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Summary. Conjugacy assumptions are often used in Bayesian selection over a partition be-
cause they allow the otherwise unfeasibly large model space to be searched very quickly. The
implications of such models can be analysed algebraically. In this paper we use the explicit
forms of the associated Bayes factors to demonstrate that such methods can be unstable un-
der common settings of the associated hyperparameters. We then prove that the regions of
instability can be removed by setting the hyperparameters in an unconventional way. Under
this family of assignments we prove that model selection is determined by an implicit sepa-
ration measure: a function of the hyperparameters and the sufficient statistics of clusters in
a given partition. We show that this family of separation measures has plausible properties.
The proposed methodology is illustrated through the selection of clusters of longitudinal gene
expression profiles.
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1. Introduction

When a model space is vast, it is often expedient to select a Bayesian model using conjugate
priors, see for example (Barry and Hartigan, 1992; Heard et al., 2006). The Bayes factors
then have a simple algebraic form so the comparison of two models is then almost instanta-
neous. This makes search algorithms for models with high posterior probability in this huge
partition space orders of magnitude faster than their numerical non-conjugate analogues.

In this paper we demonstrate that the explicit nature of this type of selection algorithm
has another advantage. The properties and characteristics of the algorithm can be studied
algebraically. In our particular case, its underlying geometry is linked with the well-studied
behaviour of products of t-distributions, see for example (O’Hagan and Le, 1994; Chipman
et al., 2001) and references therein. This enables us to explain not only how and why con-
jugate Bayesian model selection can break down under default settings of hyperparameters,
but also to show that most of these apparent anomalies are removed if the hyperparameters
are calibrated to plausible pre-posterior predictions, within a particular subfamily of these
conjugate models.

In the next section we briefly review the geometry of the types of products of t-densities
which form the marginal likelihoods of this class. In section 3 we demonstrate how this
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geometry impinges on model selection based over partitions with particular emphasis on
the methodology proposed in Heard et al. (2006). We illustrate how and why standard
settings of hyperparameters can produce poor selection characteristics in section 4. In
section 5 we derive explicit characterisations ensuring that Bayes factor selection prefers
partitions that combine clusters when they are close with respect to a certain separation
measure. In sections 6 and 7 we examine properties of this implicit separation measure.
This enable us to make a direct link between Bayes Factor selection and more conventional
separation based clustering methods, see (Chipman and Tibshirani, 2006; Gordon, 1999;
Hastie et al., 2001). We demonstrate that a partition, C1, is preferred to another, C2,
(which is identical to C1 except that two particular clusters in C1 are combined into one
cluster in C2) if and only if the sufficient statistics of the two clusters in C1 are different
enough from one another in a certain, very natural, sense.

In a careful study of model selection over large spaces of linear models, Chipman et al.
(2001) argue that hyperparameters should be set to make prior assumptions minimally
influential. However, when selecting across a space of partition models, we argue that
such a strategy is futile and all settings of hyperparameters have a different and strong
effect on model selection over this domain. The analysis below allows us to adopt a proper
Bayesian approach analogous to Garthwaite and Dickey (1992) which is straightforward is
this domain. We demonstrate that it is straightforward to elicit values of hyperparameters
within the class of proportional models so that they calibrate to pre-posterior predictions
associated with the model space in a given context. It is also possible to demonstrate both
analytically and numerically that these settings are robust to moderate misspecification.
We begin the paper with some technical background.

2. A Simple Likelihood Ratio

2.1. Conjugate Bayesian estimation of profiles
Consider the Gaussian conjugate Bayesian regression model where Y = (Y [1], . . . , Y [n])′

satisfies
Y = Bβ + ε (1)

β = (β1, β2, . . . , βp)
′ ∈ Rp and ε ∼ N(0, σ2I) is a vector of independent error terms with

σ2 > 0. The Normal Inverse Gamma joint density of the parameters (β, σ2) denoted by
NIG(0, V, a, b), is given by

p(β, σ2) =
ba(σ2)−(a+1+ p

2
)

(2π)p/2|V |1/2Γ(a)
exp

{
−βV −1β + 2b

2σ2

}

where a, b > 0 and V is a positive definite matrix. Throughout this paper we assume B is
a known design matrix and that B′B is full rank. The Bayes factor associated with this
model can then be calculated from its marginal likelihood exp(l(y)), see for example p240
of (Denison et al., 2002) and pp308–12 of (O’Hagan and Forster, 2004). Thus

2l(y) = K − (2a + n) log(b + 0.5e(y)) (2)

where

e(y) =

n∑

i=1

y2[i] − t(y)
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K = 2a log b + log |V −1| − log |V −1 + B′B| + 2(log Γ(a + 0.5n) − log Γ(a)) − n log π

t(y) = (B′y)′(V −1 + B′B)−1B′y

Because B′B is full rank the maximum likelihood estimate β̂ of the mean vector β is
uniquely defined. Further,

e(y) = nσ̂2 + β̂
′
(V + (B′B)−1)−1β̂ (3)

where σ̂2 is the maximum likelihood estimate of σ2 and β̂ = (B′B)−1B′y.

2.2. Comparing two regression profiles
Define the observation vector Y′ = (Y′

1,Y
′
2), where Y′

j = (Y′
j [1],Y′

j [2], . . . ,Y′
j [nj ]). The

components {Y′
j [s] : 1 ≤ s ≤ nj , j = 1, 2} are profiles of a fixed length r ≥ p with

Y′
j [s] = B̃β′

j + ε′j [s]

where ε′j [s] ∼ N(0, σ2
j I),

∐
s,j εj [s]|β′ and β′ = (β′

1, β
′
2). Thus the profile vectors containing

the longitudinal data on each unit, Y′
j [s], each follow the same linear model with a design

matrix B̃ of rank p. Y′
j is therefore a vector of length rnj , j = 1, 2.

Let model Ms assume that the vectors Y1, Y2 are independent with (β1, σ
2
1)

∐
(β2, σ

2
2),

where (βj , σ
2
j ) is assumed to have the prior density NIG(0, Vj , aj , bj). Then, with the

obvious extension of the notation given above, its log marginal likelihood ls(y) is given by

2ls(y) =
∑

j=1,2

K(Vj , aj , bj , nj) −
∑

j=1,2

(2aj + rnj) log(bj + 0.5ej(y)) (4)

where
ej(y) = rnj σ̂

2
j + β̂

′

j(Vj + n−1
j (B̃′B̃)−1)−1β̂j

and
β̂j = n−1

j (B̃′B̃)−1B̃′ỹj

If ỹ′
j = (ỹj [1], ỹj [2], . . . , ỹj [r]) and y′

j [s] = (yj [s, 1], yj [s, 2], . . . , yj [s, r]) then, for 1 ≤ l ≤ r,

ỹj [l] =

nj∑

s=1

yj [s, l]

Now, compare the model Ms with a model Mt that assumes the vectors Y1, Y2 share
the same parameter values. Under Mt, β1 = β2 and σ2

1 = σ2
2 where (β1, σ

2
1) has the prior

density NIG(0, V, a, b). So the log marginal likelihood lt(y) of this model satisfies

2lt(y) = K(V , a, b, n1 + n2) − (2a + r(n1 + n2)) log(b + 0.5e(y)) (5)

where
e(y) = r(n1 + n2)σ̂

2 + β̂
′
(V + (n1 + n2)

−1(B̃′B̃)−1)−1β̂

σ̂2 is the standard maximum likelihood estimate of the variance of the combined sample,

β̂ = (n1 + n2)
−1

2∑

j=1

njβ̂j
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and
r(n1 + n2)σ̂

2 =
∑

j=1,2

njrσ̂
2
j +

n1n2

(n1 + n2)
(β̂1 − β̂2)

′(B̃′B̃)(β̂1 − β̂2) (6)

We note that both models have a marginal likelihood which is a function of their hyperpa-
rameters and the four familiar statistics {β̂j , σ̂

2
j : j = 1, 2}.

2.3. Bayesian MAP model selection
One popular method is Bayesian Maximum A Posteriori or MAP model selection (Bernardo
and Smith, 1994). This simply chooses the model with the highest posterior probability.
If the prior log odds for model Mt against model Ms are κ, then the distinct or separate
vector model Ms is preferred to the combined vector model Mt when the posterior log odds
κ∗ > 0. This occurs when ls(y) − lt(y) > κ or, equivalently,

Φ = log(u + β̂
′

1C11β̂1 − 2β̂
′

1C12β̂2 + β̂
′

2C22β̂2) −
∑

j=1,2

ρj log(uj + β̂
′

jAjβ̂j) > κ′ (7)

where

u = u1 + u2 + 2b̂

b̂ = b − b1 − b2

C11 = (n1 + n2)
−2n1((n1 + n2)n2(B̃

′B̃) + n1A
∗)

C12 = −(n1 + n2)
−2n1n2((n1 + n2)(B̃

′B̃) − A∗)

C22 = (n1 + n2)
−2n2((n1 + n2)n1(B̃

′B̃) + n2A
∗)

A∗ = (V + (n1 + n2)
−1(B̃′B̃)−1)−1

ρj = (2ajr
−1 + nj)(2ar−1 + n1 + n2)

−1

uj = (2bj + njrσ̂
2
j )

Aj = (Vj + n−1
j (B̃′B̃)−1)−1

Note that the threshold

κ′ =
2κ +

∑
j=1,2 K(Vj , aj , bj , nj) − K(V , a, b, n1 + n2)

(2a + r(n1 + n2))

depends on the data only through (n1, n2) and the subjectively specified prior log odds κ

between the two models. In principle, the prior parameter κ and hence κ′ can take any
value, so the behaviour of this selection algorithm is formally explained simply through the
geometry of the contours of the function Φ.

The function Φ can be further simplified by introducing some new notation. We set wj

so that
w′

jAjwj = w′
j(Vj + n−1

j (B̃′B̃)−1)−1wj = 1

Further, we define zj = ||Qβ̂j ||, where Q is any matrix satisfying

Q
′

Q = (Vj + n−1
j (B̃′B̃)−1)−1
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and let λ1 = w′
1C11w1, λ12 = w′

1C12w2, λ2 = w′
2C22w2.

We then prefer Ms to Mt if and only if

Φ = log(u + λ1z
2
1 − 2λ12z1z2 + λ2z

2
2) −

∑

j=1,2

ρj log(uj + z2
j ) > κ′ (8)

Note that (z1, z2) are the distances of the two profiles from zero, each scaled by a factor
reflecting the deviation from zero we expected a priori under the separating model Ms. The
statistics uj depend on the data only through σ̂2

j . The statistic u is a linear function of
u1 and u2 and so is a linear function of the two corresponding sums of squares, and λj

corresponds to the distance from zero expected for the profile β̂j under Mt relative to that
expected under Ms.

2.4. Using g-priors for conjugate clustering
Employing a general form of covariance matrix V demands that the space of prior hyper-
parameters is very large. For simplicity, transparency and to ensure invariance to linear
transformations of bases, various authors (e.g. (Chipman et al., 2001; Fernandez et al.,
2001; Smith and Kohn, 1996; Zellner, 1986)) have advocated the use of g-priors for prior
covariance matrices.

In the given context, these priors would set V
−1

= gB̃′B̃, V −1
1 = g1B̃

′B̃, V −1
2 = g2B̃

′B̃

for specified constants (g, g1, g2) associated with the combined cluster c and the smaller
clusters c1 and c2. Here, g is a measure of noise-to-signal, so, in particular, the larger the
value of g, the greater the shrinkage of the expected posterior profile towards zero. Let
zj = (zj(1), zj(2), . . . , zj(p))′ with j = 1, 2, and

zj =

√
njgj

gj + nj
B̃β̂j

z1 and z2 are then the potential combined cluster posterior expected profiles of the two
clusters, normalised by their posterior variance. After some algebra it can be shown that
the parameters of Φ then simplify to

λ1 =
(g + n2)(g1 + n1)

(g + n1 + n2)g1
, λ2 =

(g + n1)(g2 + n2)

(g + n1 + n2)g2
, λ12 = λ0

12 cos(θ[z1, z2]),

where

λ0
12 =

√
n1n2(g1 + n1)(g2 + n2)

(g + n1 + n2)2g1g2

The parameter θ[z1, z2] is the angle between vectors (z1, z2) on a plane through zero con-
taining the two rays (0, z1), (0, z2). So, this is a measure of the difference in the scaled
shapes of the two profiles.

A common choice of prior for model selection would be to set g1 = g2 = g = g. This
assumes that knowing the size, n, of a cluster would not affect the strength of our prior
beliefs about the mean profile of a unit in that cluster. The prior information about each
unit conditional on σ2 is implicitly assumed to be based on exactly the same sources as
other units in its cluster. We call this the dependence setting. Note that in this case

1 < λ1 = λ2 < 1 +
min{n1, n2}

g
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An alternative protocol is sometimes applicable to, for example, gene expression data, where
learning that a cluster of genes is large increases the chance that the cluster profile is close
to zero: i.e. the cluster is not involved in regulation. A prior structure consistent with these
beliefs — here called the independence model — assumes that the sources of information
about the prior density of each single gene in a cluster are independent and of equal strength
conditional on σ2. This implies that gj = g∗nj and g = g∗(n1 + n2) so that

λ1 = 1 +
n2

g∗(n1 + n2)
, λ2 = 1 +

n1

g∗(n1 + n2)
, λ0

12 =
1

g∗

√
n1n2

(n1 + n2)2

3. Using Bayes Factors to Select Between Many Partition Models

3.1. A typical example of conjugate Bayesian model selection
MAP model selection is used routinely in many tree and cluster models. In order to show
how the performance characteristics of such selection can be linked to the study of the
function Φ, we next review Bayesian model selection as it applies to the clustering algorithm
in (Heard et al., 2006). There, thousands of longitudinal profiles of genes are collected into
a partition C ∈ C whose sets are the clusters c ∈ C. Microarrays measure the level of
expression (a real number) for all of its genes over a sequence of times. In our running
example, there are 13 time points, Edwards et al. (2006).

The vector of profiles of the logged gene expressions, Yc, within each cluster are assumed
to be exchangeable. Yc = Bcβc +εc, εc ∼ N(0, σcI),

∐
εc|β, β′ = (β′

1, β
′
2, . . .β

′
n(C)), where

Yc is a vector of length rn(c), where r is the length of the profile, n(c) is the number of
gene profiles and n(C) the number of sets in the partition C. Using analogous notation to
that in section 2, we have that

Yc[s] = B̃βc + εc(s)

for 1 ≤ s ≤ n(cj), j = 1, 2, where εc[s] ∼ N(0, σ2
cI) and

∐
s,c εc[s]|β, c ∈ C. The design

matrix B̃ is customised to the context. Thus a spline basis is employed in (Heard et al.,
2006) whilst when searching for circadian rhythms, a Fourier basis is used, (Anderson
et al., 2006; Edwards et al., 2006). The profile vectors βc and variances σ2

c of the different
clusters c ∈ C are all assumed to be mutually independent of each other and to follow the
conjugate distributions given in section 2. So, in particular, each cluster has an associated
multivariate t-distribution with log marginal likelihood lc(y). Furthermore, because of the
assumed independencies between clusters in a given partition, the log marginal likelihood
lC(y) of any partition C is simply the sum of the marginal likelihoods of its components:

lC(y) =
∑

c∈C

lc(y)

The log marginal likelihood of any partition can therefore be written down explicitly. Under
MAP selection an optimal partition C∗ ∈ C will be any partition such that, for all C ∈ C,

lC∗(y) + log π(C∗) ≥ lC(y) + log π(C)

where π(C) is our prior probability that partition C generated the data.
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3.2. Exchangeability and cohesions
To preserve certain exchangeability properties for partition models, the following four as-
sumptions are commonly made, see (Barry and Hartigan, 1992; Quintana and Ingelias,
2003).

(a) The prior parameters (V (c), a(c), b(c)) of cluster c ∈ C depend on c but not C.
(b) The parameters (V (c), a(c), b(c)) are a function of c only through n(c), the number of

genes in c.
(c) The probabilities {π(C) : C ∈ C} satisfy

π(C) ∝

∏

c∈C

πc

where the proportionality constant is the sum of all these products of cohesions, πc,
over C ∈ C.

(d) The probability πc is allowed to depend on c only through its cardinality n(c).

We call prior beliefs for clustering balanced if they are consistent with these four as-
sumptions. Note that previous studies (Anderson et al., 2006; Edwards et al., 2006; Heard
et al., 2006) make a stronger assumption than (b) that (V (c), a(c), b(c)) are not a function of
n(c). The default choice of (Heard et al., 2006) is balanced and sets cohesions so that πc =

[n(c)!]
−1

. Henceforth, when no confusion shall arise we will write (V (cj), a(cj), b(cj), n(cj))
as (Vj , aj , bj , nj), j = 1, 2.

3.3. Model search
When the number of units partitioned is large (for example in (Anderson et al., 2006) we
clustered over 22, 000 genes) the partition space is huge. So, even being able to calculate
the scores of single cluster partitions quickly is not enough to ensure that the scores of all
the partitions in the vast partition space C can be evaluated. In practice it is therefore
often necessary to use an appropriate search algorithm to perform this optimisation task
on a sensible subset of such partitions.

One useful feature of using lC(y) for selection is that the difference between the scores
of two partitions identical outside a given set c will depend only on their relative scores over
c. We call partitions C+ and C− adjacent if the two partitions differ only on a set c ∈ C+

where c = c1 ∪ c2 with c1 ∩ c2 = φ, c1, c2 ∈ C− so that {c1, c2} partition c. Then

lC−(y) = lC+(y) + Ψ[C−, C+] + log π(C−) − log π(C+)

where
Ψ[C−, C+] = lc1

(y) + lc2
(y) − lc(y)

and π(C−), π(C+) are the prior probabilities of C− and C+ respectively. The comparison
of adjacent partitions when using balanced priors is therefore especially straightforward and
is utilised in many search algorithms used in this context. For example, the improvement
presented by C− (the model assuming the genes in c are in two different groups c1 and c2)
over C+ (the model assuming all genes in c are exchangeable) is measured by Φ−κ′(n1, n2)
where

κ′ =
2{log πc1

(n1) + log πc2
(n2) − log πc(n1 + n2)} + K(n1) + K(n2) − K(n1 + n2)

2a + r(n1 + n2)
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Note that κ′ is a function of the two partitions only via a symmetry of the cardinalities
(n1, n2) of the two potentially combined clusters. C− has a higher posterior probability
than C+ if and only if Φ − κ′(n1, n2) > 0. Thus, any search algorithm that moves only
between adjacent partitions, either merging or splitting two clusters depending on whether
the function Φ is large enough to instigate a split relative to a splitting penalty κ′ (a
function depending on cluster cardinalities within the relevant partitions but not on the
data) is especially fast.

The most popular technique that uses adjacent moves to search a partition space is a
greedy search algorithm called agglomerative hierarchical clustering (AHC) (Heard et al.,
2006); a type of forward selection. This starts with each of the N gene profiles in N

separate clusters with fixed values of the hyperparameters. A sequence of new partitions is
then obtained by sequentially merging two clusters, thus decreasing the number of clusters
by one. The two clusters chosen to be combined are the ones that increase the score (here
the marginal likelihood of the partition) by the most (or reduce it by the least). Clusters
are combined in this way until the trivial partition is reached, with one cluster containing
all N genes. We have now calculated the marginal likelihood for a selection of N promising
partitions containing 1 to N clusters. Finally, we choose the partition in this sequence with
the highest score: i.e. with the highest posterior probability over the partitions searched.
Examples of other more elaborate search algorithms also using adjacent moves either in
conjunction with a deterministic or stochastic search, are given in (Anderson et al., 2006)
and, in a slightly different context, (Chipman et al., 1998, 2002).

For the remainder of the paper we will study the geometry of Φ(σ̂2
1 , σ̂

2
2 , β̂1, β̂2) as a

function of the sufficient statistics {β̂j , σ̂
2
j : j = 1, 2} in order to understand the behaviour

of MAP model selection methods in this context.

4. Bayesian Model Selection over Partitions

4.1. Three weaknesses of uncalibrated Bayesian model selection
Uncalibrated model selection based on Bayes factors like the one discussed above can fail
for a number of reasons. Firstly, we have noted that the Bayes factor acts as an implicit
real-valued score function over the different cluster partitions. There is thus an inevitable
implicit trade-off between the closeness of the variances of the two potentially combined
clusters and the closeness of their mean profiles. For this and other reasons, it is now
well recognised that the chosen values of prior hyperparameters have a marked effect on
the characteristics of Bayesian model selection, and their influence on inference cannot be
expected to automatically fade away as the sample size increases. In fact, in section 7 we
show how influential the selection of these hyperparameters is not only on the scale, but also
on the nature of discrepancies that drive the selection. So there is great advantage to choose
(whenever possible) prior values for hyperparameters not only so that the features of the
selection algorithm match contextual knowledge, but also so that selection characteristics
of the method are plausible a priori. As we discuss below, if this is not done, the properties
of the induced selection algorithm can be absurd.

Secondly, as emphasised in Denison et al. (2002), the function Φ is not translation
invariant. We demonstrate below that the optimal choice of partition is typically critically
dependent on where we choose to set the prior mean vector of the profile — here we select
zero. Hence unless, as in Edwards et al. (2006), there actually is a natural “preferred point”,
we cannot recommend the use of these methods. Henceforth, we will assume, as is often
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the case in practice, that such a preferred point exists.
Thirdly, the assumption of conjugacy is usually an expedience and there are at least

two questionable consequences. First, the tails of the conjugate marginal likelihoods are
inverse polynomials. Although this helpfully limits the number of small clusters, it also
finds ”optimal” partitions that often contain clusters that include outlying profiles. Second,
these conjugate models imply that the prior mean and variance of the cluster profiles are
quite highly dependent: for a careful discussion of this see (O’Hagan and Forster, 2004).
One implication is that clusters observed to have an estimated profile very different from
zero — our preferred point — will be allocated a high prior variance: a property which, if
not recognised and adjusted for, can distort any search algorithm in ways discussed below.

4.2. Selection as a function of the magnitude of the mean profile
From the comments above we might suspect model selection to be disrupted by outliers.
Consider the effects of increasing the magnitude of a cluster profile away from zero whilst
holding all other statistics fixed. Fix z2, wj , σ̂2

j and nj for j = 1, 2.. Then, provided
0 < ρ1 < 1,

lim
|z1|→∞

Φ(z1, z2) = ∞

Thus, whatever the values of prior hyperparameters, as we increase the magnitude z1 of
the profile of the first cluster c1 (provided z1 is large enough) our model will prefer to keep
clusters c1 and c2 separate, as we might hope.

However, if two outlying clusters (c1, c2) both have profiles (z1, z2) far from zero, then
model selection can start to display strange properties. If z2 = lzk

1 , l is fixed and |z1| → +∞,
then Φ(z1, z2) diverges to −∞ if ρ1 + kρ2 > 1 and diverges to +∞ if ρ1 + kρ2 < 1. For
example, (Heard et al., 2006) recommend setting a = a1 = a2. This implies that

ρ1 + ρ2 =
4a + n

2a + n
> 1

where n = r(n1 + n2) is the total number of observations associated with the two groups.
In this case, by simultaneously increasing the magnitude of the two cluster profiles by the
same amount z1 = z2, we will eventually reach a magnitude where two clusters are combined
irrespective of how different the shapes of those clusters are: definitely not what we want to
happen. This occurs because, when combined into one cluster, these two outliers become
one outlier and, a priori, one outlier is assumed more probable than two.

Thus two clusters whose expression profiles are far from zero — and hence possibly
biologically significant — will be combined in preference to any other pair: even clusters
whose statistics are identical! The reason this unfortunate property is relatively rare in
practice is that studies such as (Heard et al., 2006) happen to suggest the use of a small
value of a. Therefore profiles have to be very different from zero before this phenomenon can
be realised. However, this still happens even at the recommended settings of the parameters.
In figure 1 we can see that genes with completely different profiles have been attracted into
a cluster under an optimal MAP partition found under an AHC search. Note that when
this phenomenon occurs early in an AHC search, the combined cluster can largely cancel
out and then has the signature of the large variance cluster: something we term a junk
cluster in (Anderson et al., 2006). When such a cluster is formed under AHC it tends to
act as an attractor to yet more disparate and biologically interesting clusters resulting in a
cluster like the one depicted in figure 2.
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Fig. 1. A cluster of 81 gene expression profiles from a early stage of the clustering performed in
Edwards et al. (2006) using the default hyperparameter settings. The two highlighted genes are
clearly outliers that do not belong in this cluster. This is a result of the AHC and the default settings.

If we differ from (Heard et al., 2006) and choose a prior with ρ1 + ρ2 < 1, then Φ(z1, z2)
→ ∞ as |z1| → ∞. This gives rise to an even more problematic property. Whatever our
settings of prior hyperparameters, two profiles sufficiently far from zero will always be put
in separate clusters even when β̂1 = β̂2, σ̂2

1 = σ̂2
2 and n1 = n2, that is, even when these

two clusters are identical in all respects! Note that the position of the prior mean (here the
zero setting) is central to determining which profiles are outlying in the sense above.

The only case when the associated limit stays finite is when ρ1 + ρ2 = 1. Unless we set
the hyperparameters to ensure this, on observing profiles far from zero the implications of
the prior are unlikely to be faithful to contextual beliefs. Therefore, the Bayesian clustering
algorithm will be prone to perform inappropriately, and combine profiles it was never meant
to.

4.3. Models with ρ1 + ρ2 = 1
By setting hyperparameters so that ρ1 + ρ2 = 1 the characteristics of the resulting merging
criterion are much more compelling. The demand that ρ1 + ρ2 = 1 is satisfied provided
that the hyperparameters (a1, a2) of two clusters in a partition and the hyperparameter a

of the combined cluster in an adjacent partition satisfy

a1 + a2 = a

For balanced priors, this implies that we set the corresponding hyperparameter a(c) =
a∗n(c), where n(c) is the number of profiles in c rather than require a(c) to be independent
of cluster size as is the case in (Heard et al., 2006). Our suggestion would make the prior

coefficient of variation of the precision of a cluster proportional to
(√

n(c)
)−1

. For example,

in the context of gene clustering this would mean that ”genuine” clusters containing large
numbers of gene profiles are expected to have smaller associated coefficients of variation
in their precision. Thus we are a priori less certain about the value of the variance of big
clusters: not an unreasonable assumption in this context. Note that under this setting
ρj = nj(n1 + n2)

−1, j = 1, 2.
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Fig. 2. A cluster of 453 gene expression profiles from the same partition as figure 1. This so-called
junk cluster is a by-product of AHC and contains a broad variety of profile shapes. Note that in this
context log expressions outside [−0.5, 0.5] are considered to be potentially of biological interest.

5. Bayes Factors and Measures of Separation

Under balanced priors, each cluster c in a partition has a set of sufficient statistics x(c) =

(n(c)−1β̂(c), σ̂2(c), n(c)). It is common, see (Denison et al., 2002), to interpret the function
∆ = Φ−κ′′ as a measure of the separation between the combined clusters c1 and c2 in two
adjacent partitions identical except on c1 ∪ c2, where κ′′ is a function only of x(c) through
n(c). We have seen above that this interpretation may well not be appropriate. Whenever
ρ1 +ρ2 6= 1, two clusters c1 and c2 with identical sufficient statistics can be arbitrarily more
separated — i.e. have an arbitrarily higher value of ∆ — than two clusters that have very
different sufficient statistics. In particular under any search over the partition space, it is
quite possible for two clusters with widely differing profiles to be combined in preference to
two clusters with identical {β̂j , σ̂

2
j : j = 1, 2}.

Although this phenomenon is much more dramatic when ρ1 + ρ2 6= 1, the problem can
still remain even when hyperparameters are set so as to ensure ρ1 + ρ2 = 1. In this section
we investigate to what extent, with appropriate parameter settings, ∆(x(c1),x(c2)) can be
interpreted as a measure of separation between the clusters c1 and c2.

If Ψ(x(c1),x(c2)) = f1(∆(x(c1),x(c2))) + f2(n1, n2) where f1 is some strictly increasing
function of ∆(x(c1),x(c2)) and f2 is an arbitrary penalty function on the size of clusters,
then a property that would normally be required of a separation measure is that for any
two clusters c1 and c2 that have identical characteristics, so that x(c1) = x(c2), we have

∆(x(c1),x(c2)) = 0

At this point it is convenient to re-parametrise Φ. Let d = (z2
1 + z2

1)u
−1 represent a

normalised squared distance from zero of the two clusters, define αj = d−1u−1z2
j , j = 1, 2

to be the corresponding relative squared distance from zero of the two clusters (so that in
particular α1, α2 ≥ 0, α1 + α2 = 1) and let vj = uju

−1, j = 1, 2 be approximately the
relative sums of squares of the two clusters then

γ = λ1α1 − 2λ12
√

α1α2 + λ2α2
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and
Φ = log(1 + γd) − ρ1 log(v1 + α1d) − ρ2 log(v2 + α2d) (9)

Definition 1. Define Φ(x(c1),x(c2)) as homogeneous if, whenever x(c1) = x(c2),
Φ(x(c1),x(c2)) = Φ0 is a function of (n1, n2) alone.

Under the family of separations above, a necessary and sufficient condition for
Ψ(x(c1),x(c2)) to satisfy the property above is that Φ(x(c1),x(c2)) is homogeneous.

Theorem 1. If Φ(x(c1),x(c2)) is homogeneous and a g-prior is employed then for any
two clusters c(1) and c(2) such that n(c(2)) = 2n(c(1)),

a(c(2)) = 2a(c(1)), b(c(2)) = 2b(c(1)) and g(c(2)) = 2g(c(1))

Furthermore, if the three conditions above hold, then Φ(x(c1),x(c2)) will be homogeneous.

Proof. Let c(2) denote the combined cluster and c(1) = c1. If x(c1) = x(c2) then
α1 = α2 = 0.5, v1 = v2 = v (say) and ρ1 = ρ2 = ρ

exp(Φ) = 22ρ 1 + γd

(2v + d)2ρ

where
γ = 0.5 (λ1 − 2λ12 + λ2) = ((g + 2n)g)

−1
(g + n)g

Clearly, Φ is a function of z unless ρ = 0.5 implying a(c(2)) = 2a(c(1)). Substituting gives

exp(Φ) = 2
1 + γd

2v + d

Since by definition v and d are functionally independent, we therefore must have

v = 0.5 ⇔ b(c(2)) = 2b(c(1))

and also

γ = 1 ⇔ 1 +
n

g
= 1 +

2n

g
⇔ g = 2g ⇔ g(c(2)) = 2g(c(1))

as required. Finally, under these conditions when x(c1) = x(c2), Φ(x(c1),x(c2)) = log 2.

Note that the standard way of assigning a prior to a conjugate model is not homogeneous
and so falls at the first hurdle. However, there is an obvious family of conjugate Bayesian
models which is homogeneous.

Corollary 1. The proportional model which sets a(c) = a∗n(c), b(c) = b∗n(c) and
g(c) = g∗n(c) for some values a∗, b∗, g∗ > 0 is homogeneous.

For the proportional model, ρj = nj(n1 + n2)
−1, uj = (2b∗ + rσ̂2

j )nj and u = u1 + u2 so
that v1 + v2 = 1. Furthermore, let the value of γ when two profiles are identically oriented
(so that θ[z1, z2] = 0) be γ0. Then under the proportional model

γ0 = 1 + (
√

ρ2α1 −
√

ρ1α2)
2g∗−1
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6. Proportional Clustering: General Results

We can now derive some important properties of proportional clustering.

Theorem 2. Under proportional clustering, for all possible values of x1(c1),x2(c2),

Φ(x1(c1),x2(c2)) ≥ I(ρ)

where ρj = nj(n1 + n2))
−1, j = 1, 2, and I(ρ) = −∑

j=1,2 ρj log ρj .

Proof.

Φ = log(1 + γd) − ρ1 log(v1 + α1d) − ρ2 log(v2 + α2d)

= ∆(1)(γ, d) + ∆(2)(v1, ρ1, α1, d) + I(ρ)

where
∆(1)(γ, d) = log(1 + γd) − log(1 + d) ≥ 0

since
γ = λ1α1 − 2λ12

√
α1α2 + λ2α2 ≥ γ0

with equality if and only if η = 1 − cos θ[z1, z2] = 0 where γ0 ≥ 1 is defined above, and

∆(2)(v1, ρ1, α1, d) = log(1 + d) − ρ1 log(v1 + α1d) − ρ2 log(v2 + α2d) − I(ρ)

Note that
∆(1) = 0 ⇔ ρ2α1 = ρ1α2

η = 0 ⇔ α1

n1
=

α2

n2
= α(say)

Also, for fixed ρ1, ρ2 with ρ1 + ρ2 = 1,
∑

j=1,2 ρj log xj is maximised when xj = Tρj. So
letting T = 1 + d, vj = ρj gives

∆(2)(v1, ρ1, α1, d) ≥ log(1 + d) − ρ1 log(ρ1(1 + d)) − ρ2 log(ρ2(1 + d)) − I(ρ)

= 0

= ∆(2)(ρ1, ρ1, α1, d)

Therefore
Φ(v1, ρ1, α1, d) ≥ I(ρ) = Φ(ρ1, ρ1, α1, d)

Corollary 2. For any fixed (unordered) pair n = (n1, n2)

∆n(x(c1),x(c2)) = ∆(1)
n

(x(c1),x(c2)) + ∆(2)
n

(x(c1),x(c2)) = Φ(x1(c1),x2(c2)) + κ′′(n)

where κ′′(n) = −I(ρ) − κ′ is a separation measure. That is,

(a) For all pairs (x(c1),x(c2))
∆n(x(c1),x(c2)) ≥ 0

with equality if and only if x(c1) = x(c2)
(b) For all pairs (x(c1),x(c2))

∆n(x(c1),x(c2)) = ∆n(x(c2),x(c1))
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Proof. The first bullet is a direct consequence of the theorem on noting that ∆(1) ≥ 0,
and ∆(1) = 0 takes its maximum if and only if γ = 1 and α1

n1
= α2

n2
so that the scaled

distances of the two profiles from zero satisfy n1
−1β̂1 = n2

−1β̂2. Also, ∆(2) ≥ 0 and
∆(2) = 0 if and only if αj = ρj so that

vj + αjd = ρj(1 + d) ⇔ vj = ρj ⇔ σ̂2
1 = σ̂2

2

The second bullet is immediate from the symmetry in (x(c1),x(c2)) of the three functions
Φ(x1(c1),x2(c2)), I(ρ) and κ′(n).

So a sufficient and almost necessary condition for MAP selection to behave in a way
that combines clusters in partitions with ”close” statistics is that the hyperparameters are
set as a proportional model. For most other settings, and in particular those advocated
by other authors as defaults, this is not the case. It is interesting to note that to ensure
consistency in different contexts various authors have suggested introducing a dependency
of the parameter g on sample size. However, this suggested dependency demands that
the prior variance of the proportional model decreases in the cluster size n whereas here it
increases. This is not too disturbing for our applications. The natural type of consistency we
might require here is associated with the length of profile — a function of the experimental
design — not the number of genes of certain types which is determined by the technology
of the gene chip and thus fixed. Note that with the hyperparameter settings recommended
here, consistency is automatic under increasing profile length.

7. Separation of Models: Separation of Statistics

7.1. Some useful parameters
Although we have found a separation measure corresponding to Bayesian selection, it re-
mains to demonstrate that this induced measure is largely consistent with a separation
measure with which we would be content predictively. We therefore next examine how the
function Φ = ∆(1) + ∆(2) + I(ρ) compares adjacent partitions for the proportional model
as a function of the sufficient statistics of two profiles. This allows us both to confirm that
the characteristics of the induced separation measure are largely desirable and guides us
to settings of prior hyperparameters that ensure plausible predictive implications. Because
we need to acknowledge that the Bayes factor clustering has an intrinsic structure that
selects as a function of (n1, n2), in this section we will assume the cardinalities (n1, n2) of
two candidate clusters — and hence (ρ1, ρ2) — are fixed. There are four statistics that are
central to the combination rule: d, v1 (defined above), η and ζ2 (defined below).

(a) The statistic η =
√

α1α2(1− cos(θ[z1, z2]) is a weighted measure of the angle between
the two cluster profiles, taking a value of zero when the posterior expected profiles are
proportional to one another and its maximum value when the profiles are proportional
to one another but of opposite sign: as would be the case whenever one gene is up-
regulated the other is down-regulated. Thus η is a measure of the dissimilarity in
orientation of the two profiles.

(b) A measure of the differences in overall magnitudes of squared differences in distance
from zero relative to that expected under the given cluster size under the prior, ζ2,
satisfies

0 ≤ ζ2 = (
√

ρ2α1 −
√

ρ1α2)
2 ≤ max{ρ1, ρ2}
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Note that ζ = sin(sin−1(
√

α1) − sin−1(
√

ρ1)) and so, for fixed ρ1, ζ is an invertible
function of α1.

Now,

∆(1)
n

(γ(η, ζ), d) = log(1 + (γ − 1)(1 + d−1)−1)

where

1 ≤ γ = 1 + (ζ2 + (2
√

ρ1ρ2)η)g∗−1 (10)

and

∆(2)
n

(v1, ζ, d) = log(1 + d) −
∑

j=1,2

ρj log(vj + αjd) − I(ρ)

Note that ∆
(1)
n is a function only of (η, ζ, d) and ignores (v1, v2) whilst ∆

(2)
n is a function

of relative variances, relative size ζ expressed as a function of α1, and combined size d and
also ignores η.

7.2. Angular separation, η

The following results are straightforward to verify. ∆
(1)
n (γ(η, ζ), d) is strictly increasing in

η, ζ and d with

lim
η→0

∆(1)
n

= log(1 + ζ2(1 + d−1)−1g∗−1) ≥ 0

sup∆(1)
n

= log(1 + (max{ρ1, ρ2} + 2
√

ρ1ρ2)g
∗−1)

lim
d→0

∆(1)
n

= 0

Note that this function is bounded. Its contribution to the selection depends on the prior
noise-to-signal parameter g∗. Thus if g∗ is large, so that observational error is assumed
to dominate the signal, the contribution of this term to the selection is negligible. On the
other hand, if g∗ is small, the difference in orientation between the two profiles will have a
strong impact. We are always more prepared to combine clusters when their orientation is
closer. The oriented distance is weighted in this function by

√
α1α2 so that similar length

profiles and similar orientations are made less prone to combination than similar length
profiles with different orientations, whilst the term

√
ρ1ρ2 ensures this penalty only bites

for clusters of comparable magnitude. The further apart the posterior expected profiles of
the clusters are from zero, the more inclined we are to keep these separate.

7.3. Relative distance/variance separation, ζ2

The second component ∆
(2)
n (v1, α1, d) = log(1+d)−ρ1 log(v1+α1d)−ρ2 log(v2+α2d)−I(ρ)

is a function of the relative sums of squares and scaled relative distances from zero but not

g∗. Note that unlike ∆
(1)
n (γ, d) it is unbounded above and, depending on the distance d of

the two clusters from zero, can heavily penalise the combination of clusters with relatively
very different associated estimated variances or different scaled lengths from the origin.
Thus, for example,

lim
d→0

∆(2)
n

(v1, α1, d) = ρ1 log
ρ1

v1
+ ρ2 log

ρ2

v2
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lim
d→∞

∆(2)
n

(v1, α1, d) = ρ1 log
ρ1

α1
+ ρ2 log

ρ2

α2

lim
v1=α1→0

∆(2)
n

(v1, α1, d) = lim
v1=α1→1

Λn(v1, α1, d) = ∞

So when d is small and the two profiles are close to zero, Λn acts as a penalty mainly
for divergent estimates of variance, taking close to its minimum value whenever σ̂2

1 = σ̂2
2 .

However, when d is very large it penalises almost entirely on the basis of the difference in
distance of the two clusters from the origin and ignores any divergence in their estimated
variances. So under the AHC algorithm, when all the clusters in a partition are about the
same cardinality, the Bayes factor algorithm will still tend to encourage the combination
of clusters far from zero with the same orientation and distance from zero even when their
estimated variances are very different.

It is easily checked that the stationary points of ∆
(2)
n are solutions of P +Qd = 0 where

P = v1v2 − ρ1α1v2 − ρ2α2v1 = v1v2

(
1 − ρ1α1v

−1
1 − ρ2α2v

−1
2

)

Q = ρ1v1α2 + ρ2v2α1 − α1α2 = −α1α2

(
1 − ρ1v1α

−1
1 − ρ2v2α

−1
2

)

If we set α1 = 0.5(1− ω) and v1 = 0.5(1− ε) then it follows that ∆
(2)
n will have a non-zero

feasible stationary point in d if and only if ω and ε have different signs. Otherwise, ∆
(2)
n is

monotonic in d. Note that when ρ1 = ρ2 = 0.5, ∆
(2)
n has a stationary point d∗ = v1−v2

α2−α1
if

and only if v1−v2

α2−α1
≥ 0. So in this case the stationary point is a minimum. When d = 0,

∆
(2)
n = −0.5 log(1 − ε2). As d → ∞, ∆

(2)
n → −0.5 log(1 − ω2) so d = 0 and d = ∞ are the

two local maxima of this function.
Whatever the value of ρ1, ν1 = α1 ⇒ P = Q = 0 so that ∆(2) is not a function of d and

takes the value
∆(2)

n
(v1, ζ, d) =

∑

j=1,2

ρj log
ρj

vj

Thus the characteristics of the induced separation measure of the proportional model
seem eminently desirable, with the caveat that the conjugacy encourages outlying clusters
with similar profiles but different variances to occasionally be combined when the two
clusters are far from zero. However, it is easily verified that when clusters are about the
same cardinality, so that ρ1 ' ρ2, and ε, ω are small then this dependence on d is almost
insignificant.

7.4. Combined separation
Finally, to appreciate how the relative magnitude of clusters is traded with its distance from
zero, think of Φ as a function of d only and fix α1. We can then calculate that its stationary
points satisfy the equation

P ′ + Q′d = 0 (11)

where

P ′ = γv1v2 − v2α1ρ1 − v1α2ρ2

Q′ = γ(α1v2 + α2v1) − α1ρ1(γv2 + α2) − α2ρ2(γv1 + α1)

Thus, in particular, there is at most one stationary point of Φ for d ∈ R>0. This will be
located at d∗ = −A′B′−1 provided P ′Q′−1 < 0. Note that when g∗ is small, except when

|v1v
−1
2 | is large, ∆

(2)
n will dominate this expression so that Φ is simply increasing in d.
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Note that the geometry of Φ is simple because ρ1 +ρ2 = 1. When ρ1 +ρ2 6= 1 it is easily
verified that the stationary points lie on a quadratic, giving rise to a much richer geometry
in Φ. This is the algebraic reason for much of the strangeness of the induced selection. This
phenomenon is illustrated in the central column of figure 3 where we graph Φ for two clusters
with identical orientation and cardinality for various settings of the hyperparameters.

Note that the dependence of Φ on d is only significant when Φ takes large values. In
this case, the clusters will usually be kept separate for other reasons anyway. Dependence
on the relative distance from zero of the two clusters only occurs when d is of moderate
magnitude. Furthermore, the discrepancy in relative variances is only significant when their
ratio is substantially different from one and then only when d is quite far from zero.

The left hand column of figure 3 illustrates the phenomenon discussed in section 4.2
that when ρ1 + ρ2 < 1, clusters become increasingly large the further d is from zero: Φ
eventually becoming very large regardless of how close the pair of cluster statistics are. On
the other hand, the right hand column (when ρ1 + ρ2 > 1) shows as d becomes large, the
two clusters will become close regardless of the value of the other statistics. This illustrates
why Bayes Factor selection can be badly behaved unless the hyperparameters are chosen
carefully.

7.5. Characteristics of non-proportional models
We have seen that when ρ1 + ρ2 6= 1 the function Φ does not behave anything like a
separation measure on the other components. On the other hand, when ρ1 + ρ2 = 1 the
characteristics of Φ can still sometimes act as an approximate separation measure. Writing
vj = uju

−1 for j = 1, 2 and d = zu−1

Φ(d, γ, v1, v2, α1, ρ1) = log(1 + γd) − ρ1 log(v1 + α1d) − (1 − ρ1) log(v2 + (1 − α1)d) (12)

so that
lim

d→∞
Φ(d, γ, v1, v2, α1, ρ1) = log γ − ρ1 log α1 − (1 − ρ1) log(1 − α1)

which is at least bounded for fixed values of the hyperparameters. Also, for fixed ρ1, γ and
d, Φ is minimised: i.e. most inclined to combine when

v1 + α1d = ρ1 and v2 + α2d = ρ2

This is satisfied when ρ−1
1 u1 = ρ−1

2 u2 and ρ−1
1 α1 = ρ−1

2 α2. For two clusters of moderate
cardinality and moderate settings of hyperparameters, this implies that we are most inclined
to combine when the sample variances of the two clusters are approximately equal, and
when they are at a distance from zero consistent with being from the same distribution
respectively. Both these properties are clearly desirable. If we choose not to set b(c) = b∗n(c)
but just to a common value for all clusters, as is done in Heard et al. (2006), then if either n1

or n2 is large then v1 +v2 ' 1 and so little distortion from a separation is felt. Two clusters
with low cardinality, small values of d, and small but proportionately different values of
sums of squares tend to be kept separate. For the purposes of gene clustering this is not a
particularly germane property since such clusters are unlikely to be of regulatory interest
and also occasionally distort the initial stages of forward selection techniques like AHC.

Finally a g-prior, ensures that Φ is increasing in the angular distance 1− cos θ between
the clusters. However, without a g-prior and the more usual dependence model, with large
(n1, n2) it is easily checked that this is still approximately the case.
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Fig. 3. A plot of L(Φ) = log(max{Φ − log(2), exp(−5)}). The magnitude of this measure represents
the inclination of two clusters to merge, d is the mutual distance from zero of the two clusters, α1 is
the distance from zero of cluster 1 relative to this mutual distance, and v1 is the relative variance of
the profile of cluster 1 relative to that of the combined cluster for the proportional model. The central
column shows the recommended setting when ρ1+ρ2 = 1 whilst the left and right hand columns show
L(Φ) when ρ1 + ρ2 < 1 and ρ1 + ρ2 > 1 respectively. Here, v1 = {0.05, 0.3, 0.5}, ρ1 = {0.3, 0.5, 0.7}
and α1 ∈ [0.1, 0.9], log(d) ∈ [−4, 6]. We choose ρ1 = ρ2, η = 0 (since the two clusters are identically
oriented) and g∗−1 = 100 so that equation (10) implies that γ = 1+100ρ1(

√
α1−

√
1 − α1)

2. Note that
α1 + α2 = 1 and v1 + v2 = 1 are always satisfied. Equation (10) has singularities at v1, α1 = {0, 1}.
All nine plots have the same axes.
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Thus, whilst in our context of gene profile clustering we would recommend the use of
the proportional model, provided that we set ρ1 + ρ2 = 1 for larger cluster cardinalities,
the conjugate combination algorithm will often have reasonable characteristics. Any prob-
lems that arise tend to concern the combination of clusters with small cardinalities: an
inevitable consequence of using algorithms like AHC, but avoidable if more sophisticated
search algorithms (e.g. (Chipman et al., 2001)) are employed.

7.6. Setting hyperparameters in proportional models
There are two complementary and fully Bayesian ways of setting the hyperparameters
(a∗, b∗, g∗). First, these parameters should be chosen so as to coincide with predictive
beliefs about the individual cluster profiles we expect to see before incorporating the data.
The value of a∗

b∗ is our prior expectation of the precision σ−2 of a typical cluster, whilst a∗

can be calibrated to our coefficient of variation of this information [a∗(n(c))]
−1

for a clus-
ter c of a given cardinality n(c). The magnitude of g∗ determines the relative strength of
the prior information on each unit profile and governs the extent that the cluster posterior
means shrink towards zero. Note that, in agreement with (Wakefield et al., 2003), we rec-
ommend setting these prior parameters so that they calibrate to pre-posterior predictions
of the variance of a particular cluster.

Second, it is important that the values (a∗, b∗, g∗) calibrate hyperparameters to pre-
posterior beliefs about the relative probabilities of adjacent partitions after realising certain
hypothetical observations. Thus, the magnitude of parameter g∗ solely influences the rel-
ative weight we place on two clusters having different orientations of profiles. The smaller
this parameter, the more likely clusters — all of whose characteristics are the same but
whose orientations are different — are kept separate. That is, the higher weight given
to ∆(2) relative to ∆(1). To fix an appropriate value of g∗ we suggest calibrating to two
expected profiles of different orientation distances from the origin and asking the scientist
which two profiles are most likely to come from the same cluster.

The effects of the setting of the value of b∗ has a strong effect on the combination rule
when clusters have profiles close to zero. If it is set very small so that d → 0 then two
clusters with small cardinality and a ratio of the sums of squares very different from unity
will be kept apart. Within the context of our running example, such gene expression profiles
are not in practice interesting enough to keep separate and this phenomenon can sometimes
disrupt the AHC algorithm. So, at least pragmatically, there are good reasons for keeping
this parameter well away from zero. This implicitly demands that the prior expectation on
the precision σ−2 is not big: often a plausible assumption. Interestingly, this parameter is
set by default to be very small in (Heard et al., 2006) which may account for a different
type of instability in their algorithm that sometimes occurs early in the AHC.

The effect of the parameter a∗ is only felt through the threshold κ′′. Thus, for example,
using the default prior capacities suggested in (Heard et al., 2006) it is shown in the appendix
that as the cluster cardinalities n1, n2 → ∞ we choose to combine two clusters if

−I(ρ) ≤ ∆(1) + ∆(2) ≤ (1 − 2a∗)(r + 2a∗)−1I(ρ) ≤ r−1I(ρ)

So as well as governing the prior coefficient of variation of the cluster precision, a∗ also acts
as a penalty function for relative cluster cardinality. When, as will be most common, this
prior coefficient of variation is high (so that a∗ is small) then the penalty tends to hold more
equally sized clusters apart and to pull smaller clusters into larger ones whenever possible.
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Note that the setting of the prior capacities also acts solely as a penalty on (n1, n2) and is
therefore somewhat confounded with a∗.

8. Conclusions

Our experiences suggest that simply getting hyperparameters in the right ball park as
described above can dramatically improve the characteristics of these search algorithms,
see (Anderson et al., 2006). Conjugate models with proportional parameter settings are not
only fast but, if reasonably calibrated, behave appropriately. Even the occasional outlier
can be identified and easily separated from the body of a cluster, iterating on the search
algorithm if this is then necessary. The inconvenience in having to do this appears to us a
small price to pay for the fast conjugate algorithm.

One useful spin-off of this analysis is that we have noted that for gene regulation, after
a MAP partition has been found, the between-cluster statistic η is a useful summary. Thus
clusters of genes that are potentially co-regulated can be expected to have similar profile
shapes whilst the extent of the expressions, as measured by (ζ, d), is less biologically signif-
icant. Note that under Bayesian selection, provided search is extensive, all subsets of genes
in a cluster will have similar associated values of η to other clusters and so this parameter
not only characterises differences between clusters but also differences between collections
of genes within clusters. This stability is important in this application since certain sub-
sets of genes within clusters are of known biological function and therefore of more interest
than others and would not be accounted for by other more ad hoc methods. Note that the
separation η between any two clusters is trivial to calculate given the previously computed
statistics associated with the clusters in the MAP partition.

Finally, it is important to point out that although the problems addressed in this paper
are easy to demonstrate using a conjugate analysis, many are not simply a consequence of
conjugacy but actually derive from a misinterpretation of a Bayes factor as a separation
measure. There is every reason to believe that other non-conjugate selection based on Bayes
factors and routinely chosen prior hyperparameters will also exhibit analogous unfortunate
properties. Indeed, conjugate analysis has much useful symmetry which is destroyed by
incorporating different priors. The effect of introducing this lack of symmetry through the
use of non-conjugate models is likely to be influential to the selection, but very difficult
to characterise so that the inevitably influential hyperparameters can be set appropriately.
We speculate that most current numerical analogues of the models discussed here which
exhibit the same qualitative hierarchical structure will be prone not to act as if guided by
a separation measure. The same care is needed to ensure genuine prior predictive beliefs
are specified, otherwise the formal selection (and not just its numerical approximation) is
likely to be unstable in this more general setting.
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10. Appendix

Here we examine the explicit form of the penalty function κ′(n1, n2) for recommended
parameter settings and a g-prior. It is straightforward to show that in this case

K = 2a log b + log

(
g

1 + g

)
+ 2(logΓ(a + 0.5n) − log Γ(a)) − n log π

Stirling’s approximation tells us that for large x we have

log Γ(x) = (x − 0.5) logx − x + 0.5 log(2π) + o(x−1)

Under the default prior suggested in Heard et al. (2006) it follows that for large n1 and n2

log πc1
(n1) + log πc2

(n2) − log πc(n1 + n2)

= log((n1 + n2)!) − log(n1!) − log(n2!)

' (n1 + n2 + 0.5) log(n1 + n2 + 1) − (n1 + 0.5) log(n1 + 1) − (n2 + 0.5) log(n2 + 1)

+1 − 0.5 log(2π)

Under the proportional model a(c) = a∗n(c), b(c) = b∗n(c) and g = g∗n(c) so that

log

(
g∗n(c)

1 + g∗n(c)

)
→ 0 as n(c) → ∞

Under the usual default setting for large (n1, n2)

K(n1) + K(n2) − K(n1 + n2) + 2(log πc1
(n1) + log πc2

(n2) − log πc(n1 + n2))

= 2a∗(n1 log n1 + n2 log n2 − (n1 + n2) log(n1 + n2))

+2(logΓ(n1(a
∗ +

r

2
)) + log Γ(n2(a

∗ +
r

2
)) − log Γ((n1 + n2)(a

∗ +
r

2
)))

+2(log((n1 + n2)!) − log(n1!) − log(n2!)

' − log(a∗ +
r

2
) + (n1 + n2)((4a∗ + r)I(ρ) − 0.5(log ρ1 + log ρ2))

−(n1 + n2 + 1)(I(ρ) − 0.5(log ρ′
1 + log ρ′2))

where ρj =
nj

n1+n2
and ρ′j =

nj+0.5
n1+n2+1 for j = 1, 2. Noting that for large n1 and n2, ρj ' ρ′j ,

we therefore have that

κ′ =
2(logπc1

(n1) + log πc2
(n2) − log πc(n1 + n2)) + K(n1) + K(n2) − K(n1 + n2)

(2a∗ + r)(n1 + n2)

' (4a∗ + r)

(2a∗ + r)
I(ρ)
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