
CRiSM Paper No. 09-04, www.warwick.ac.uk/go/crism

An ergodicity result for Adaptive Langevin
Algorithms

Tristan Marshall, Gareth Roberts

March 2009

Abstract

We consider a class of adaptive MCMC algorithms using a Langevin-

type proposal density. We prove that these are algorithms are ergodic

when the target density has exponential tail behaviour. Unlike previ-

ous results, our approach does not require bounding the drift function.

1 Introduction

Metropolis-Hastings algorithms [15] are an important class of Markov Chain
Monte Carlo (MCMC) algorithms. When we wish to simulate from a den-
sity π(x), x ∈ X (the ‘target’) these algorithms simulate a Markov Chain
X0, X1, X2, . . . having π as its stationary distribution.

To be more specific, we start the algorithm in an arbitrary state X0, and
propose a move to a state y according to some proposal distribution q(x, y).

With probability α(x, y) = q(y,x)π(y)
q(x,y)π(x)

we accept this move and set X1 = y,
otherwise we reject it and set X1 = x. Repeat this process to obtain the
sequence X0, X1, X2, . . .. It is straightforward to show that this process forms
a Markov chain with stationary distribution π, and with some additional
weak conditions on q(x, y) (see [22]) it follows that (Xn)n≥0 converges in
distribution to π.

Since the conditions on q(x, y) are very weak, we therefore have a great
degree of freedom in our choice of proposal. We shall focus on proposals
arising from a discretisation of a Langevin diffusion; such algorithms are
commonly known as Metropolis-adjusted Langevin algorithms (MALA).
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1.1 Metropolis-Adjusted Langevin Algorithms (MALA)

Metropolis-adjusted Langevin algorithms (MALA) are a class of Metropolis-
Hastings algorithms using a proposal use a proposal distribution of the type

qh,Γ(x, y) = φd(x +
1

2
hΓ∇ log π(x), hΓ), (1)

where x ∈ R
d, h ∈ R

+, Γ is a d × d symmetric positive definite matrix with
unit determinant, and φd(u, Σ) is the density at u of a d-dimensional Nor-
mal distribution with mean 0 and covariance matrix Σ. This proposal arises
from a discrete-time approximation of continuous-time processes known as
Langevin diffusions; these are diffusion processes satisfying the stochastic
differential equation dLt = Γ

1

2 dWt +
1
2
∇ log π(Lt). Under suitable regularity

conditions, Langevin diffusions converge to π in the sense that P(Lt ∈ ·) → π(·)
as t → ∞, so at least intuitively it is plausible that a Metropolis-Hastings
algorithm using a proposal that is already approximately convergent will
have good convergence properties. Under suitable regularity conditions this
is indeed true; more detail can be found in [20].

The proposal density (1) contains two unspecified ‘tuning’ parameters: a
positive real h (the ‘scaling coefficient’) that determines the length of pro-
posed jumps, and a symmetric positive-definite d×d matrix Γ with determi-
nant 1 that controls the direction (the reason for using this parameterisation
will become apparent in section 4). As we will see in section 2.1, the values
we choose for these parameters can significantly affect the algorithm’s rate
of convergence.

1.2 Choosing appropriate proposal parameters

Theorem 7 of [18] states that it is ‘usually’ optimal to choose Γ proportional
to Σ, the covariance matrix of the target π, and adjust the scaling coefficient
h so that the average acceptance rate is 0.574. However since Σ is typically
not available, in practice we must choose Γ = hΣ̂, an estimate of Σ. One
option is to use a sequence of ‘pilot’ MCMC runs to estimate Σ, but a large
number of runs may be needed to obtain a good estimate Σ̂ and there is no
easy way to determine how many runs are necessary or how long they need
to be.

An alternative to pilot runs is to use so-called ‘adaptive’ methods, where
we continuously update the choice of Γ using the past history of the run.
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More precisely, we start with an initial state x0, initial proposal parameters
(h0, Γ0), and proceed as follows:

Algorithm 1 (Prototype Adaptive Langevin MCMC). 1. Simulate Y according

to the density qhn−1,Γn−1
(xn−1, y)

2. With probability
π(y)qhn−1,Γn−1

(y,xn−1)

π(xn−1)qhn−1,Γn−1
(xn−1,y)

set Xn = Y . Otherwise

set Xn = Xn−1

3. Construct new parameters (hn, Γn) = (hn(X0, . . . , Xn), Γn(X0, . . . , Xn))

4. Set n = n + 1 and repeat from step 1

(We are deliberately vague for now about how to choose Γ̂n). While an
algorithm of this type might seem like a natural solution to the problem of
tuning simulation parameters, finding an algorithm that converges properly
requires more care. The dependence of the update density qΓ̂n−1

(xn−1, y)
the past history X0, X1, . . . , Xn means that the algorithm 1 is no longer
a Markov Chain on R

d, and so existing results on the ergodicity of (non-
adaptive) MCMC do not apply here. In [19] the authors demonstrate several
‘intuitively plausible’ adaptive MCMC algorithms that nonetheless fail to
converge.

Several approaches to adaptive MCMC have already been proposed. Gilks
et. al. [10] demonstrate an ergodic algorithm that adapts only at certain
regeneration times; this work is extended in [8]. Unfortunately this method is
often impractical: regeneration times can be difficult to identify, and the time
between successive regenerations can be extremely long. Other approaches
focus specifically on adaptive Random Walk Metropolis (RWM) proposals;
in [11] the authors propose an adaptive Metropolis algorithm that attempts
to tune the proposal variance to (2.38)2Σ/d, where d is the dimension and
Σ is the (presumably unknown) covariance matrix of the co-ordinates of the
target. (This variance is optimal in certain cases by the main result of [21];
see also [6] for a generalisation of this result). Convergence is proved for this
algorithm using an argument based on mixingales (see [12]). These results
have since been generalised in [5] and [3], where a central limit theorem is
also proved. In [19] the authors give general regularity conditions for an
adaptive MCMC algorithm to converge, but it is not immediately obvious
whether these will hold for an adaptive Langevin algorithm.
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Adaptive Langevin algorithms have been studied previously, in [4]. Here
it is proved that a particular adaptive Langevin Algorithm with a truncated
drift component (similar to the T-MALA algorithm of [20] converges to π(·)
if it satisfies the following conditions:

Condition 1.2.1 (Atchadé). 1. The target density π(·) has finite second
moment.

2. π(·) satisfies the following conditions:

lim
|x|→∞

x

|x|
· ∇ log π(x) = −∞,

and

lim sup
|x|→∞

x

|x|
·
∇ log π(x)

|∇ log π(x)|
< 0,

3. The ‘acceptance rate in stationarity,’ τ , viewed as a function of the
adaptive step-size parameter h, is linear near its maximum, i.e.

(h − hopt)(τ(h) − τ(hopt)) < −δ|h − hopt|

for some δ, where τ(h) is defined as

τ(h) =

∫ ∫

αh(x, y)qΓ(x, y)π( dx) dy.

We will refer to this algorithm as ‘AT-MALA’ (Adaptive Truncated MALA).
In this paper, we develop regularity conditions under which a Langevin

algorithm with the proposal form in (1) will be ergodic. Our approach in-
volves extending a result in [20] for (non-adaptive) Langevin algorithms in
order to demonstrate that the regularity conditions for a general ergodicity
result in [19] hold for a given class of adaptive Langevin algorithms. We also
correct a minor error in one of the key theorems of [20].

2 Adaptive MCMC algorithms

In this section we take a look at adaptive MCMC algorithms in general
before focusing on adaptive Langevin algorithms in later sections. We will
need some notation.
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Let π(x) be our target density, where x lies in some measurable space (X ,
F). As before, let qλ(x, ·) be a family of proposal density and let Pλ(x, ·) be
the corresponding transition kernels. The subscript λ is some parameter of
q that we will refer to as the adaptive parameter (in our prototype algorithm
1 λ is the pair (h, Γ)). We also restrict λ to lie in some set Λ - this will
turn out to be necessary for convergence. Assume we have some strategy
for updating λ at each time n based on the past history of λ0, . . . , λn−1 and
X0, . . . , Xn−1; λ is then a σ((X0, λ0), (X1, λ1), . . . , (Xn−1, λn−1))-measurable
random variable taking values in Λ. We will refer to the sequence of pairs
(X0; λ0), . . . , (Xn; λn) as the adaptive chain, and to λ0, . . . , λn as the adaptive
sequence.

Our aim is to prove that a suitable adaptive algorithm satisfies the fol-
lowing two conditions:

Condition 2.0.2 (Diminishing Adaptation).

lim
n

sup
x∈X

‖Pλn+1
(x, ·) −Pλn(x, ·)‖ = 0 in probability.

Condition 2.0.3 (Simultaneous Geometric ergodicity). There is C ∈ F , V :
X → [1,∞), δ > 0, λ < 1, and b < ∞, such that supC V = v, and

1. (marginal minorisation condition) for each λ ∈ Λ there is some proba-
bility measure νλ(·) on C with Pλ(x, ·) ≥ δνλ(·) for all x ∈ C, and

2. (simultaneous geometric drift condition) PλV ≤ λV +bIc for all x ∈ X ,

where this latter statement holds simultaneously for all λ ∈ Λ.

If these conditions are satisfied, then the following theorem from [19]
implies that the adaptive algorithm converges:

Theorem 2.0.4. Suppose an adaptive chain (Xn, λn) on a state-space (X ,F)
with a family of transition kernels Pλ, λ ∈ Λ satisfies conditions 2.0.2 and
2.0.3.

Then supA∈F ‖P(Xn ∈ A) − π(A)‖ → 0 as n → ∞.
i.e. the adaptive chain (Xn, λn) converges to π in total variation distance.

The diminishing adaptation condition intuitively means that we adapt
less and less as time increases. Though this condition can sometimes be
awkward to verify in practice, most adaptive algorithms can be made to
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satisfy it: either by forcibly reducing the absolute amount of adaptation as
time increases, or by adapting at step n with probability pA(n), and forcing
pA(n) → 0 as n → ∞.

The simultaneous geometric ergodicity condition is a combination of two
conditions: that each kernel Pλ(x, ·) is geometrically ergodic, and that the
collection of kernels Pλ, λ ∈ Λ are all geometrically ergodic ‘in the same way’.
These two properties are less intuitive than diminishing adaptation, and are
consequently harder to verify. Most of our effort in section 3 will focus on
establishing these properties.

2.1 Effects of heterogeneous scaling on Langevin algo-
rithms

The following theorem from [18] gives the optimal acceptance rate and a mea-
sure of the lost efficiency for a Langevin algorithm that uses an improperly
specified covariance parameter Γ. This loss of efficiency is the motivation for
adaptively adjusting Γ.

Theorem 2.1.1 (Heterogenous Langevin Scaling). Let (Xn)n≥0 be a Metropolis-
Hastings chain with target density π, where

π(x) =

d
∏

i=1

Ciπ(Cix
(i)), (2)

where the Ci are i.i.d. random variables with E(Ci)
6 < ∞, and with Langevin

proposals Y of the form

Y ∼ N(Xn +
σ2

d

2
∇ log π(Xn), σ

2Id)

as before. Letting σ2
d = l2/d1/3, and defining

Zd
t = X

(1)

[d1/3t]
.

Assume that the densities π satisfy the regularity conditions as in [17].
Then:

1. Zd
t converges weakly to

dZt = h(l)1/2 dWt +
h(l)∇ log π(Zy)

2
dt
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as d → ∞, where
h(l) = 2l2Φ(−Jkl3),

where J is the quantity

J =

√

Eπ

(

5(log π)′′′(X)2 − 3(log π)′′(X)3

48

)

and k is given by

k =
√

E(C6
1 )/E(C1)6

2. The asymptotic acceptance rate is 2Φ(−kJl3), and the optimal algo-
rithm is that having acceptance rate 0.574.

3. The asymptotic efficiency of the algorithm is reduced by a factor of k1/3

compared to the homogeneous algorithm with Ci = 1 ∀i.

Asymptotic efficiency here refers to the speed measure of the limiting
diffusion Zt. Since Zt arises as a scaled limit of the first component of Xn,
this particular measure only applies to functionals of the first component.
Corresponding expressions exist for all the other components.

Proof. The proof is virtually identical to the proof of Theorems 1 and 2
in [17]. If we change the likelihood used in those results to the expression
in 2, replace expectation with respect to π, Eπ[·] with an iterated condi-
tional expectation conditioned on the Ci, E(Ci)i∈I

[Eπ[·|(Ci)i∈I ]], and follow
the (lengthy) argument through, the expressions in parts (i) and (ii) emerge
without any additional complications. We find the inefficiency factor k by
comparing the speed measures of the limiting diffusions in the homogeneous
and non-homogeneous cases.

Strictly speaking this result only applies to the particular family of densi-
ties in 2; in particular it requires a random structure on the scaling factors Ci

that would not be present in most conventional simulation problems. How-
ever it illustrates how sensitive Langevin algorithms can be to a mis-specified
scaling Γ.

If we wish to use this result to measure the inefficiency of an algorithm,
we will need an empirical version of the relative inefficiency k1/3. If we
use a Langevin algorithm with covariance parameter Γ to simulate from a
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multivariate Gaussian density with covariance Σ, then we define the empirical
relative inefficiency K̂ as:

K̂ :=
6

√

1
d

∑d
i=1 κ6

i

min(κi)6
, (3)

where the (κi)
d
i=1 are the inverses of the eigenvalues of the matrix Γ−1/2ΣΓ−1/2

(in the Gaussian case this is what the natural interpretation of the Ci). Our
reason for using [17]).

3 Ergodicity of the adaptive algorithm

We now state and prove our main result: that an adaptive Langevin algo-
rithm satisfying certain (intuitively plausible) conditions on the acceptance
rate possesses the simultaneous geometric ergodicity condition 2.0.3 . It then
only remains to prove the diminishing adaptation property 2.0.2; this turns
out to be more straightforward and we address this in section 4. We examine
when the regularity conditions hold for a toy family of densities in section 5.

Our argument is essentially a modified version of the proof of Theorem
4.1 of [20] (see also Appendix C, where we correct an error in one of the
regularity conditions used in that paper). From this point onward we return
to the parameterisation in (1), taking the adaptive parameter to be the pair
{h, Γ}.

Let π(x) be our target density, ch,Γ(x) = 1
2
hΓ∇ log π(x) be the mean

proposal, and

qh,Γ(x, y) := (2πhd)−d/2 exp
{

h−1(x − ch,Γ(x))T Γ−1(x − ch,Γ(x))
}

be our Langevin proposal density.
For a given parameter value h, Γ, we define Ah,Γ(x) to be the acceptance

region of Ph,Γ(x, ·) from x; the set of points such that Ph,Γ-proposed moves
from x to Ah,Γ(x) are always accepted. In other words:

Ah,Γ(x) = {Y : π(x)qh,Γ(x, y) ≤ π(y)qh,Γ(y, x)}. (4)

We also use the expressions Rh,Γ(x) and I(x) for the ‘potential rejection
region’ from x and for the interior of x respectively:

Rh,Γ(x) = Ah,Γ(x)C

I(x) = {y : |y| ≤ |x|}.
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We will assume the following three conditions:

Condition 3.0.2. There is an η > 0 such that:

η ≤ lim inf
‖x‖→∞

(‖x‖ − ‖ch,Γ(x)‖), ∀{h, Γ} ∈ L.

Condition 3.0.3.

lim
‖x‖→∞

∫

Ah,Γ(x)∆I(x)

qh,Γ(x, y) dy = 0,

uniformly for all {h, Γ} ∈ L.

Condition 3.0.4. The eigenvalues λΓ
i of Γ are uniformly bounded above and

below for all Γ ∈ L, i.e. there are constants e and E such that e ≤ λΓ
i ≤ E

for all 1 ≤ i ≤ d and over all Γ ∈ L.

Condition 3.0.5. The target density π(x) is bounded away from 0 and ∞
on compact sets.

We now state our core result:

Lemma 3.0.6. Consider a Langevin algorithm with mean proposal ch,Γ(x)
where the adaptive parameter {h, Γ} is a member of some set L. Suppose
that the conditions (1)-(4) hold. Then the algorithm is simultaneously geo-
metrically ergodic.

Proof. We show directly that the function Vs(x) = es‖x‖ satisfies the condi-
tions of Theorem 15.0.1 of [16] for suitable values of the constant s, which
implies simultaneous Vs-uniform ergodicity. Consider a fixed Γ, and split the
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integral PVs(x)/Vs(x) over the acceptance and rejection regions:

PVs(x)/Vs(x) ≤ (2πhd)−
d
2

∫

ah,Γ

exp

{

−
1

2
(y − ch,Γ(x))T Γ−1 (y − ch,Γ(x))

+ s(‖y‖ − ‖x‖)

}

dy

+ (2πhd)−
d
2

∫

RΓ

exp

{

−
1

2
(y − ch,Γ(x))T Γ−1 (y − ch,Γ(x))

+ s(‖y‖ − ‖x‖)

}

α(x, y) dy

+ (2πhd)−
d
2

∫

RΓ

exp

{

−
1

2
(y − ch,Γ(x))T Γ−1 (y − ch,Γ(x))

+ s(‖y‖ − ‖x‖)

}

(1 − α(x, y)) dy.

Now by intersecting the integration region of the second and third terms with
I(x), adding the remainder to the first term, and using the obvious upper
bounds, we obtain:

≤ (2πhd)−
d
2

∫

Rd

exp

{

−
1

2
(y − ch,Γ(x))T Γ−1 (y − ch,Γ(x))

+ s(‖y‖ − ‖x‖)

}

dy

+ (2πhd)−
d
2

∫

RΓ∩I(x)

exp

{

−
1

2
(y − ch,Γ(x))T Γ−1 (y − ch,Γ(x))

+ s(‖y‖ − ‖x‖)

}

dy

Multiplying the first term by exp(s(‖x‖ − ‖ch,Γ(x)‖)) and taking limits as
‖x‖ → ∞, this product asymptotes to exp(s21T Γ1/2), where 1 is the d-
dimensional vector of ones. By our third assumption, 1T Γ1 is bounded above,
by K say, so combining this with the first condition, we see that the lim sup
of the first term is less than exp(s2K/2) exp(−η), and that this bound is
uniform over all Γ ∈ L.

By our second assumption, the second term also converges to zero uni-
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formly in L, so for s <
√

2η/K we have that

lim sup
‖x‖→∞

P
Vs(x)

Vs(x)
< 1.

From this it follows that for large enough r, there are constants b and c such
that

PVs(x) ≤ bVs(x) + cI‖x‖≤r,

and that we can use the same Vs, b, c and r for all Γ ∈ L. To complete the
proof, we need to show that the set {x : ‖x‖ ≤ r} is small. This follows
from condition 3.0.5, the continuity of qh,Γ(x, y), and Theorem 2.2 of [23]
that compact sets are small.

This result has an immediate corollary:

Corollary 3.0.7. An adaptive chain possessing diminishing adaptation and
satisfying the conditions of (3.0.6) is ergodic.

Proof. This follows immediately from applying Lemma 3.0.6 to Theorem
(2.0.4).

3.0.1 Alternative regularity conditions

Although Lemma 3.0.6 describes sufficient conditions for ergodicity, these
conditions are not always easy to verify. We will find the following alternative
definition of the acceptance region useful in section 5:

Theorem 3.0.8 (Alternative acceptance region). For a given Γ, the accep-
tance region ah,Γ(x) is the set of y such that

∫ x

y

∇ log π(z) dz ≤
1

2
(x − y)T (∇ log π(x) + ∇ log π(y))

+
h

8
(∇ log π(x)T Γ∇ log π(x) −∇ log π(y)TΓ∇ log π(y)),

where the left hand side is a line integral.

Proof. In appendix A.

In section 5 we use this result to study the convergence of our algorithm
on a particular family of densities.

11



CRiSM Paper No. 09-04, www.warwick.ac.uk/go/crism

4 Description of the Algorithm

We now outline the basic form of our adaptive Langevin algorithm.

Definition 4.0.9 (Basic Adaptive algorithm). Let π(x), ch,Γ(x), and qh,Γ(x, y)
be as in section 3, and let

αh,Γ(X, Y ) =
π(Y )qh,Γ(Y, X)

π(X)qh,Γ(X, Y )

be the probability that a proposed move from X to Y is accepted. In a
slight abuse of notation, let α(n) = 1 if the proposed move at time n − 1
is accepted, 0 otherwise. Let E and ε be large and small real constants
respectively, and M be a positive integer (with a value of approximately 10).
Let h̄, h be upper and lower bounds on our step size h. Define the E-truncated
covariance estimator covE as:

covE(Z1, . . . , Zn) :=
1

n − 1

∑

i

(ZE
i − Z̄E)(ZE

i − Z̄E)T , (5)

where ZE = (Z1∧E, . . . , Zd∧E)T is the result of truncating all the elements
of the d × 1 vector Z by E, and Z̄E is the mean of (ZE

1 , . . . ZE
n ).

Finally, define an increasing sequence (ti)
∞
i=1 of covariance adaptation

times, such that ti > 0, limi→∞(ti − ti−1) = ∞ and (ti − ti−1) > d ∀i.
Also define a sequence c(n) such that c(n) → 0 as n → ∞.

The algorithm then proceeds as follows. We use two index variables in
this description - n keeps track of the number of iterations, while i records
the number of times we have adapted Γ:

Algorithm 2. 1. Set n = 1, i = 0

2. Choose an (arbitrary) initial state X0, multiplicative constant h0 > 0
and d×d positive-definite covariance matrix Γ0 with unit determinant.

3. Simulate Y = 1
2
Γ

1/2
i ∇ log π(x)Γ

1/2
i + Γ

1/2
i Z, where Z is a standard d-

dimensional normal random variable.

4. Set Xn = Y , with probability αhn−1,Γi
(Xn−1, Y ), otherwise set Xn =

Xn−1.

5. If n = ti, adapt Γ:

12
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(a) Compute a new covariance matrix Γi+1 =
covE(Xti−1+1,...,Xti)+εId

det(covE(Xti−1+1,...,Xti)+εId)
,

where Id is the d × d identity matrix.

(b) Set i = i + 1.

6. Compute a new step-size constant hn:

(a) Let h∗ = (0.001 × h) ∧ c(n)

(b) If 1
M

∑n
j=n−M α(j) < 0.574, set hn = hn−1 − h∗

(c) If 1
M

∑n
j=n−M α(j) ≥ 0.574, set hn = hn−1 + h∗

7. Set n = n + 1 and repeat from step 2.

4.1 Justification of the steps

This is not the only possible adaptive Langevin algorithm satisfying the con-
ditions of Lemma 3.0.6, but there are a number of reasons why we have
constructed the algorithm in this way. We outline the key points below.

We adapt Γn only at the times (ti)
∞
i=0 since adapting this parameter is

computationally expensive. By requiring that the time between adaptations
(ti− ti−1) tends to infinity we reduce the computational cost and ensure that
the adaptation of Γn satisfies the diminishing adaptation condition 2.0.2. By
contrast we adapt the step-size hn at every iteration since the computational
cost is much lower. Here we ensure diminishing adaptation by defining a
maximum abount of adaptation h∗ and reducing this with n.

The use of the truncated covariance estimator covE and the addition of
εId to the covariance estimate ensures that we satisfy condition 3.0.4 that
the eigenvalues of Γn are bounded above and below. This also prevents
degenerate behaviour such as Γn becoming singular due to numerical roundoff
errors.

The updated covariance parameter Γi+1 is calculated using only the sub-
sample Xti−1+1, . . . , Xti ; the X-values simulated using the previous covariance
parameter Γi. This is done since Γi is presumably the closest estimate so far
of the true covariance Γ; using a larger sample would therefore only add noise
to our covariance estimate. Empirical simulations seem to support our use of
this subsample, though a formal proof does not seem possible in the absence
of a proof that Γi converges.

The step-size hn is adapted at each step using only the acceptance rate
over the last M samples; the maximum amount of adjustment is reduced

13
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Figure 1: Step sizes against n from an adaptive simulation on a 20-
dimensional Gaussian target density with M = 500. After a non-adaptive
‘burn-in’ period were the covariance multiplier is kept unchanged, the algo-
rithm keeps ‘over-correcting’ the step size, leading to the observed instability.

with n to satisfy diminishing adaptation. In our simulations in section
6 we used M = 10; the reason for such a small M is to prevent the h-
adaptation from ‘overshooting’. If M is large then the empirical acceptance
rate 1

M

∑n
j=n−M α(j) changes relatively slowly, which can cause hn to rpeat-

edly under- and over-adapt (Fig. 1). A small value of M prevents this (Fig
2).

It is worth noting that it is straightforward to implement an adaptive-
RWM algorithm with essentially the same structure as 2, the only necessary
modification to the adaptation is to alter the target acceptance rate to 0.234,
in line with the main result of [21]. We compare the performance of the
adaptive Langevin and RWM algorithms in Section 6.

4.2 Implementing the algorithm

In practical simulations (see section 6) we have found that a good choice for
the covariance adaptation times (ti) is to take t1 = K for some constant K,
then let t2 − t1 = d(d − 1)/2, and increase the length of each subsequent
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Figure 2: Step sizes against n from an adaptive simulation on a 20-
dimensional Gaussian target density with M = 10. The instability in Fig. 1
is no longer evident.

interval geometrically , so that ti − ti−1 = (1 + a)(ti−1 − ti−2), for some
a > 0. The constant K defines an ‘adaptive-burn-in’ interval for Γ; this
allows the algorithm to find a good initial step size before choosing a new Γ.
The choice of a controls the frequency of the covariance adaptations - smaller
values mean more frequent adaptations using smaller subsample sizes. We
have generally found it better to use small values of a; in section 6 we used
a = 0.03.

The choice of step size adaptation bound c(n) is somewhat arbitrary. In
our simulations we used c(n) = bn−r, choosing b and r so that the diminishing
effect began at a point about halfway through the run.

Leaving the choice of these adaptive hyperparameters up to the user is
in some ways unsatisfactory; the goal of adaptive MCMC is to remove the
need for such tuning. However, since there are only a small number of adap-
tive hyperparameters and these will typically be much less sensitive to mis-
specification than h and Γ, the algorithm does substantially reduce the need
for tuning by the user.
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5 Application to a family of exponential mod-

els

We demonstrate our results when our algorithm is applied to the target family
of exponential models given by

πs(x) ∝ e−γ‖x‖β

. γ > 0, β > 0 (6)

While this may seem quite a restrictive class, this behaviour need only occur
in the tails since our ergodicity results are only concerned with the limiting
behaviour as ‖x‖ → ∞. All of our upcoming remarks apply equally to any
density π(·) satisfying

π(x)e−γ‖x‖β

→ c as ‖x‖ → ∞. (7)

We also note that essentially identical arguments apply to families of the
form

πs(x) ∝ e−γ(xT Σ−1x)β/2

. γ > 0, β > 0, (8)

where Σ is a positive definite matrix.
The behaviour of the algorithm on this family depends on the value of β

(in what follows, we assume condition 3.0.4 is satisfied):

• If 0 < β < 1 (the ‘super-exponential’ case) then we can see from
Theorem 3.0.8 that for large ‖x‖ the acceptance region AΓ,h(x) contains
the region ‖y‖ ≥ K‖x‖ for some K. From this it is straightforward to
show that condition 3.0.3 does not hold.

• If β = 1 (the exponential case), then a similar argument shows that
condition 3.0.3 still does not hold.

• If 1 < β < 2 (the ‘sub-exponential’ case) then both condition 3.0.2 and
condition 3.0.3 hold; we prove this in Appendix B.

• β = 2 (the ‘Gaussian case’) is a threshold case. Condition 3.0.4 together
with Theorem 3.0.8 together show that for large |x|, the acceptance
region AΓ,h(x) contains the ball {‖y‖ ≤ K‖x‖}, for some constant
K that is independent of Γ; this is enough to imply condition 3.0.3.
Condition 3.0.2 is satisfied when h̄γE < 2 , where E is the upper
bound from condition 3.0.4.
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• If β > 2 (the ‘extremely light-tailed’ case) neither condition 3.0.2 nor
3.0.3 hold.

It follows that our adaptive algorithms will only be ergodic in the light-
tailed case, which is consistent with the behaviour of non-adaptive algo-
rithms. In the extremely light-tailed case, our algorithm is not ergodic.

5.1 Comparison with AT-MALA

We now compare the ergodicity properties of our algorithm with those of
the adaptive T-MALA from [4]. Recall the following conditions of [4] from
(1.2.1). In particular we consider the following:

lim
|x|→∞

x

|x|
· ∇ log π(x) = −∞,

and

lim sup
|x|→∞

x

|x|
·
∇ log π(x)

|∇ log π(x)|
< 0.

For the exponential family 6 we see that:

x

|x|
· ∇ log π(x) = −s|x|s−1

∇π(x)

|∇π(x)|
·

x

|x|
= −

x.x

|x|2

= −1

so that this condition is satisfied when s > 1. This is identical to the con-
vergence criterion for (non-adaptive) truncated-MALA algorithms for this
family as described in [20], and should therefore not be surprising.

The differences between our algorithm and the AT-MALA of [4] therefore
seems to be very similar to the differences between non-adaptive MALA
and T-MALA. In both cases the truncated algorithm displays more robust
convergence properties, at the expense of making smaller jumps.
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6 Simulation results

6.1 Gaussian target density

We tested our algorithm using a 100-dimensional Gaussian distribution as the
target π(·). The mean of the target was chosen to be zero, and a covariance
matrix Σ was generated by simulating a vector u of 100 independent U [−2, 2]
random variables, and forming the products:

S = uuT

Σ = ST S.

This produced a matrix Σ with large heterogeneities of scale (smallest and
largest eigenvalues differed by a factor of 20,000). The algorithm was started
with initial state X0 = 0 and initial adaptive parameters h0 = 1.0 and Γ0 =
I100. The simulation was conducted over 2×106 iterations. We compared the
output of this algorithm with that of an adaptive RWM algorithm started
with the same X0, h0, and Γ0 and run for the same number of iterations.

For comparison purposes we also performed the same simulation using an
adaptive Random Walk Metropolis algorithm.

Figure 3 shows the trace of the first component over the first 100,000
iterations; the adaptive behaviour is immediately apparent. The mixing is
initially extremely poor, but improves rapidly after a few iterations. This
effect can also be seen in Figure 4, which shows the improvement in the
mean-squared jump distance (MSJD) after each adaptation, and in Figure 5,
which shows the step-size parameter h at each iteration. The improvement
is surprisingly rapid; almost all the improvement in MSJD occurs after just
a few iterations.

Comparison with the adaptive Random Walk Metropolis simulation show
that the Langevin algorithm performs significantly better. Figure 6 shows
sample autocorrelations of of selected components of the final 1 × 106 itera-
tions from both the Langevin and RWM simulations (the first 1 × 106 iter-
ations were discarded in order to reduce bias from early, badly tuned parts
of the simulation). The Langevin autocorrelations decrease rapidly, and are
statistically insignificant at lags greater than 35. The RWM autocorrelations
by contrast decrease much more slowly; a more detailed autocorrelation plot
shows that RWM still exhibits significant correlations at lag 1000. Also worth
noting is that all components display the same autocorrelation structure: this
is consistent with the theory.
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Figure 3: Trace plot of the adaptive algorithm applied to a 100-dimensional
Gaussian target distribution with extremely heterogenous scaling. The plot
shows the first component of the first 105 iterations. The algorithm is started
with a step size h that is too large and spends the first 20000 iterations reduc-
ing h to obtain an optimal acceptance rate. The covariance parameter Γ is
adapted at times n = 30120, 40544, 51281, 62340, 73731, 85463, 97547. Only
the early adaptations produce any dramatic improvements in the mixing; the
algorithm seems to reach its optimum efficiency quite quickly.
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Figure 4: Mean-Squared Jump Distance (MSJD) attained by successive
adaptive estimates Γi of the covariance parameter Γ. Total simulation length
was 2 × 106 iterations, target was a 100-dimensional Gaussian. The ‘x-axis’
position of each ‘+’ is the time at which Γi was adaptively updated to Γi+1, its
‘y-axis’ value is the MSJD the algorithm achieved using Γi. The improvement
due to adaptation occurs very rapidly; the MSJD after eight adaptations is
near to the maximum attained during the whole simulation. Initial MSJD is
1.655 × 10−3, the final (and maximal) value attained is 5151.2.
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Figure 5: Values of the step size parameter h chosen by the adaptive Langevin
algorithm over the course of a simulation of 2 × 106 iterations. The plot on
the left shows the first 250000 iterations, that on the right shows the entire
simulation. The initial h-value of 0.01 is too large - over the first 30,000
iterations the algorithm reduces h to around 3 × 10−5 (this behaviour is not
visible on this scale). The rapid jumps in h occur after adaptations of Γ - this
is consistent with the theory. Note also the effect of diminishing adaptation
towards the end of the simulation. Final Step size is 27.708
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Figure 6: Sample autocorrelations of selected components of the output from
the adaptive Langevin (left) and adaptive RWM (right) algorithms. The al-
gorithms were run for 2×106 iterations on the same 100-dimensional Gaussian
target distribution; the sample autocorrelations were computed using the fi-
nal 1×106 iterations. The Langevin algorithm displays negligible correlation
in all these components for lags greater than 30; a more detiled examination
shows that the RWM algorithm still shows significant corelations even for a
lag of 1000.
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6.2 Log-Gaussian Cox Process

Log-Gaussian Cox process (LGCPs), introduced independently in [14] and
[9], are a type of spatial point process - a finite random subset of some
bounded set S ⊆ R

2 (this is not the most general definition, but it is enough
for our purposes). A point process X is a Cox process with random intensity
F = {F (u) : u ∈ S} if, conditionally on F , X is a Poisson process (see [13])
with intensity function F . X is said to be a log-Gaussian Cox Process if it
is a Cox process and additionally log(F ) is a Gaussian random field.

We consider the following parameterisation of the Gaussian field Y := log(F ).
Let Y have a constant mean β, and let the covariance cov(Y (u), Y (v) between
two points u and v be given by the function:

cσ(u, v) = σ2 exp (−‖u − v‖) , (9)

so that the covariance is stationary and isotropic.
LGCPs have found modelling applications in a variety of biological point-

data problems, including forestry, weed modelling, and disease mapping (see
[14], [1], [2] and [7]). A common feature of the cited examples is that the
data consists of point-pattern observations x := x1, . . . , xn of some quantity
of interest within a fixed observation window W . In particular the field Y and
intensity F = exp(Y ) are not observed. This makes inference challenging,
since there is a large quantity of missing data. An additional problem for
Bayesian analysis is that the conditional density of Y given the observations
x, given by

fY |X((ys)s∈W |x) ∝ E[P(x|(ys)s∈W )

× fY ((ys)s∈W )
(10)

is not analytically tractable, since the field Y involves an infinite number of
random variables. In practice we partition the window W into (rectangular)
cells (Ci)i∈I and approximate Y by a step function Ŷ that is constant on
each Ci. This allows us to approximate the true posterior density fβ,σ,Y |X

with a computable estimate f̃β,σ,Ỹ |X given by:

f̃β,σ,Ỹ |X ∝ p(β)p(σ)σ−d exp

{

−
∑

i∈I

|Ci| exp(ỹi) +
∑

i∈I

ni log(|Ci|) +
∑

i∈I

niỹi

}

× exp
{

−σ−2(ỹ − β1)T P (ỹ − β1)
}

.

(11)
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Here ni is the number of points in cell Ci, p(β), p(σ) are the prior den-
sities on β, σ respectively, and the precision matrix P is given by Pi,j :=
exp (‖ui − uj‖), where ui is the point in the centre of the cell Ci. We would
expect the approximate likelihood (11) to converge to the true likelihood as
we refine the partition, and indeed this turns out to be true ([24]).

There is a closed form expression for ∇ log(f̃), so it is possible to sample
from f̃ using a Langevin algorithm. However there is the problem that the
tails of f̃ are doubly exponential in Y (there is an exp− exp y term), and the
results of section 5 therefore do not apply in this example. There are sev-
eral possible ways of restoring ergodicity; we choose to do so by truncating
the support of f̃ and restricting β, sigma, yi to the (large) bounded region
{β, σ,y : −100 ≤ β ≤ 100, 0 < σ ≤ 200,−720 ≤ yi ≤ 720}. As it turned out,
none of the parameters approached these bounds during our simulation. Al-
ternative means of restoring ergodicity include replacing every Rth iteration
with a Random-Walk Metropolis or Independence Sampler update.

We simulated point data (x̃) from f̃ with β = 1.6 and σ = 0.9. The
observation window W was the set [0, 30] × [0, 10] and the step-function Ŷ
used was a 30×10 grid of cells of unit size; the dimension d of f̃ was therefore
302. In total the simulation produced n = 2292 points in W . On this data
x̃ we then simulated 5× 106 iterations of the adaptive algorithm with target
density f̃ , started from initial state β0 = 0.2, σ0 = 0.5, yi = 0.2 ∀i. As
outlined at the end of section 4 we used an adaptive burn-in period of 45602
(= d2/2) iterations. The first covariance adaptation was at time n = 91204
and the time between adaptations was increased by a factor of 1.03 after each
adaptation.

Figure 8 shows trace plots from β and σ at four different points during
the simulation. Both parameters show a rapid initial improvement due to
adaptation of the step-size h. However, only sigma shows an obvious im-
provement after this. This is supported by the sample ACF plots (Figure 9),
and by the trace plot of the step sizes (Figure 7), all of which indicate that
the benefits of adaptation occur within the first 2 × 105 iterations. This is
surprisingly quick given the dimensionality of the problem.

7 Concluding Remarks

We have presented an algorithm for adaptively choosing the step-size and
covariance multiplier of a MALA algorithm. The ergodicity requirements for
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Figure 7: Trace plots of the step size parameter h over the first 100000 itera-
tions (left), and over all 5000000 iterations (right). The first three covariance
adaptations have a significant effect on the step size; the effect of subsequent
adaptations is less obvious. The effects of diminishing adaptation can also
be clearly seen.

the adaptive algorithm are not much stricter than those for non-adaptive
MALA, and it significantly outperforms adaptive Random Walk Metropolis
algorithms in situations where both algorithms are ergodic. These theoretical
results are confirmed by simulations.

Our algorithm differs from the AT-MALA introduced in [4] in several
key aspects. AT-MALA has weaker conditions for convergence than our
algorithm; this is consistent with the behaviour of the corresponding non-
adaptive algorithms (described in [20]). However, in the case of a target
density where both algorithms converge, the additional truncation step in
AT-MALA will only serve to reduce the mean squared jump distance and
increase autocorrelations.

It is possible that the regularity conditions in Lemma 3.0.6 can be weak-
ened. In particular the bounds placed on hn and Γn seem to be too strong
a condition - experimental simulations without these restrictions in place do
not behave observably differently.

This is related to the question of whether the adaptive parameters (hn, Γn)
converge to some optimal value (h∗, Γ∗) as n → ∞. Lemma 3.0.6 does not
address this issue, since convergence of the adaptive parameters is unnec-
essary for convergence of Xn. In the simulation results of section 6 these
parameters do appear to converge, but proving this convergence under suit-
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Figure 8: Trace plots of β (left) and σ (right) at different points during the
simulation: iterations 1–10000 (top), 10001 – 20000 (second row), iterations
200001 – 210001, and iterations 4999001 – 5000000 (bottom). The first two
adaptations of the covariance parameter Γ occur between the second and
third rows. Both parameters show an improvement from the first to second
row - this is due to step size adaptation. Only sigma shows an obvious
improvement from the second to third row, and neither parameter shows a
clear improvement from third to fourth row
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Figure 9: Sample autocorrelation functions (ACF) for beta and sigma from
three different subsamples: iterations 10001 – 90000 (top), 200001 – 280000
(middle) and 4920001 – 5000000 (bottom). Both parameters show a clear
reduction in large-lag autocorrelations from top to middle, but that for σ is
much more pronounced. sigma also shows a slight increase in small-lag au-
tocorrelations in the middle row. Neither shows any significant improvement
from the middle to bottom rows.
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ably weak conditions is more difficult. The author of [4] proves that these
parameters converge for AT-MALA, but only by assuming strong conditions
on the acceptance rates in stationarity that would be difficult to verify in
practice.

Questions also remain over the optimal

A Proof of Theorem 3.0.8

By definition, Ah,Γ(x) = {y : π(x)qh,Γ(x, y) ≤ π(y)qh,Γ(y, x)}. We prove the
result by substituting in our choice of qh,Γ and manipulating this inequality.

As before, we define ch,Γ(x) = x + 1
2
Γ∇ log π(x) to be the mean of the

Langevin proposal. Our proposal density qh,Γ(x, y) is then:

qh,Γ(x, y) = (2πh)−d/2 exp

{

−
1

2h
(y − ch,Γ(x))T Γ−1(y − ch,Γ(x))

}

(12)

Substituting this into our definition of Ah,Γ(x) in (4), we see that Ah,Γ(x) is
the set of y such that

π(x)

π(y)
≤ exp

{

−1

2h

[

(y − ch,Γ(x)T Γ−1(y − ch,Γ(x))

− (x − ch,Γ(y))TΓ−1(x − ch,Γ(y))
]

}

.

Taking logs and using polarisation gives:

log π(x) − log π(y) ≤
−1

2h

[

(y + x − ch,Γ(x) − ch,Γ(y))TΓ−1

(y − x − ch,Γ(x) + ch,Γ(y))
]

.

We now manipulate this expression further.

log π(x) − log π(y) ≤
1

2h

(

h

2
Γ(∇logπ(x) + ∇ log π(y))

)T

Γ−1

(

2(x − y) +
h

2
Γ(∇logπ(x) −∇ log π(y))

)

≤
1

2
(x − y)(∇logπ(x) + ∇ log π(y))

+
h

8
(Γ(∇logπ(x) −∇ log π(y)))T ((∇logπ(x) + ∇ log π(y))) .
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This simplifies to:

log π(x) − log π(y) ≤
1

2
(x − y)T (∇logπ(x) + ∇ log π(y))

+
h

8

(

∇ log π(x)T Γ∇ log π(x) −∇ log π(y)TΓ∇ log π(y)
)

.

Since ∇ log π(x) is the gradient of the scalar field log π(x), we can rewrite
the left hand side as a line integral.

B Proof of regularity conditions (1) and (2)

for the exponential family π(x) = e−γ‖x‖β

when 1 < β < 2

We seek to prove that the following conditions hold for the exponential family
π(x) = e−γ‖x‖β

when 1 < β < 2.

1. ∃η > 0 s.t. η ≤ lim inf‖x‖→∞(‖x‖ − ‖cΓ(x)‖), ∀Γ ∈ L

2. lim‖x‖→∞

∫

AΓ(x)∆I(x)
qΓ(x, y) dy = 0, uniformly for all Γ ∈ L.

B.0.1 Condition 1

To prove the first condition for all Γ ∈ L, it is sufficient to prove that there
is a constant K such that

∥

∥

∥

∥

x − γ
β

2
Γx‖x‖β−2

∥

∥

∥

∥

2

< ‖x‖2 (13)

for all ‖x‖ > K, and that K can be chosen independently of Γ.
Recall that from condition 3.0.4, we have global lower and upper bounds

e, E on the eigenvalues (λΓ
i )d

i=1 of all Γ ∈ L, so that e ≤ λΓ
i ≤ E for all i, Γ.

We start by writing the norm as an inner product

∥

∥

∥

∥

x − γ
β

2
Γx‖x‖β−2

∥

∥

∥

∥

2

=

〈

x − γ
β

2
Γx‖x‖β−2, x − γ

β

2
Γx‖x‖β−2

〉

= ‖x‖2 − γβ‖x‖β−2〈x, Γ〉 +
γ2β2

4
‖x‖2(β−2)〈Γx, Γx〉.
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So if we can show that

γβ

4
‖x‖β−2〈Γx, Γx〉 < 〈x, Γx〉, (14)

then this will be enough to imply 13. We continue by observing that

γβ

4
‖x‖β−2〈Γx, Γx〉 ≤

γβ

4
‖x‖β−2E2‖x‖2

=
γβ

4
E2‖x‖β

and

〈x, Γx〉 ≥ e‖x‖2, (15)

and so it is sufficient to prove that

e‖x‖2 >
γβ

4
E2‖x‖β (16)

Since β < 2, it follows that we can choose K such that (16) holds for all
‖x‖ > K. Since none of the constants in (16) involve Γ, it follows that K
does not depend on Γ, and the result follows.

B.0.2 Condition 2

Substituting π(x) = e−γ‖x‖β
into Theorem 3.0.8 we see that a point y is in

the acceptance region A(x) if and only if:

−γ‖x‖β + γ‖y‖β ≤
−γβ

2
(x − y)T (‖x‖β−2x + ‖y‖β−2y)

+
h

8
γ2β2(‖x‖2(β−2)xT Γx − ‖y‖2(β−2)yTΓy).

Re-arranging this expression we see that y ∈ A(x) iff:

0 ≤ (γ −
1

2
γβ)(‖x‖β − ‖y‖β) +

1

2
γβ(‖x‖β−2 − ‖y|β−2)〈x, y〉

+
h

8
γ2β2(‖x‖2(β−2)xT Γx − ‖y‖2(β−2)yTΓy).
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The first term on the right hand side is positive for all ‖x‖ > ‖y‖. An
application of Cauchy-Schwarz to the second term shows that it is dominated
by the first term as ‖x‖ → ∞. Condition 3.0.4 allows us to place uniform (in
Γ) Lipschitz bounds on the matrix products in the third term, from which
we can deduce that this term is also positive for sufficiently large ‖x‖.

Together these imply that for every r we can choose K = K(r) such that
{y : ‖y‖ < r}, the ball of radius r is in the acceptance region A(x) for all
‖x‖ > K(r), and that we can choose K such that it does not depend on Γ.
This together with the fact that

∫

X
qh,Γ(x, y) dy = 1 implies the result.

C Correction to Theorem 18 of [20]

We begin by defining non-adaptive versions of the quantities in section 3
As before, let π(x) be our target density, c(x) = 1

2
∇ log π(x) be the mean

proposal, and

q(x, y) := (2π)−d/2 exp
{

(x − c(x))T (x − c(x))
}

be our Langevin proposal density.
Similarly, define A(x) and R(x), as the obvious analogues to Ah,Γ(·) and

Rh,Γ(x), and let I(x) be the interior as before.
With these quantities defined, we can now state the corrected version of

the earlier theorem:

Theorem C.0.1 (Roberts and Tweedie, 1996, corrected). Suppose that c(x) =
x + 1

2
h∇ log π(x) is the mean “next candidate position”, and that

η ≡ lim inf
|x|→∞

(|x| − |c(x)|) > 0; (17)

and assume A(·) converges inwards in q. If Vs(x) = es|x|, then the algorithm
is Vs uniformly ergodic for s < 2η/h.

Proof. Omitted, since this result is a special case of Lemma 3.0.6 and the
proofs are nearly identical.

The uncorrected version stated that the result held for s < 2hη.
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[5] Yves Atchadé and Jeffrey Rosenthal. On adaptive markov chain monte
carlo algorithms. Bernoulli, 11(5):815–828, 2005.

[6] Mylène Bédard. On the Robustness of Optimal Scaling for Random Walk
Metropolis Algorithms. PhD thesis, University of Toronto, 2006.

[7] V. Benes, K. Bodlak, J. Møller, and R.P. Waagepetersen. A case study
on point process modelling in disease mapping. Image Analysis and
Stereology, 24:159–168, 2005.

[8] A. E. Brockwell and J. B. Kadane. Identification of regeneration times
in mcmc simulation, with aplication to adaptive schemes. J. Comp.
Graph. Stat., 14:436–458, 2005.

[9] P. Coles and B. Jones. A lognormal model for the cosmological mass
distribution. Royal Astronomical Society, Monthly Notices, 248:1–13,
January 1991.

[10] Walter R. Gilks, Gareth O. Roberts, and Sujit K. Sahu. Adaptive
markov chain monte carlo through regeneration. Journal of the Ameri-
can Statistical Association, 93(443):1045–, 1998.

[11] H. Haario, E. Saksman, and J. Tamminen. An adaptive metropolis
algorithm. Bernoulli, 7:223–242, 2001.

32



CRiSM Paper No. 09-04, www.warwick.ac.uk/go/crism

[12] Peter Hall and C. C. Heyde. Martingale Limit Theory and its Applica-
tion. Academic Press, 1980.

[13] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in
Probability. The Clarendon Press Oxford University Press, New York,
1993. Oxford Science Publications.

[14] Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge
Waagepetersen. Log gaussian cox processes. Scandinavian Journal of
Statistics, 25(3):451–482, 1998.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. J.
Chem Phys., 21:1087–1092, 1953.

[16] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability.
Springer-Verlag, London, 1993. Available at probability.ca/MT.

[17] Gareth Roberts and Jeffrey Rosenthal. Optimal scaling of discrete ap-
proximations to langevin diffusions. Journal of the Royal Statistical
Society. Series B, 60(1):255–268, 1995.

[18] Gareth Roberts and Jeffrey Rosenthal. Optimal scaling for various
metropolis-hastings algorithms. Statistical Science, 15(4):351–367, 2001.

[19] Gareth Roberts and Jeffrey Rosenthal. Coupling and ergodicity of adap-
tive mcmc. J. Appl. Prob., 44(2):458–477, 2007.

[20] Gareth Roberts and Richard Tweedie. Exponential convergence of
langevin diffusions and their discrete approximations. Bernoulli,
2(4):341–363, 1996.

[21] G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and
optimal scaling of random walk metropolis algorithms. Ann. Appl. Prob.,
7(1):110–120, 1996.

[22] G.O. Roberts and A.F.M. Smith. Simple conditions for the convergence
of the gibbs sampler and metropolis-hastings algorithms. Stochastic
Processes and their Applications, 49:207–216, 1994.

33



CRiSM Paper No. 09-04, www.warwick.ac.uk/go/crism

[23] G.O. Roberts and R.L. Tweedie. Geometric convergence and central
limit theorems for multidimensional hastings and metropolis algorithms.
Biometrika, 83(1):95–110, 1996.

[24] Rasmus Waagepetersen. Convergence of posteriors for discretized log
gaussian cox processes. Statistics and Probability Letters, 66(3):229 –
235, 2004.

34


