further comparisons between the performance of

RC and RCLL). In practice, the optimal sampling frequencyM and optimal choice of lead-lag adjustmentU and

L can be determined in a straightforward fashion using Eqs. (8) and (9), albeit that they need to be determined

numerically since closed form expressions are not available.

To conclude, we point out that the RCLL estimator in Eq. (7) is similar in spirit to the bias-corrected realized

variance measure of Zhou (1996) or the kernel based realized variance measure of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2006). Thus, a natural extension of the estimator would take the form:

RCLLω
M =

M∑

m=1

U∑

l=−L

ω(l)r(1)
m+lr

(2)
m . (10)

whereω(·) specifies the kernel weights. A nice property of the above estimator is that it can be combined with

a kernel-based RV estimator to deliver a positive definite covariance matrix. Also, the empirical analysis below

suggests that “sluggish” price adjustment exacerbates the lead-lag dependence of returns in practice, and a kernel-

based RC estimator such as the one above is sufficiently flexible to counter such effects. Within our framework

it is possible to extend Theorem 2.2 to include general kernel weight, albeit with considerable complexity of

notation. Moreover, the choice of optimal kernel is a non-trivial issue and this is therefore left for future research.
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2.3 Hayashi-Yoshida covariance estimator

In a recent paper Hayashi and Yoshida (2005) propose3 a new covariance estimator that is free of any non-trading

bias and can be computed directly with observed prices, without first sampling them on a common grid as is

required for RC and RCLL. The HY covariance estimator is specified as follows:

HY =
M1∑

i=1

∑

j∈Ai

R
(1)
i R

(2)
j (11)

whereR
(j)
i = p

(j)
i − p

(j)
i−1 andAi = {j|(t(1)

i−1, t
(1)
i ) ∩ (t(2)

j−1, t
(2)
j ) 6= ∅}. In words, HY accumulates the cross-

product of all fully and partially overlapping returns. Here, the returns are sampled at the highest available

observation frequency, and are therefore irregularly spaced in calendar time and asynchronous across assets.

Theorem 2.3 Given Assumptions 1, 2, and 3, the expectation of HY is equal to:

E(HY ) = ρσ1σ2. (12)

The variance of HY is equal to:

V (HY ) = 2σ2
1σ

2
2

λ1 + λ2

λ1λ2
+ 2

ρ2σ2
1σ

2
2

λ1 + λ2

(
λ2

λ1
+

λ1

λ2

)
+ 2σ2

1ξ
2
2 + 2σ2

2ξ
2
1 + 4ξ2

1ξ
2
2

λ1λ2

λ1 + λ2
. (13)

Proof See Appendix A.3.

In the absence of noise, unbiasedness of the HY estimator is not surprising and has already been discussed in

detail by Hayashi and Yoshida (2005). Moreover, Eq. (13) suggests that the HY estimator is consistent when

λ1, λ2 →∞, i.e. the higher the observation frequency of the process, the higher the accuracy of the HY estimator.

Keep in mind, however, that in this limiting case the non-synchronicity issue disappears and the HY estimator

reduces to RC. With i.i.d. noise, the HY estimator remains unbiased but is now inconsistent. Interestingly,

depending on the level of noise, it may not be optimal to sample prices at the highest available observation

frequency because this leads to an accumulation of noise that more than offsets the gains from using more data.

3The HY estimator is also studied by Hayashi and Kusuoka (2004) in a more general semi-martingale setting. Hayashi and Yoshida

(2006) establish joint asymptotic normality of the HY estimator and RV. The covariance estimator of de Jong and Nijman (1997) is very

similar to the one proposed by Hayashi and Yoshida, see Martens (2004) for further discussion. In independent work, Corsi (2006)

proposes a “tick-by-tick realized covariance estimator” which coincides with the HY estimator. He shows that the estimator performs

well, both in simulations and in practice.
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Figure 4: MSE of HY estimator in presence of noise

0 2 4 6 8 10 12 14 16 18 20

γ = 1.0
γ = 2.5
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Note. This figure plots the log MSE of the HY estimator for varying levels of microstructure

noise as a function of the sampling frequencyk (i.e. everykth return is sampled).

To develop some further insights into this, consider the case where we sample everykth observation for both

assets. The variance of HY is then simply obtained by replacingλi with λi/k in the above expression, i.e.

V (HYk) = 2σ2
1σ

2
2

(
λ1 + λ2

λ1λ2
+

ρ2

λ1 + λ2

(
λ2

λ1
+

λ1

λ2

))
k + 2σ2

1ξ
2
2 + 2σ2

2ξ
2
1 + 4ξ2

1ξ
2
2

λ1λ2

λ1 + λ2
k−1.

From this, it follows that the optimal – MSE minimizing – aggregation or sampling frequency for the HY esti-

mator is equal to:

k̄ = argmin
bk∗c,dk∗e

V (HYk), (14)

where

k∗ =
√

2λ1λ2γ1γ2√
(1 + ρ2)

(
λ2

1 + λ2
2

)
+ 2λ1λ2

,

andγi = λiξ
2
i /σ2

i denotes the noise ratio. The interesting case is of course whenk∗ > 1 because then it may be

optimal not to use all available data but aggregate returnsk∗ times. This occurs when:

γ1γ2 > 1 +
1
2

(
1 + ρ2

) (
λ2

λ1
+

λ1

λ2

)
.

For instance, when the trade intensities and noise ratios are equal for both assets, then a sufficient condition for

k∗ > 1 is thatγ >
√

3 (more generally, fork∗ > c we requireγ > c
√

3) which is not uncommon in practice,

13

CRiSM Paper No. 06-06, www.warwick.ac.uk/go/crism



particularly for transaction data (see e.g. Oomen, 2006). Keep in mind here thatk needs to be a strictly positive

integer and if we were to compute that sayk∗ = 1.4 this would not necessarily imply that we should aggregate

returns because the MSE atk = 1 may still be smaller than atk = 2. Of course, whenk∗ ≥ 2 aggregation is

certainly optimal in this framework. To illustrate the above, Figure 4 plots the MSE of the HY estimator as a

function ofk for λ1 = λ2 = 1000 and varying levels of noise withγ between 1 and 5. Forγ = 1.0 the MSE

declines monotonically ink and the minimum MSE is attained by using data at the highest available frequency.

For γ = 2.5 (γ = 5.0) this pattern changes and the minimum MSE is attained by aggregating returns with

k = 2 (k = 3).

To conclude this discussion, we point out that a natural way to further improve the performance of the HY

estimator is with the use of subsampling (see Zhang, Mykland, and Aı̈t-Sahalia, 2005). One possibility would

be to subsample at frequencyk̄, although the method would of course remain valid at different frequencies

determined by other criteria. While an in-depth study of the properties of such a sub-sampling version of the HY

estimator is of great interest, it is beyond the scope of this paper and we defer it to future research.

2.4 Relative efficiency of competing covariance estimators

The real benefit of imposing the somewhat restrictive assumptions 1, 2, and 3 above is that it allows us to derive

closed form MSE expressions for all three competing covariance estimators in a unified framework. As a result,

we can address the question which estimator is most efficient and under which conditions. It turns out that in this

comparison the key parameter is the level of noise (i.e.γi) because it determines the ordering of the estimators

in terms of their efficiency. The level of correlation (ρ) or asymmetries in the arrival intensity (λi) or level of

volatility (σi) do not play a noteworthy role here.

Figure 5 plots the MSE of the RC, RCLL(2,2), and HY covariance estimators as a function of the sampling

frequency, keeping in mind that the variance of the HY estimator is not a function ofM . Motivated by the dis-

cussion above, we compute the HY estimator in the standard fashion withk = 1 and at its “optimal” aggregation

frequencyk = k∗. The choice ofU andL for RCLL is arbitrary in this example but the results remain qualita-

tively the same if this is altered. First consider Panel A of Figure 5. Here, microstructure noise is absent and the

relative ranking of the estimators is determined by their ability to deal with the impact of non-synchronous trad-
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Figure 5: Relative efficiency of competing covariance estimators in presence of noise

Panel A: no noise(γ = 0) Panel B: intermediate noise(γ = 2)
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Panel C: high noise(γ = 4) Panel D: extreme noise(γ = 10)
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Note. This figure plots the log MSE of RC, RCLL(2,2), and HY covariance estimators as a function of sampling frequency

M . The HY estimator is computed atk = 1 (solid horizontal line) and atk = k∗ (dashed horizontal line).

ing. The result is clear and unsurprising: HY performs best and RC performs worst, with RCLL improving over

RC thanks to the lead-lag correction but not able to attain the efficiency of the HY estimator. In Panel B noise

is introduced which leads to a narrowing of the estimators in terms of efficiency, albeit that the relative ranking

remains unchanged. In Panel C the level of noise is increased, and we reached a point where RC outperforms

both RCLL and the standard HY estimator! Here, the benefit of the non-trading bias correction through lead-lag

adjustments (in calendar time for RCLL and in transaction time for HY) does not outweigh the associated noise
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accumulation, making the plain vanilla RC measure the preferred estimator. Still, if we take the level of noise

explicitly into account when calculating the HY estimator, we find thatk∗ = 3 and a substantial MSE reduc-

tion can be achieved by aggregating returns. This “noise optimized” HY estimator outperforms all alternatives.

Finally, in Panel D the level of noise is increased toγ = 10 in an attempt to further accentuate the behavior

of the estimators. Compared to case without noise (Panel A), the situation is now completely reversed with RC

outperforming RCLL and RCLL outperforming the standard HY estimator. Optimizing the HY estimator by

aggregating returns tok∗ = 6 substantially reduces the MSE but the simple RC estimator cannot be beaten.

So all in all, the main finding here is that the level of microstructure noise determines the relative efficiency of

the competing covariance estimators. This situation stands in sharp contrast to that of RV where a bias correction

generally improves matters (see e.g. Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2006; Oomen, 2005;

Zhang, Mykland, and Äıt-Sahalia, 2005). For covariance estimation, the non-trading bias correction comes

with a noise accumulation and it is the balancing of this trade-off that determines the relative efficiency of the

estimators.

3 Empirical illustration: covariance signature plots

In order to illustrate some of the issues discussed above, and to gauge the impact of non-synchronous trading in

practice, we now turn to some descriptive analysis of TAQ data for five randomly selected large cap companies.

Here, the focus is on simple covariance signature plots (that is, the average covariance estimates as a function of

the sampling frequency) because this will give us a sense whether or not the theory derived above matches up

with reality.

The TAQ quote and transaction data is obtained for Alcoa (AA), Altria Group (MO), Citigroup (C), General

Electric (GE), and International Business Machines (IBM) over the period January 2, 2004 through December 31,

2004 (252 trading days). Following Hansen and Lunde (2006), we only consider data for the main NYSE market

during the time interval 9.45 – 16.00. For quotes, we apply a filtering algorithm that selects an observation if it

satisfies the following conditions (i) the bid price and / or the offer price are improved relative to the prevailing

best quote and (ii) the spread between the offer and the bid is less than$1. Because the securities we consider
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are very liquid, spreads in excess of one dollar are rare, and if they do occur often indicate a recording error or

unreliable quote. The first condition filters out quotes that are wide and those which are the same as the best

prevailing quote but with different volume (we refer to the latter as “liquidity quotes”).

Table 1 present some summary statistics of the data and gives details of the quote filtering. A couple of

points are worth highlighting. First, about 90% of the raw quote data constitute liquidity quotes that reinforce

the best available quote by altering its volume. Only a small proportion of the quotes is uncompetitive. However,

since we cannot keep track of quote deletions, the wide quotes could in fact be competitive quotes when the best

available quote is withdrawn. Given their relatively infrequent occurrence, it is unlikely that this filtering will

have a substantive impact on the results. Second, the magnitude of serial correlation in both the transaction data

and the mid-quote data is relatively modest. This is due to the fact that we only consider NYSE data, thereby

avoiding potential contamination of “noisy” quotes/transactions from satellite markets. Still, for transactions the

first order serial correlation ranges from−15% for IBM, AA, and MO to−35% for GE. Second and higher order

correlations are much smaller. For quotes we observe a similar pattern with the only exception that second order

correlations are more sizeable and consistently positive. Because the quote data are sampled only when revisions

occur, this is in essence equivalent to tick sampling and thereby ensures that the long sequences of “zero-returns”

commonly found in transaction data do not arise. As discussed in Griffin and Oomen (2005), tick sampling leads

to substantial high order serial correlation with alternating sign. This is consistent with the results presented here.

Turning to the covariance signatures, Figures 7 and 8 plot the daily RC and RCLL(1,1) measures, averaged

across days, for sampling frequencies ranging from 1 second (M = 22500) to 5 minutes (M = 75). The dashed

lines indicate the theoretical signatures based on Eqs. 5 and 7 above. Here, estimates forλ are simply obtained as

the average number of observations per day for each asset (see Table 1), and estimates forρijσiσj are computed

from the 5 minute data. For ease of presentation, all graphs are rescaled. Given the relatively stylized setting in

which the theoretical results have been derived, the correspondence between empirical and theoretical signature

plots is striking. The rate at which the RC decays with an increase in sampling frequency matches up almost

perfectly with that predicted by the simple model with independent Poisson sampling. Also for RC with an ad

hoc first order lead and lag adjustment, the results look good. Of course, deviations can be expected but it is

difficult to spot any systematic discrepancies in these graphs.
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Table 1: Summary statistics of NYSE quote and transaction data 2004

AA MO C GE IBM

Panel A: quote data

Raw quotes 2,448,107 2,521,171 3,230,580 3,587,421 3,276,757

liquidity 2,148,380 2,173,275 2,855,562 3,377,937 2,617,084

wide 67,398 74,871 56,083 29,246 159,298

spread> $1 22 10 0 0 0

# Quotes 232,318 273,024 318,935 180,238 500,375

Quote intensityλ 922 1,083 1,265 715 1,986

Correlationρ1 –10.1 –10.5 –14.7 –16.3 –11.1

ρ2 7.46 6.11 5.37 10.0 3.95

ρ3 1.30 0.62 –2.36 –4.21 0.22

Noise ratioγ 0.109 0.110 0.305 0.339 0.190

Average spread (cents) 1.54 1.69 1.40 1.21 2.08

Panel B: transaction data

# Trades 834,857 927,783 1,329,289 1,333,754 1,230,409

Trade intensityλ 3,313 3,682 5,275 5,293 4,883

Correlationρ1 –17.4 –16.8 –23.3 –35.0 –14.8

ρ2 –1.32 –2.41 –2.18 –1.76 –3.55

ρ3 1.86 2.06 0.97 1.26 0.46

Noise ratioγ 0.358 0.375 0.561 0.905 0.356

Note. NYSE quotes and transactions between 9.45 and 16.00 from January 2, 2004 through to December 31, 2004. Noise

ratio measures level of market microstructure noise (see Oomen, 2006, for more details). Intensity estimates are equal to

number of quotes / transactions divided by total number of days in sample period.

Figure 9 presents the signature plots for the HY estimator. Here the daily HY estimator, averaged across

days, is computed as a function ofk (to facilitate presentation, all graphs are rescaled to ensure that the average

lies at 1). Of course, from the theory we expect no significant departures in the HY estimates as the aggregation

frequency is varied because it’s expectation has been shown to be unaffected by non-synchronicity and i.i.d.

noise. The empirical results, however, indicate that this is not the case at the very highest frequencies. In fact, a

sizable systematic downward bias of about20% is detected in the HY estimator computed with quote-to-quote

mid prices. Interestingly, sampling every 2–3 quotes seems to eliminate this bias.

Figures 10, 11, and 12 present the corresponding results for the transaction data. A similar pattern to the

quote data emerges with two important differences. First, the decay of the RC and RCLL signature plots appears
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Figure 6: IBM return dependence with leads & lags of GE returns (2004)

Panel A: quote-update returns Panel B: transaction returns
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Note. This figure plotsφ(h) as a function ofh for IBM and GE quote-update returns (Panel A) and transaction returns

(Panel B).

somewhat faster which we suspect has to do with the relatively frequent occurrence of zero returns in transaction

data (see Griffin and Oomen, 2005), a feature that is clearly not captured in our framework. Second, the bias

of the HY estimator is substantially larger (about 50%!) and is only eliminated after aggregating returns to a

frequency of about 10 transactions.

To gain some further insights into the bias of HY, consider the statisticφ(h) defined as
∑

i R
(1)
i R

(2)
max Ai+h for

h > 0 and
∑

i R
(1)
i R

(2)
min Ai+h for h < 0 and

∑
i

∑
j∈Ai

R
(1)
i R

(2)
j for h = 0 (whereAi is as defined in Eq. 11).

Intuitively, φ(h) measures the sample covariance of quote/transaction returns between asset 1 and 2. Note that in

the modeling framework adopted here,E[φ(0)] = E[HY ] = ρσ1σ2, andE[φ(h)] = 0 for h 6= 0 because leads

and lags of returns that share no overlap in time carry no information about the underlying correlation structure.

This is precisely the reason why HY is unbiased in theory. However, cross dependence between non-overlapping

returns can arise in practice when price adjustment is not instantaneous and it takes some trading before prices

fully reflect the currently available information. In such a scenario, one would of course expect HY to be biased

because it misses out on cross dependence that extends beyond the overlapping transaction or quote returns. To

illustrate that this may be a reasonable conjecture, Figure 6 plotsφ(h) averaged day-by-day over 2004 for IBM
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and GE quote and transaction returns in Panels A and B respectively. The lead-lag dependence is evident and the

pattern appears much stronger for transaction returns than for quote returns. Based on Figure 6 we can derive an

“implied bias” for the HY estimator as1−φ(0)/
∑

h φ(h). Doing so for IBM and GE, using the first 10 leads and

lags, we calculate a bias of18.0% for quotes and55.4% for transactions which is very much in line with the bias

reported in Figures 9 and 12. So all in all, we find that at least part of the observed HY bias can be accounted for

by cross dependence of non-overlapping returns that arise from “sluggish” adjustment of quotes and transaction

prices.

Given the above, it seems natural to modify the HY estimator as follows (ignoring end-effects):

HY LL =
M1∑

i=1

max Ai+U∑

j=min Ai−L

R
(1)
i R

(2)
j . (15)

This estimator can of course be further extended to include kernel weights. SettingU andL sufficiently high

would eliminate the bias at the cost of a higher variance, paralleling the case for RCLL discussed above. However,

an obvious drawback of HYLL (one that RCLL importantly does not suffer from) is that because it is implemented

in “event time” it is not invariant to the ordering of assets, meaning that covariance estimates between asset 1

and 2 will not be the same as those between asset 2 and 1, even after appropriately switchingU andL. While a

detailed study of the lead-lag return dependence and extensions of the HY estimator are clearly of interest, this

would necessitate more complicated models that bring us outside the realm of arbitrage free pricing and, as such,

pose a substantial challenge that we do not attempt to address in this paper.

4 Conclusion

This paper studies the statistical properties of three popular covariance estimators, namely realized covariance

(RC), realized covariance plus lead-lag adjustments (RCLL), and the Hayashi-Yoshida (HY) estimator, in a set-

ting where prices are observed with noise and non-synchronously in time. We derive closed form bias and

variance expressions for all estimators and use these to provide a detailed discussion of their relative efficiency.

The main finding of this paper is that the ordering of the competing covariance estimators in terms of their effi-

ciency is primarily determined by the level of microstructure noise. The empirical results indicate that the rate

of decay in the covariance signature plots is roughly consistent with that implied by our theory. Interestingly, the
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HY estimator is severely downward biased at the highest sampling frequencies and we present some evidence

that this is probably caused by “sluggish” adjustment of prices. Various kernel-based and subsampling extensions

of the RC and HY estimators are suggested but a formal analysis of these is left for future research.
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A Proofs

Let t∗(h)
i denote the timing of the most recent observation (i.e. transaction / quote-update) of asseth prior to t = i∆. Define

τ
(h)
i = i∆− t

∗(h)
i andai = max{τ (1)

i , τ
(2)
i } andbi = min{τ (1)

i , τ
(2)
i }. LetE(h)

i denote the event that asseth trades at least

once over the time interval((i− 1)∆, i∆]. Letν (I1 ∩ I2) denotes the length of the intersection between intervalI1 andI2.

In sections A.1 and A.2 below we also use the following short-handsRi = r
(1)
i , Zi = r

(2)
i , ui = u

(1)
N1(i∆), vi = u

(2)
N2(i∆)

andµh = 1− e−λh∆ for simplicity of notation.

A.1 Proof of Theorem 2.1

To calculateE (RiZi) we condition on a trade of assetR andZ in interval((i− 1)∆, i∆].

E (RiZi) = Pr{E(1)
i ∩ E

(2)
i }E(RiZi|E(1)

i ∩ E
(2)
i )

= µ1µ2ρσ1σ2E(ν((t(1)i−1, t
(1)
i ) ∩ (t(2)i−1, t

(2)
i ))|E(1)

i ∩ E
(2)
i )

= µ1µ2ρσ1σ2E (bi−1 + ∆− ai|ai < ∆)

= ρσ1σ2

(
∆− λ2

1µ2 + λ2
2µ1

λ1λ2 (λ1 + λ2)

)
.

To deriveE(bi) andE(ai|ai < ∆), we use that for exponential variablezi with meanλ−1
i the following holds:

Fmin (u) = Pr (min {z1, z2} < u) = 1− Pr (z1 > u ∩ z2 > u) = 1− e−(λ1+λ2)u,

Fmax (u) = Pr (max {z1, z2} < u) = Pr (z1 < u ∩ z2 < u) =
(
1− e−λ1u

) (
1− e−λ2u

)
.

Thus,

E (bi) =
∫ ∞

0

u (λ1 + λ2) e−(λ1+λ2)udu =
1

λ1 + λ2
,

andκ1 ≡ E (ai|ai < ∆) is equal to:

κ1 =
1

µ1µ2

∫ ∆

0

u
(
λ1e

−uλ1 + λ2e
−uλ2 − (λ1 + λ2) e−(λ1+λ2)u

)
du

= ∆− ∆
µ1µ2

+
1

λ1 + λ2

(
λ1

µ1λ2
+

λ2

µ2λ1
+ 1

)
. (16)

The expression in Eq. (5) now follows fromE (RC) = ME (RiZi). To prove unbiasedness in presence of noise, simply

note thatE (Ri + ui + ui−1) (Zi + vi + vi−1) = E (RiZi) due to the i.i.d. noise assumption.

To work out the variance of RC proceed as follows:

(RCM )2 =
M∑

i=1

M∑

j=1

RiZiRjZj .

First consider the case wherei = j. If we condition onE(1)
i ∩E

(2)
i and the transaction arrival times then returns are jointly

normal and so we have:

Et

(
R2

i Z
2
i

)
= Pr{E(1)

i ∩ E
(2)
i }(Et(R2

i |E(1)
i )Et(Z2

i |E(2)
i ) + 2ρ2Et(RiZi|E(1)

i ∩ E
(2)
i )2)

= µ1µ2σ
2
1σ2

2((t∗(1)i − t
∗(1)
i−1 )(t∗(2)i − t

∗(2)
i−1 ) + 2ρ2 (bi−1 + ∆− ai)

2).
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Now taking expectations overt we get:

E
(
R2

i Z
2
i

)
= σ2

1σ2
2∆2 + 2µ1µ2ρ

2σ2
1σ2

2E
(
b2
i−1 + 2bi−1∆− 2bi−1ai + ∆2 − 2∆ai + a2

i |ai < ∆
)

= σ2
1σ2

2

(
1 + 2ρ2

)
∆2 + 4

ρ2σ2
1σ2

2

λ1 + λ2

(
µ1µ2

λ1 + λ2
+

λ1µ2

λ2
2

+
λ2µ1

λ2
1

−
(

λ1

λ2
+

λ2

λ1

)
∆

)
,

using thatE(ai−1bi|ai−1 < ∆) = E(ai−1|ai−1 < ∆)E(bi), E
(
b2
i

)
= 2 (λ1 + λ2)

−2 andκ2 ≡ E
(
a2

i |ai < ∆
)

with

κ2 = ∆2 − ∆2

µ1µ2
+ 2

µ1 − λ1∆e−λ1∆

µ1µ2λ2
1

+ 2
µ2 − λ2∆e−λ2∆

µ1µ2λ2
2

+ 2
e−∆(λ1+λ2)∆

µ1µ2 (λ1 + λ2)
+ 2

e−∆(λ1+λ2) − 1
µ1µ2 (λ1 + λ2)

2 . (17)

To work out the off-diagonal elements (i.e.i 6= j), condition on the trade arrival times:

Et [ZiRiZjRj ] = Et [ZiRi] Et [ZjRj ] + Et [ZiZj ] Et [RiRj ] + Et [RiZj ] Et [ZiRj ] .

The second and third term are zero. The first term can be written as:

E (Et [ZiRi]Et [ZjRj ] |F1) = (E (ZiRi))
2 + δ. (18)

In section A.1.1 below we show thatδ is negligible and thus we ignore it for simplicity of exposition. Collecting all terms,

the variance of RC is now equal to:

V (RCM ) = σ2
1σ2

2

1 + 2ρ2 − ρ2β2
M

M
− 4

ρ2σ2
1σ2

2

λ1 + λ2

(
λ1

λ2
+

λ2

λ1

)
+ 4M

ρ2σ2
1σ2

2

λ1 + λ2

(
µ1µ2

λ1 + λ2
+

λ1µ2

λ2
2

+
λ2µ1

λ2
1

)
,

which corresponds to Eq. (6) withξ1 = ξ2 = 0.

With i.i.d. noise let the contaminated returns be denoted asRi +ui−ui−1 andZi + vi− vi−1. Then, the noise contribution

to the variance of RC can be expressed as follows:

V (RC
(iid)
M )− V (RCM ) = E

M∑

i=1

M∑

j=1

((Ri + ui − ui−1) (Zi + vi − vi−1) (Rj + uj − uj−1) (Zj + vj − vj−1)−RiZiRjZj)

= µ1µ2

M∑

i=1

E(2v2
i R2

i + 2u2
i Z

2
i + 4u2

i v
2
i |E(1)

i ∩ E
(2)
i ) + 2µ2

1µ
2
2

M−1∑

i=1

E(u2
i v

2
i |E(1)

i,i+1 ∩ E
(2)
i,i+1)

= 2µ2σ
2
1ξ2

2 + 2µ1σ
2
2ξ2

1 + 4Mµ1µ2ξ
2
1ξ2

2 + 2 (M − 1)µ2
1µ

2
2ξ

2
1ξ2

2 ,

using thatE(v2
i R2

i |E(1)
i ∩ E

(2)
i ) = ξ2

2σ2
1∆/µ1. Collecting terms gives the required expression in Eq. (6).

A.1.1 A note on the approximation in Eq. (18)

Let F1 ≡ E
(1)
i ∩ E

(2)
i ∩ E

(1)
j ∩ E

(2)
j . Assumingj > i, we have:

E[Et[ZiRi]Et[ZjRj ]] = ρ2σ2
1σ2

2µ2
1µ

2
2E[(bi−1 + ∆− ai) (bj−1 + ∆− aj) |F1]

= ρ2σ2
1σ2

2µ2
1µ

2
2E[∆2 − aj∆ + bi−1∆− ai∆− bi−1aj + aiaj |F1]

+ρ2σ2
1σ2

2µ2
1µ

2
2 (E[bi−1 + ∆|F1]E[bj−1|F1]− E[aibj−1|F1]) .

Using previous results, the first term is easily worked out as:

E[∆2 − aj∆ + bi−1∆− ai∆− bi−1aj + aiaj |F1] = (∆− κ1)
2 +

∆− κ1

λ1 + λ2
.
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Similarly,

E[∆ + bi−1|F1] = ∆ +
1

λ1 + λ2
.

The non–trivial terms are those involvingbj−1 because conditional onF1, bj−1 < (j − i)∆ and if bj−1 > (j − i− 1)∆

thenbj−1 is not independent ofai. First, consider the case wherebj−1 < (j − i− 1)∆. Then:

E [bj−1|bj−1 < (j − i− 1)∆, F1] =
1− e−(λ1+λ2)(j−i−1)∆ ((λ1 + λ2) (j − i− 1) ∆ + 1)

(λ1 + λ2)
(
1− e−(λ1+λ2)(j−i−1)∆

) .

Also, we have:

E [bj−1| (j − i− 1)∆ < bj−1 < (j − i)∆, F1]

= (j − i− 1) ∆ + E [bi|ai < ∆]

= (j − i− 1) ∆ +
λ1λ2

µ1µ2

(∫ ∆

0

∫ z2

0

z1e
−z1λ1−z2λ2dz1dz2 +

∫ ∆

0

∫ z1

0

z2e
−z1λ1−z2λ2dz2dz1

)

= (j − i− 1) ∆ +
1

λ1 + λ2
+

e−∆(λ1+λ2)
(
λ1λ

2
2∆ + λ2

2 + λ2
1λ2∆ + λ2

1

)− λ2
1e
−λ1∆ − λ2

2e
−λ2∆

µ1µ2λ1λ2 (λ1 + λ2)
.

Combining the above, we get:

E [bj−1|F1] = E [bj−1|bj−1 < (j − i− 1)∆, F1]
(
1− e−(λ1+λ2)(j−i−1)∆

)

+E [bj−1| (j − i− 1)∆ < bj−1 < (j − i)∆, F1] e−(λ1+λ2)(j−i−1)∆

=
1

λ1 + λ2
+ e−(λ1+λ2)(j−i−1)∆κ3,

where

κ3 =
1

µ1µ2

(
e−(λ1+λ2)∆∆− λ1

λ2

µ2e
−λ1∆

λ1 + λ2
− λ2

λ1

µ1e
−λ2∆

λ1 + λ2

)
. (19)

To work out the second term, we distinguish among the same cases, namelybj−1 < (j − i− 1)∆ and(j − i− 1)∆ <

bj−1 < (j − i)∆.

E [aibj−1|bj−1 < (j − i− 1)∆, F1] = E [ai|F1] E [bj−1|bj−1 < (j − i− 1)∆, F1]

= κ1
1− e−(λ1+λ2)(j−i−1)∆ ((λ1 + λ2) (j − i− 1)∆ + 1)

(λ1 + λ2)
(
1− e−(λ1+λ2)(j−i−1)∆

) ,

and

E [aibj−1| (j − i− 1)∆ < bj−1 < (j − i)∆, F1] = κ1 (j − i− 1)∆ + E [aibi|F1] ,

where

κ4 = E [aibi|F1] =
1

µ1µ2

∫ ∆

0

∫ ∆

0

z1z2λ1e
−z1λ1λ2e

−z2λ2dz1dz2

=

(
µ2 − λ2e

−λ2∆∆
) (

µ1 − λ1e
−λ1∆∆

)

µ1µ2λ1λ2
. (20)

Combining the above terms we have:

E [aibj−1|F1] = E [aibj−1|bj−1 < (j − i− 1)∆, F1]
(
1− e−(λ1+λ2)(j−i−1)∆

)

+E [aibj−1| (j − i− 1)∆ < bj−1 < (j − i)∆, F1] e−(λ1+λ2)(j−i−1)∆

=
κ1

λ1 + λ2
+ e−(λ1+λ2)(j−i−1)∆

(
κ4 − κ1

λ1 + λ2

)
.
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Thus:

E[Et[ZiRi]Et[ZjRj ]] = ρ2σ2
1σ2

2µ2
1µ

2
2

(
(1 + (∆− κ1) (λ1 + λ2))

2

(λ1 + λ2)
2 +

(
κ3∆− κ4 +

κ3 + κ1

λ1 + λ2

)
e−(λ1+λ2)(j−i−1)∆

)

= ρ2σ2
1σ2

2

(
∆− λ2

1µ2 + λ2
2µ1

λ1λ2 (λ1 + λ2)

)2

−
(

ρσ1σ2µ1µ2

λ1 + λ2

)2

e−(λ1+λ2)(j−i−1)∆

= (E (ZiRi))
2 −

(
ρσ1σ2µ1µ2

λ1 + λ2

)2

e−(λ1+λ2)(j−i−1)∆. (21)

In the summation overj 6= i up toM , the first term is of orderM2 whereas the second term is of orderM and negative.

Hence,E[Et[ZjRj ]Et[ZiRi]] is very accurately bounded by(E (ZiRi))
2.

A.2 Proof of Theorem 2.2

To calculateE (Ri−hZi) we condition onE(1)
i−h∩E

(2)
i plus no trade for assetZ over the interval[(i− h− 1)∆, (i− 1)∆].

The expectation can then be expressed as:

E (Ri−hZi) = ρσ1σ2µ1µ2e
−λ2(h−1)∆E(τ (2)

i−h − τ
(1)
i−h|τ (1)

i−h < τ
(2)
i−h < ∆ + τ

(1)
i−h−1)

+ρσ1σ2µ1µ2e
−λ2(h−1)∆E(τ (1)

i−h−1 + ∆− τ
(1)
i−h|τ (2)

i−h > ∆ + τ
(1)
i−h−1)

= ρσ1σ2

λ1

(
1− e−λ2∆

)2

λ2(λ1 + λ2)
e−λ2(h−1)∆,

using thatτ is exponential and

E (w2 − z1|z1 < w2 < ∆ + w1) =
∫ ∞

0

∫ ∆

0

∫ ∆+w1

z1

(w2 − z1)
λ1e

−λ1z1λ1e
−λ1w1λ2e

−λ2w2

1− e−λ1∆
dw2dz1dw1

E (w1 + ∆− z1|w2 > ∆ + w1) =
∫ ∞

0

∫ ∆

0

∫ ∞

∆+w1

(w2 − z1)
λ1e

−λ1z1λ1e
−λ1w1λ2e

−λ2w2

1− e−λ1∆
dw2dz1dw1,

wherew1, z1 ∼ Exp(1/λ1), w2 ∼ Exp(1/λ2) for 0 < z1 < ∆ and0 < w1, w2 < ∞. By symmetry we have

E (Ri+hZi) = ρσ1σ2

λ2

(
1− e−λ1∆

)2

λ1(λ1 + λ2)
e−λ1(h−1)∆.

Using the above, the expectation of RCLL in Eq. (8) directly follows.

To work out the variance of RCLL proceed as follows:

(RCLL)2 =
M∑

i=1

M∑

j=1

RiZiRjZj ,

whereRi =
∑U

l=−L Ri+l. Below we redefineE(1)
i to denote the conditioning event where there is a trade of assetR in the

interval[(i− L− 1)∆, (i + U)∆]. First consider the case wherei = j. If we condition onE(1)
i ∩E

(2)
i and the transaction

arrival times, then returns are jointly normal and we have:

Et[R
2

i Z
2
i ] = Pr{E(1)

i ∩ E
(2)
i }(Et(R

2

i |E(1)
i )Et(Z2

i |E(2)
i ) + 2ρ2(Et(RiZi|E(1)

i ∩ E
(2)
i ))2)

= σ2
1σ2

2µ∗1µ2(t
∗(1)
i+U − t

∗(1)
i−L−1)(t

∗(2)
i − t

∗(2)
i−1 )

+2ρ2σ2
1σ2

2µ∗1µ2(max[0, min{t∗(1)i+U , t
∗(2)
i } −max{t∗(1)i−L−1, t

∗(2)
i−1 }])2.
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Now taking expectations overt, the first term on the right hand side is:

E[σ2
1σ2

2µ∗1µ2(t
∗(1)
i+U − t

∗(1)
i−L−1)(t

∗(2)
i − t

∗(2)
i−1 )] = σ2

1σ2
2 (U + L + 1)∆2.

To simplify notation, definez1 = τ
(1)
i+U , w1 = τ

(1)
i−L−1, z2 = τ

(2)
i , andw2 = τ

(2)
i−1. To work out the expectation of the

second term, distinguish among following four conditioning states:

A1 : 0 < z1 < U∆

A2 : U∆ < z1 < (U + 1) ∆

A3 : (U + 1) ∆ < z1 < min {(U + 1) ∆ + w2, (U + L + 1) ∆}
A4 : min {(U + 1) ∆ + w2, (U + L + 1) ∆} < z1 < (U + L + 1) ∆

To calculate the state probabilities we use that{z1, w1, z2, w2} are jointly exponential and in particular thatp(z1, w2) =

λ1λ2 exp{−λ1z1 − λ2w2}/µ∗1 for 0 < z1 < (U + L + 1) ∆ and0 < w2 < ∞.

Pr {A1} = (1− e−Uλ1∆)/µ∗1

Pr {A2} = µ1e
−Uλ1∆/µ∗1

Pr {A3} =
λ1

λ1 + λ2
(1− e−L(λ1+λ2)∆)e−(U+1)λ1∆/µ∗1

Pr {A4} =
λ1e

−L∆(λ1+λ2) + λ2

(λ1 + λ2) µ∗1
e−(U+1)∆λ1 − 1− µ∗1

µ∗1

Note that whenU = L = 0 thenPr {A2} = 1 and whenL = 0 thenPr {A4} = 0. Also in stateA4, max{0, min{t∗(1)i+U , t
∗(2)
i }−

max{t∗(1)i−L−1, t
∗(2)
i−1 }} = 0 and so to work out the expectation we only need to consider the first three states.

In caseA1 we have:

min{t∗(1)i+U , t
∗(2)
i } −max{t∗(1)i−L−1, t

∗(2)
i−1 } = ∆− z2 + B

with z2 independent ofB = min {w2, L∆ + w1}.

E[(∆− z2 + B)2] = ∆2 − 2∆E (z2) + 2∆E (B) + E
(
z2
2

)− 2E (z2)E (B) + E
(
B2

)

=
2
λ2

2

+
∆2

µ2
− 2λ1

∆(Lµ2 + 1) (λ1 + λ2) + µ2

λ2 (λ1 + λ2)
2
µ2

e−λ2L∆ (22)

using that

E (z2|z2 < ∆) =
1− (1 + λ2∆) e−λ2∆

λ2 (1− e−λ2∆)

E
(
z2
2 |z2 < ∆

)
=

2
λ2

2

−∆
(2 + λ2∆) e−λ2∆

λ2 (1− e−λ2∆)

E (B) =
1
λ2
− λ1e

−λ2L∆

λ2 (λ2 + λ1)

E
(
B2

)
=

2
λ2

2

− 2
λ1 (λ2L∆(λ2 + λ1) + λ1 + 2λ2) e−λ2L∆

λ2
2 (λ2 + λ1)

2

and the distribution ofB = min {w2, L∆ + w1} is given as:

fB (b) =

{
λ2e

−λ2b b < L∆

(λ2 + λ1) e−λ2L∆e−(λ1+λ2)(b−L∆) b > L∆
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In caseA2 we have:

min{t∗(1)i+U , t
∗(2)
i } −max{t∗(1)i−L−1, t

∗(2)
i−1 } = ∆−A + B

wherez̃1 = z1 −∆U andA = max {z̃1, z2} is independent ofB = min {w2, L∆ + w1}.

E[(∆−A + B)2] = ∆2 − 2∆E(A) + 2∆E(B) + E(A2)− 2E(A)E (B) + E(B2)

=
∆2

µ1µ2
+

2
λ1 + λ2

1
µ1µ2

(
µ1µ2

λ1 + λ2
+

λ1

λ2
2

µ2 +
λ2

λ2
1

µ1 −∆
(

λ1

λ2
+

λ2

λ1

))

+2
λ1 (λ1 + λ2) (µ1µ2 + λ2∆)− λ2

1µ2 − λ2
2µ1

µ1µ2 (λ1 + λ2)
2
λ2

2

(1− e−λ2L∆)− 2
λ1

λ2

Le−λ2L∆∆
λ1 + λ2

(23)

using thatE (A) = κ1 andE
(
A2

)
= κ2 are as given in Eqs. (16) and (17) above.

Finally, in caseA3 we have:

min{t∗(1)i+U , t
∗(2)
i } −max{t∗(1)i−L−1, t

∗(2)
i−1 } = min {w2, L∆ + w1} − z1

wherez1 = z1−(U + 1) ∆. In this casez1 andC = min {w2, L∆ + w1} are not independent anymore because we impose

the condition0 < z1 < w2.

p (z1, w1, w2|z1 < L∆) =
λ1e

−λ1z1λ1e
−λ1w1λ2e

−λ2w2

1− e−λ1L∆

p (z1, w1, w2|z1 < L∆ ∩ z1 < w2) =
p (z1, w1, w2|z1 < L∆)
Pr {z1 < w2|z1 < L∆}

=
λ1λ2 (λ1 + λ2) e−λ1z1−λ1w1−λ2w2

1− e−L∆(λ1+λ2)

using that

Pr {z1 < w2|z1 < L∆} =
∫ ∞

0

∫ L∆

0

∫ w2

0

λ1e
−λ1z1λ1e

−λ1w1λ2e
−λ2w2

1− e−λ1L∆
dz1dw2dw1

+
∫ ∞

0

∫ ∞

L∆

∫ L∆

0

λ1e
−λ1z1λ1e

−λ1w1λ2e
−λ2w2

1− e−λ1L∆
dz1dw2dw1

=
λ1

(
1− e−L∆(λ1+λ2)

)

(λ1 + λ2) (1− e−λ1L∆)

With this we derive:

E (z1) =
∫ ∞

0

∫ L∆

0

∫ w2

0

z1
λ1λ2 (λ1 + λ2) e−λ1z1−λ1w1−λ2w2

1− e−L∆(λ1+λ2)
dz1dw2dw1

+
∫ ∞

0

∫ ∞

L∆

∫ L∆

0

z1
λ1λ2 (λ1 + λ2) e−λ1z1−λ1w1−λ2w2

1− e−L∆(λ1+λ2)
dz1dw2dw1

=
1− (L∆(λ1 + λ2) + 1) e−L∆(λ1+λ2)

(λ1 + λ2)
(
1− e−L∆(λ1+λ2)

)

and similarly

E
(
z2
1

)
=

2−
(
(L∆(λ1 + λ2) + 1)2 + 1

)
e−L∆(λ1+λ2)

(λ1 + λ2)
2 (

1− e−L∆(λ1+λ2)
)
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The expectation of the minimum can be expressed as:

E (min {w2, L∆ + w1} |A3) = E (w2|w2 < L∆ ∩A3) Pr {w2 < L∆|A3}
+ (L∆ + E (min {w2, w1} |A3)) Pr {w2 > L∆|A3}

=
∫ ∞

0

∫ L∆

0

∫ w2

0

w2
λ1λ2 (λ1 + λ2) e−λ1z1−λ1w1−λ2w2

1− e−L∆(λ1+λ2)
dz1dw2dw1

+
(

L∆ +
1

λ1 + λ2

)
(λ1 + λ2)

(
1− e−L∆λ1

)
e−L∆λ2

λ1

(
1− e−L∆(λ1+λ2)

)

=
λ1 + 2λ2 − λ2 (1 + L∆ (λ1 + λ2)) e−L∆(λ1+λ2) − (λ1 + λ2) e−L∆λ2

λ2 (λ1 + λ2)
(
1− e−L∆(λ1+λ2)

)

and the squared minimum:

E(min {w2, L∆ + w1}2 |A3) = E
(
w2

2|w2 < L∆ ∩A3

)
Pr {w2 < L∆|A3}

+(L∆ + E (min {w2, w1} |A3))
2 Pr {w2 > L∆|A3}

=
∫ ∞

0

∫ L∆

0

∫ w2

0

w2
2

λ1λ2 (λ1 + λ2) e−λ1z1−λ1w1−λ2w2

1− e−L∆(λ1+λ2)
dz1dw2dw1

+

(
L2∆2 + 2

L∆
λ1 + λ2

+
2

(λ1 + λ2)
2

)
(λ1 + λ2)

(
1− e−L∆λ1

)
e−L∆λ2

λ1

(
1− e−L∆(λ1+λ2)

)

=

λ2
2

(
(L∆(λ1 + λ2) + 1)2 + 1

)
e−L∆(λ1+λ2) − 2λ2

1 − 6λ1λ2

−6λ2
2 + 2 (λ1 + λ2) (L∆(λ1 + λ2)λ2 + 2λ2 + λ1) e−L∆λ2

λ2
2 (λ1 + λ2)

2 (−1 + exp (−L∆(λ1 + λ2)))

Finally, the cross product

E (z1 min {w2, L∆ + w1} |A3) = E (z1w2|w2 < L∆ ∩A3) Pr {w2 < L∆|A3}
+(L∆ + E (min {w2, w1} |A3))E (z1) Pr {w2 > L∆|A3}

=
λ1λ2 (λ1 + λ2)

1− e−L∆(λ1+λ2)

∫ ∞

0

∫ L∆

0

∫ w2

0

z1w2e
−λ1z1−λ1w1−λ2w2dz1dw2dw1

+
(

L∆ +
1

λ1 + λ2

)
1− (λ1L∆ + 1) e−λ1L∆

λ1 (1− e−λ1L∆)
(λ1 + λ2)

(
1− e−L∆λ1

)
e−L∆λ2

λ1

(
1− e−L∆(λ1+λ2)

)

=

λ1 (3λ2 + λ1)− (λ1 + λ2)
2
e−L∆λ2

−λ2 (λ1 − λ2 + λ1L∆(λ1 + λ2) (L∆(λ1 + λ2) + 2)) e−L∆(λ1+λ2)

λ1λ2 (λ1 + λ2)
2 (

1− e−L∆(λ1+λ2)
)

Combining all terms we get:

E (min {w2, L∆ + w1} − z1)
2 = 2

1− e−λ2L∆ − λ2L∆e−λ2L∆

λ2
2

(
1− e−(λ2+λ1)L∆

) + 2

(
1− e−λ1L∆

)
e−λ2L∆

λ1 (λ2 + λ1)
(
1− e−(λ2+λ1)L∆

) (24)

Analogous to the discussion in section A.1.1, it can be shown (after tedious calculations omitted here) that
∑

i

∑
j 6=i E(RiZiRjZj)

is tightly bounded byM(M − 1)(E(RiZi))2 and so for simplicity of exposition we equate these terms. The variance ex-

pression in Eq. (9) withξ1 = ξ2 = 0 then directly follows.
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The noise contribution to the variance of RCLL is analogous to the RC case with the only difference that now returns onRi

are serially correlated (up to a displacement ofU + L) due to lead-lag adjustment. In particular, we have:

E
(
RiRi+h

)
= E




U∑

j=−L

Ri+j







U∑

j=−L

Ri+j+h


 =

min{U,U−h}∑

j=max{−L,−L−h}
E

(
R2

i+j+h

)
,

= σ2
1 max {0, U + L + 1− |h|}∆.

Assuming, as before, that the contaminated returns areRi + ui − ui−1 andZi + vi − vi−1, then

V (RCLL
(iid)
M )− V (RCLLM ) = µ∗1µ2

M∑

i=1

E(2v2
i R

2

i + 2u2
i Z

2
i + 4u2

i v
2
i |E(1)

i ∩ E
(2)
i )

+2(µ∗1µ1 + µ∗1 − µ1)µ2
2

M−1∑

i=1

E
(
u2

i v
2
i |E(1)

i,i+1 ∩ E
(2)
i,i+1

)
− 2µ2

2

M−1∑

i=1

E
(
v2

i RiRi+1|E(2)
i,i+1

)

= 2µ2σ
2
1ξ2

2 (U + L + 1) + 2µ∗1σ
2
2ξ2

1 + 4Mµ∗1µ2ξ
2
1ξ2

2

+2 (M − 1) (µ∗1µ1 + µ∗1 − µ1)µ2
2ξ

2
1ξ2

2 − 2 (M − 1) µ2
2ξ

2
2σ2

1 (U + L)∆

using thatE(v2
i R

2

i |E(1)
i ∩ E

(2)
i ) = ξ2

2σ2
1 (U + L + 1) ∆/µ∗1.

A.3 Proof of Theorem 2.3

To prove unbiasedness of HY simply note that:

E(HY ) = ρσ1σ2

M1∑

i=1

∑

j∈Ai

E(ν((t(1)i−1, t
(1)
i ) ∩ (t(2)j−1, t

(2)
j ))) = ρσ1σ2

The variance can be expressed as:

V (HY ) =
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

l∈Ah

Cov(RiZj , RhZl)

=
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

l∈Ah

Cov(Ri, Rh)Cov(Zj , Zl) +
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

l∈Ah

Cov(Ri, Zl)Cov(Zj , Rh)

=
M1∑

i=1

∑

j∈Ai

V (Ri)V (Zj) +
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

l∈Ah

Cov(Ri, Zl)Cov(Zj , Rh)

= σ2
1σ2

2E (I1) + ρ2σ2
1σ2

2E (I2)

where

I1 =
M1∑

i=1

∑

j∈Ai

ν(t(1)i−1, t
(1)
i )ν(t(2)j−1, t

(2)
j )

I2 =
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

l∈Ah

ν((t(1)i−1, t
(1)
i ) ∩ (t(2)l−1, t

(2)
l ))ν((t(1)h−1, t

(1)
h ) ∩ (t(2)j−1, t

(2)
j ))
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The expectation of the first term, conditional onM1, is equal to:

I1 =
M1∑

i=1

E(ν(t(1)i−1, t
(1)
i )(ν(t(1)i−1, t

(1)
i ) + x?)) =

(
2
λ2

1

+
1
λ1

2
λ2

)
M1

wherex? =
∑

j∈Ai
ν(t(2)j−1, t

(2)
j )− ν(t(1)i−1, t

(1)
i ). Throughout the proof we assume that the inter-arrival times are indepen-

dent exponentially distributed random variables. Strictly speaking, when conditioning onM1, the process is binomial but

this distinction will be immaterial for typical values ofλ1 andλ2 when taking expectations of functions of the inter arrival

times. Next, taking expectations w.r.t.M1 we have:

E(I1) = 2
(

1
λ1

+
1
λ2

)

The second term can be expressed as:

I2 =
M1∑

i=1


 ∑

j∈Ai

ν((t(1)i−1, t
(1)
i ) ∩ (t(2)j−1, t

(2)
j ))




2

+2
M1∑

h=1

∑

j∈Ai

h−1∑

i=1

∑

l∈Ah

ν((t(1)i−1, t
(1)
i )∩(t(2)l−1, t

(2)
l ))ν((t(1)h−1, t

(1)
h )∩(t(2)j−1, t

(2)
j )).

Conditional onM1, we have:

E

M1∑

i=1


 ∑

j∈Ai

ν((t(1)i−1, t
(1)
i ) ∩ (t(2)j−1, t

(2)
j ))




2

=
M1∑

i=1

E(ν(t(1)i−1, t
(1)
i )2) =

2M1

λ2
1

Taking expectations w.r.t.M1, this term is equal to2/λ1. Next, if i < h the expectation ofν((t(1)i−1, t
(1)
i )∩(t(2)l−1, t

(2)
l ))ν((t(1)h−1, t

(1)
h )∩

(t(2)j−1, t
(2)
j )) is non-zero only if asset 2 does not transact on the interval[t(1)i , t

(1)
h−1]. Conditional ont(1) we then have:

E
(
ν((t(1)i−1, t

(1)
i ) ∩ (t(2)l−1, t

(2)
l ))ν((t(1)h−1, t

(1)
h ) ∩ (t(2)j−1, t

(2)
j ))

)

= exp{−λ2(t
(1)
h−1 − t

(1)
i )}


exp{−λ2(t

(1)
i − t

(1)
i−1)}(t(1)i − t

(1)
i−1) +

1−
(
λ2(t

(1)
i − t

(1)
i−1) + 1

)
e−λ2(t

(1)
i −t

(1)
i−1)

λ2




×

exp{−λ2(t

(1)
h − t

(1)
h−1)}(t(1)h − t

(1)
h−1) +

1−
(
λ2(t

(1)
h − t

(1)
h−1) + 1

)
e−λ2(t

(1)
h −t

(1)
h−1)

λ2




Using thatt(1)i − t
(1)
i−1 is exponentially distributed with parameterλ1 andt

(1)
h−1 − t

(1)
i is gamma distributed with parameters

(h− i− 1, λ1), we get:

E
(
exp{−λ2(t

(1)
h−1 − t

(1)
i )}

)
=

(
λ1

λ2 + λ1

)h−i−1

E
(
(t(1)i − t

(1)
i−1) exp{−λ2(t

(1)
i − t

(1)
i−1)}

)
=

λ1

(λ2 + λ1)
2

Using this we obtain:

E
(
ν((t(1)i−1, t

(1)
i ) ∩ (t(2)l−1, t

(2)
l ))ν((t(1)h−1, t

(1)
h ) ∩ (t(2)j−1, t

(2)
j ))

)
=

1
(λ2 + λ1)

2

(
λ1

λ2 + λ1

)h−i−1

Summing and taking expectations w.r.t.M1 we get:

E
1

(λ2 + λ1)
2

M1∑

h=1

h−1∑

i=1

(
λ1

λ2 + λ1

)h−i−1

=
1

(λ2 + λ1)
2 E

(
(λ1 + λ2)

λ1

λ2
− (λ1 + λ2)

2

λ2
2

+
(λ1 + λ2)

2

λ2
2

(
λ1

λ2 + λ1

)M1
)

=
1

λ1 + λ2

λ1

λ2
+

1
λ2

2

(
e−

λ1λ2
λ1+λ2 − 1

)
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The leading term in this expression is the first. For reasonable values ofλ, the second term is negligible and we suspect it is

accounting for end-effects so we ignore it. Collecting terms we then get the required expression in Eq. (13) for the no-noise

case.

With i.i.d. noise,V (HY ) = E(HY 2)− E(HY )2, whereE(HY ) is as before.

E(HY 2) =
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

k∈Ah

E((Ri + ui − ui−1)(Zj + vj − vj−1)(Rh + uh − uh−1)(Zk + vk − vk−1))

If i = h then

∑

j∈Ai

∑

k∈Ai

E((Ri + ui − ui−1)2(Zj + vj − vj−1)(Zk + vk − vk−1))

=
∑

j∈Ai

∑

k∈Ai

E(R2
i ZjZk) +

∑

j∈Ai

∑

k∈Ai

E(R2
i )E((vj − vj−1)(vk − vk−1))

+
∑

j∈Ai

∑

k∈Ai

E((ui − ui−1)2)E(ZjZk) +
∑

j∈Ai

∑

k∈Ai

E((ui − ui−1)2)E((vj − vj−1)(vk − vk−1))

The first-order MA structure ofvj − vj−1 implies that

∑

j∈Ai

∑

k∈Ai

E((vj − vj−1)(vk − vk−1)) = (2#Ai − 2(#Ai − 2)− 2)ξ2
2 = 2ξ2

2

where#B denotes the number of distinct elements in the setB, so that

∑

j∈Ai

∑

k∈Ai

E((Ri + ui − ui−1)2(Zj + vj − vj−1)(Zk + vk − vk−1))

=
∑

j∈Ai

∑

k∈Ai

E(R2
i ZjZk) + 2ξ2

2E(R2
i ) + 2ξ2

1

∑

j∈Ai

E(Z2
j ) + 4ξ2

1ξ2
2

and it follows that

M1∑

i=1

∑

j∈Ai

∑

k∈Ai

E((Ri + ui − ui−1)2(Zj + vj − vj−1)(Zk + vk − vk−1))

=
M1∑

i=1

∑

j∈Ai

∑

k∈Ai

E(R2
i ZjZk) + 2ξ2

2σ2
1 + 2ξ2

1σ2
2

(
1 +

2λ1

λ2

)
+ 4λ1ξ

2
1ξ2

2

If i 6= h

∑

j∈Ai

∑

k∈Ah

E((Ri + ui − ui−1)(Zj + vj − vj−1)(Rh + uh − uh−1)(Zk + vk − vk−1))

=
∑

j∈Ai

∑

k∈Ah

E(RiZjRhZk) + E((uh − uh−1)(ui − ui−1))
∑

j∈Ai

∑

k∈Ah

E(ZjZk)

+ E((ui − ui−1)(uh − uh−1))
∑

j∈Ai

∑

k∈Ah

E((vj − vj−1)(vk − vk−1))

=
∑

j∈Ai

∑

k∈Ah

E(RiZjRhZk)− (I(h = i + 1) + I(h = i− 1))ξ2
1

∑

j∈Ai

∑

k∈Ah

E(ZjZk)

− (I(h = i + 1) + I(h = i− 1))ξ2
1

∑

j∈Ai

∑

k∈Ah

E((vj − vj−1)(vk − vk−1))
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The MA structure ofvj−vj−1 implies thatE((vj−vj−1)(vk−vk−1)) will be non-zero only ifk = j−1, k = j, k = j+1.

For j ∈ Ai andk ∈ Ai+1, then there is only one for whichk = j = x, and if#Ai+1 > 1 thenx + 1 must also be inAi+1.

∑

j∈Ai

∑

k∈Ah

E((vj − vj−1)(vk − vk−1)) = ξ2
2(I(h = i + 1) + I(h = i− 1))(2− I(#Ai > 1)− I(#Ah > 1))

∑

j∈Ai

∑

k∈Ah

E(ZjZk) =
1
λ2

It is easy to show thatE[I(#Ai) > 1)] = λ2
λ1+λ2

and so

∑

j∈Ai

∑

k∈Ah

E((Ri + ui − ui−1)(Zj + vj − vj−1)(Rh + uh − uh−1)(Zk + vk − vk−1))

=
∑

j∈Ai

∑

k∈Ah

E(RiZjRhZk)− (I(h = i + 1) + I(h = i− 1))ξ2
1

1
λ2

− 2(I(h = i + 1) + I(h = i− 1))ξ2
1ξ2

2

λ1

λ1 + λ2

Thus:

M1∑

i=1

M1∑

h=1

∑

j∈Ai

∑

k∈Ah

E((Ri + ui − ui−1)(Zj + vj − vj−1)(Rh + uh − uh−1)(Zk + vk − vk−1))

=
M1∑

i=1

∑

j∈Ai

M1∑

h=1

∑

k∈Ah

E(RiZjRhZk)− ξ2
1σ2

12(λ1 − 1)
1
λ2
− 4ξ2

1ξ2
2(λ1 − 1)

λ1

λ1 + λ2

and

V (HY ) = V (HY no noise) + 2ξ2
2σ2

1 + 2ξ2
1σ2

2 + 4ξ2
1ξ2

2

λ1λ2

λ1 + λ2
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Figure 7: Empirical and model-implied RC signature plots - NYSE quotes
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Figure 8: Empirical and model-implied RCLL(1,1) signature plots - NYSE quotes
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Figure 9: Empirical HY covariance signature plots - NYSE quotes
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Figure 10: Empirical and model-implied RC signature plots - NYSE transactions
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Figure 11: Empirical and model-implied RCLL(1,1) signature plots - NYSE transactions
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Figure 12: Empirical HY covariance signature plots - NYSE transactions
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