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Summary

Fixed effects meta analysis can be thought of as least squares analysis of the radial
plot, the plot of standardized treatment effect against precision (reciprocal of the standard
deviation) for the studies in a systematic review. For example, the Egger test for publication
bias is equivalent to testing the significance of the intercept in linear regression. In practice,
both x- and y-coordinates of the points in a radial plot are subject to sampling error, which
may be correlated, and so the standard theory of least squares does not apply. For the
Egger test, the actual significance levels are inflated, sometimes substantially so. We derive
approximations to the sampling properties of the radial plot, assuming that the within-
study sample sizes are large. This leads to an asymptotic bias correction for the Egger test.
A simulation study suggests that the bias correction controls the significance level of the
Egger test without any appreciable loss of power in detecting non-random study selection.
A clinical trials example is used as an illustration.
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1 Introduction: radial plots and small sample effects

The standard fixed effects model in meta analysis is that we have k separate studies, each
reporting an estimate θ̂ of a common parameter θ. Each estimate (typically a treatment
effect) is assumed to be independent and normally distributed

θ̂ ∼ N(θ,
σ2

n
), (1.1)

where n is the sample size and σ2 an underlying variance parameter. Note that θ is com-
mon (the fixed effects assumption) but n and σ2 will usually vary across the studies. An
immediate consequence of (1.1) is that the standardized treatment effects can be written
as a linear regression, the so-called Radial Plot (Galbraith, 1988)

θ̂
√

n

σ
= α + θ

√
n

σ
+ ε, (1.2)

where α = 0 and ε is a standard normal residual. Ideally, the plot of standardized effects
against study precision, measured by

√
n/σ, should be a straight line radiating out from

the origin, with slope equal to the true value of θ. See Sutton et al. (2000) for a good
introduction to meta analysis and radial plots.

Small studies (small values of
√

n/σ) will give the points on the radial plot closest to
the origin, large studies (large

√
n/σ) will be the points furthest away from the origin.

Thus, if there is a tendency for smaller studies to give larger estimates of θ than the larger
studies, then the left hand side of the line will be pulled upwards resulting in a positive
value of the intercept α. Conversely, if smaller studies tend to give smaller estimates of
θ then the intercept will become negative. This is the motivation behind the Egger test
for a small study effect: fit a line to the radial plot by ordinary least squares and test the
fitted intercept α̃ for a significant departure from zero (Egger et al., 1997). Although the
Egger test could use the fact that the residual variance in (1.1) is known to equal one, the
sample residual variance is usually used in calculating the variance of α̃. The test is then
reasonably robust to modest heterogeneity between the studies. The Egger test is usually
thought of as test for publication bias, as a tendency for publication to favour studies with
significant results would typically result in non-zero value of α in (1.2).

In practice, the study-specific variances σ2 will never be known, and so we have to use
estimates σ̂2 when plotting radial plots and testing for small study effects. We thus plot y
against x where

y =
θ̂
√

n

σ̂
and x =

√
n

σ̂
. (1.3)

The least squares estimates of θ and α in (1.2), and the test statistic for the Egger test, are
respectively

θ̃ =
cx,y

cx,x

, α̃ = ȳ − θ̃x̄ and t = α̃

{
s2

k

(
1 +

x̄2

cx,x

)}− 1
2

, (1.4)

where s2 = k(cy,y − c−1
x,xc

2
y,x)/(k− 2) is the usual unbiased estimate of the residual variance.
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In this and in all following expressions we use the generic covariance notation

cx,y =
1

k

k∑
i=1

(yi − ȳ)(xi − x̄).

The Egger test refers the statistic t in (1.4) to the t-distribution on (k − 2) degrees of
freedom. Notice that, throughout, our sample mean and covariance notation refers to
variation between the k studies.

Replacing σ by σ̂ in x and y upsets the assumptions necessary for the linear regression
(1.2). The stochastic error in x may lead to bias in the parameter estimates, and the
variability in σ̂ may also induce a within-study correlation between x and y. Both effects
mean that t no longer has a t-distribution. Several recent simulation studies (Macaskill
et al., 2001; Schwarzer et al., 2002; Peters et al., 2006; Harbord et al., 2006) have shown
that the true significance level of the Egger test can be substantially inflated, meaning that
it rejects the null hypothesis that α = 0 more often than it should, even when the study
sample sizes are quite large.

The aim of our paper is to study the distribution of x and y, and to derive asymptotic
approximations to sampling properties of the radial plot, asymptotic in the sense that the
study-specific sample sizes are large. This leads to a relatively simple bias correction to the
Egger test, which is easy to use in practice and which in most applications gives an effective
correction for the inflation in significance level. As we shall see, the extent of these biases
depends principally on the spread in the values of x across the studies, and on the sampling
properties of the particular within-study estimates θ̂ and σ̂2. We discuss two contrasting
examples:

Example 1. Here θ̂ is the sample mean of a random sample of size n from N(θ, σ2) and
σ̂2 is their sample variance. In this case, θ̂ and σ̂2 are independent which simplifies much
of the theory developed below.

Example 2. This is the most common problem in meta analysis, when we have two
treatments and a binary outcome, and hence two binomial distributions bin(m1, p1) and
bin(m2, p2). Each study gives an estimated log-odds ratio θ̂ with variance σ2/n based on a
total sample size n = m1 + m2, where

θ = log
p1(1− p2)

(1− p1)p2

, σ2 = γ1 + γ2, (1.5)

and

γj =
1

αjpj(1− pj)
, αj =

mj

n
; j = 1, 2. (1.6)

In this case, the usual estimates of θ and σ2 can be substantially correlated, leading to a
serious inflation in the significance level of the Egger test.

In Section 2 we discuss some asymptotic properties of x and y for a single study, and
then use these results to study asymptotic properties of the radial plot in Section 3. This
leads to the proposed bias-corrected version of the Egger test in Section 4. In each of
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these sections we illustrate the general set-up by looking at Examples 1 and 2. Example 2
(the meta analysis of 2× 2 tables) is the main case of practical interest, and so in Section
5 we discuss this example in more detail, setting out the steps needed to calculate our
bias correction. A case study from the Cochrane database is used as an illustration, with
bootstrap estimates of the actual significance levels of the corrected and uncorrected Egger
tests. Section 6 reports a more general simulation study. Some concluding comments are
given in Section 7.

2 Asymptotic approximations for a single study

We now consider the joint distribution of θ̂ and σ̂2 for a single study. Model (1.1) states that
θ̂ is asymptotically N(θ, σ2/n); first we extend this to suppose that (θ̂, σ̂2) is asymptotically
jointly normal with mean (θ, σ2). We assume that the biases in both estimates are of order
O(n−1), that Var(θ̂) = σ2/n + O(n−2), and that Var(σ̂2) = O(n−1). These are standard
properties of maximum likelihood estimates; in practice they will hold for any ‘sensible’
estimates of θ and σ2.

We will be interested in the following three functions of x and y:

u = x−
√

n

σ
=
√

n

(
1

σ̂
− 1

σ

)
, v = y− θ

√
n

σ
=
√

n

(
θ̂

σ̂
− θ

σ

)
, w = v− θu =

(θ̂ − θ)
√

n

σ̂
.

(2.1)
Our approximations will involve two moments in particular, E(w) and E(uw), which from
the above assumptions have orders of magnitude

E(w) = O(n−
1
2 ) and E(uw) = O(1). (2.2)

We will also need to note that, again as a consequence of the above assumptions,

E(u) = O(n−
1
2 ) , Var(w) = 1 + O(n−1) and Cov(w, uw) = O(n−

1
2 ). (2.3)

Example 1 (cont.) For the normal mean example, θ̂ and σ̂2 are independent, and
E(θ̂ − θ) = 0. It follows immediately that E(w) = E(uw) = 0.

Example 2 (cont.) For the 2 × 2 table, first consider the case of a single binomial
distribution, with frequency f ∼ bin(m, p), say. Let z be the asymptotic (large m) standard
normal deviate corresponding to f , with

z =
f − np√

n/γ
and γ =

1

p(1− p)
.

In estimating the log odds, log{p/(1− p)}, we follow the standard practice of adding 1
2

to
each of the observed frequencies f and m− f , making the sample size effectively (m + 1).
Then after some tedious but straightforward algebra we find

log
f + 1

2

m− f + 1
2

= log
p

1− p
+ γ

1
2 zm− 1

2 +
1

2
γ(1− 2p)(1− z2)m−1 + Op(m

−3/2) (2.4)

m + 1

(f + 1
2
)(m− x + 1

2
)

= γm−1 − γ3/2(1− 2p)zm−3/2 + Op(m
−2). (2.5)
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Extending this to two binomial distributions f1 ∼ bin(m1, p1) and f2 ∼ bin(m2, p2),
with n = m1 + m2, our estimates of θ and σ2 in (1.5) are

θ̂ = log
f1 + 1

2

m1 − f1 + 1
2

− log
f2 + 1

2

m2 − f2 + 1
2

(2.6)

σ̂2 = n

{
m1 + 1

(f1 + 1
2
)(m1 − f1 + 1

2
)

+
m2 + 1

(f2 + 1
2
)(m2 − f2 + 1

2
)

}
. (2.7)

We can now use (2.4) and (2.5) to expand θ̂ and σ̂2 in powers of n−
1
2 and in terms of two

independent standard normal deviates z1 and z2. Recalling the notation γj in (1.6), this
leads to the following approximations to the quantities u and w in (2.1),

u =
1

2
(γ1 + γ2)

−3/2{γ3/2
1 (1− 2p1)z1 + γ

3/2
2 (1− 2p2)z2}+ Op(n

− 1
2 ),

and

w = (γ1 + γ2)
− 1

2 (γ
1
2
1 z1 + γ

1
2
2 z2) +

1

2
n−

1
2

[
2u(γ

1
2
1 z1 − γ

1
2
2 z2)

+ (γ1 + γ2)
− 1

2{γ1(1− 2p1)(1− z2
1)− γ2(1− 2p2)(1− z2

2)}
]

+ Op(n
−1).

These give

E(w) =
1

2
(γ1 + γ2)

−3/2{γ2
1(1− 2p1)− γ2

2(1− 2p2)}n− 1
2 + O(n−1), (2.8)

E(uw) = (γ1 + γ2)
− 1

2{n 1
2 E(w)}+ O(n−

1
2 ). (2.9)

3 Asymptotic properties of the radial plot

Now consider the distribution of the radial plot least squares estimates (1.4). Our aim is
to derive asymptotic approximations which are valid on the assumption that all the study
sample sizes n1, n2, · · · , nk are large. To make this clear, let N =

∑k
1 ni and λi = ni/N .

Then we imagine that N →∞ while the λis remain fixed.
For each study, let

a =
λ

1
2

σ
,

so that

x =

√
n

σ̂
=

λ
1
2 N

1
2

σ
+ u = aN

1
2 + u, (3.1)

and

y =
θ̂
√

n

σ̂
=

θλ
1
2 N

1
2

σ
+ v = aθN

1
2 + v. (3.2)

Then
cx,x = Nca,a + 2N

1
2 ca,u + cu,u ,
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and

cx,y = θNca,a + N
1
2 (ca,v + θca,u) + cu,v

= θcx,x + N
1
2 ca,w + cu,w,

where, as before, w = v − θu. Thus the least squares slope is

θ̃ =
cx,y

cx,x

= θ +
ca,w

ca,a

N− 1
2 +

cu,wca,a − 2ca,wca,u

c2
a,a

N−1 + Op(N
−3/2). (3.3)

From (3.1) and (3.2), x̄ = āN
1
2 + ū and ȳ = θāN

1
2 + v̄, and so the least squares intercept

becomes

α̃ = ȳ − θ̃x̄

= w̄ − ca,wā

ca,a

−
{

ca,wū

ca,a

+
ā(cu,wca,a − 2ca,wca,u)

c2
a,a

}
N− 1

2 + Op(N
−1). (3.4)

Now, for each study, let

b = lim
N→∞

N
1
2 E(w) and c = lim

N→∞
E(uw).

From(2.2), all three study-specific quantities (a, b, c) are of order O(1) in our approximations
as N → ∞. Then the expectations of the random quantities appearing in (3.3) and (3.4)
can be written

E(w̄) = b̄N− 1
2 + O(N−1)

E(ca,w) = k−1
∑

(ai − ā)E(w) = ca,bN
− 1

2 + O(N−1)

E(ca,wū) = k−2
∑

(ai − ā)E(uiwi) + O(N−1)

= k−1ca,c + O(N−1)

E(cu,w) = k−1
∑

E(uiwi)− E(ūw̄)

= (1− k−1)c̄ + O(N− 1
2 )

E(ca,uca,w) = k−2
∑

(ai − ā)E(uiwi) + O(N− 1
2 )

= k−1(c(a−ā)2,c + c̄ca,a) + O(N− 1
2 ).

Substituting these into (3.3) and (3.4) gives

E(θ̃) = θ +
N−1

ca,a

{
ca,b +

(
1− 3

k

)
c̄− 2c(a−ā)2,c

kca,a

}
+ O(N−3/2), (3.5)

and

E(α̃) =
N− 1

2

ca,a

{
ca,ab̄− ca,bā− ca,c

k
−

(
1− 3

k

)
āc̄ +

2āc(a−ā)2,c

kca,a

}
+ O(N−1) (3.6)

= α + O(N−1) , say.
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Notice the different orders of magnitude of the biases in θ̃ and α̃. We can think of
estimating the intercept of a linear regression as extrapolating from the observed values of
x back to x = 0, a distance which here increases at the rate N

1
2 because of the factor

√
n in

the definitions of x and y. Hence the bias of order O(N−1) in the slope, which is negligibly
small if the study sample sizes are sufficiently large, is magnified into the much bigger bias
of order O(N− 1

2 ) in the intercept. We see this in approximations (3.5) and (3.6).

Example 1 (cont.) Here b = c = 0 and so the leading bias terms in (3.5) and (3.6) are
both zero. Although the estimates are not exactly unbiased, their biases are an order of
magnitude smaller than in the general case.

Example 2 (cont.) From (2.8) and (2.9),

c = E(uw) =
γ2

1(1− 2p1)− γ2
2(1− 2p2)

2(γ1 + γ2)2
. (3.7)

Hence

b = N
1
2 E(w) =

n
1
2 E(w)

λ
1
2

=
n

1
2 E(w)

aσ
=

c

a
, (3.8)

this last step following from (2.9) as σ2 = γ1 + γ2.

4 Bias correction for the Egger test

From (3.4) we can write

α̃ =
1

k

k∑
1

wi

(
1− ā(ai − ā)

ca,a

)
+ AN− 1

2 + Op(N
−1),

where A is the factor multiplying N− 1
2 in expression (3.4). Now A can be written as a

linear combination of products of the form uiwj, and so from (2.3) we have

Cov(wi, A) = O(N− 1
2 ).

Hence, again using (2.3), we get

Var(α̃) = σ2
α + O(N−1),

where

σ2
α =

1

k

(
1 +

ā2

ca,a

)
. (4.1)

Then the standardized value of α̃ is

α̃− E(α̃)√
Var(α̃)

=
α̃− α

σα

+ O(N−1). (4.2)

We can think of (4.2) as a bias-corrected version of the Egger test statistic. To implement
this in practice, we need to estimate the parameters α and σα, by α̂ and σ̂α, say. We do
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this by estimating the values of (a, b, c) for each study and then calculating the required
averages and sums of squares and products.

Notice that if we replace a by aN
1
2 =

√
n/σ in (4.1) then σα is unchanged, and if we

replace a by aN
1
2 in (3.6), we just remove the factor N− 1

2 . But E(x) = aN
1
2 + O(N− 1

2 ), so
one way of calculating these quantities is to simply replace a by x in the above formulae.
If we do this, σα becomes exactly the same as the denominator of the original test statistic
t in (1.4), except that the theoretical variance of one in (1.2) is replaced by the estimated
residual variance s2. We suggest that the sample residual variance of the radial plot is again
used in the denominator, giving the bias-corrected Egger test statistic as

t∗ =
α̃− α̂

sσ̂α

. (4.3)

Example 1 (cont.) Here b = c = 0 in each study and so α = 0. Thus no bias correction
is needed in this case.

Example 2 (cont.) From (1.5),

aN
1
2 =

√
n

σ
=

√
n

γ1 + γ2

.

This, together with (3.7) and (3.8), shows that (aN
1
2 , b, c) can all be written as functions

of the values of (γ1, γ2) and hence of (p1, p2) in the k studies. Taking p1 and p2 equal to the
corresponding observed relative frequencies therefore gives the simplest way of estimating
these quantities. This means we would simply replace a by x and estimate c (and hence b)
in the obvious way from the earlier formulae.

However, we get more stable estimates of (p1, p2) if we exploit the fixed effects as-
sumption, that the pairs (p1, p2) are related through the common log-odds ratio θ. The
constrained maximum likelihood estimates of p1 and p2 given that

Θ(p1, p2) = log
p1(1− p2)

(1− p1)p2

= θ

are

p1(λ) =
f1 + λ + 1

2

m1 + 1
and p2(λ) =

f2 − λ + 1
2

m2 + 1
, (4.4)

where the Lagrange multiplier λ is a solution of the quadratic equation Θ{p1(λ), p2(λ)} = θ.
For consistency with the earlier definitions of x and y, we have again added one half onto
all of the observed frequencies in these calculations. By examining the function Θ(p1, p2)
it is easy to check that the quadratic equation for λ has two real solutions, and that it is
uniquely the larger solution which gives values of p1 and p2 in [0, 1]. We suggest taking
θ = θ̃ =

∑
xy/

∑
x2, the standard fixed effects estimate of θ, finding the corresponding

pairs (p1, p2), and then using these to calculate (aN
1
2 , b, c).
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5 Bias correction for 2× 2 tables

As Example 2, the meta analysis of 2 × 2 tables, is the main case of practical interest (in
fact tacitly assumed in almost all of the literature on the Egger test), we set out in more
detail how our correction to the Egger test is calculated.

5.1 Calculation

As before, we assume we have k studies, each with data f1 ∼ bin(m1, p1) and f2 ∼
bin(m2, p2).

• First calculate the study-specific estimates (θ̂, σ̂2) in (2.6) and (2.7), and hence the
usual radial plot co-ordinates (x, y) in (1.3) and the least squares estimates α̃ and s
in (1.4).

• Let η = exp(
∑

xy/
∑

x2). If η 6= 1, calculate the Lagrange multipliers

λ = {2(1− η)}−1 [−{f1 + m2 − f2 + 1 + η(f2 + m1 − f1 + 1)}
+

{{f1 + f2 −m2 + η(m1 − f1 − f2)}2 + 4η(m1 + 1)(m2 + 1)
} 1

2

]
,

and hence each study’s estimate of (p1, p2) in (4.4). If η = 1 then we simply take
p1 = p2 = (f1 + f2 + 1)/(m1 + m2 + 2). We can now calculate the estimates (γ̂1, γ̂2)
from (1.6) and hence the following four quantities for each study:

e =

√
n

γ̂1 + γ̂2

,

c =
γ̂2

1(1− 2p̂1)− γ̂2
2(1− 2p̂2)

2(γ̂1 + γ̂2)2
,

b =
c

e
,

d = (e− ē)2.

• Calculate the average values across the k studies of the quantities (b, c, d, e), and their
empirical covariances cb,e, cc,e and cc,d. Then, from (3.6) and (4.1),

α̂ = b̄− ēcb,e

d̄
− cc,e

kd̄
− (k − 3)ēc̄

kd̄
+

2ēcc,d

kd̄2

σ̂2
α =

1

k

(
1 +

ē2

d̄

)
.

• The corrected Egger test statistic is now t∗ in (4.3), namely

t∗ =
α̃− α̂

sσ̂α

.

This is the same as the usual Egger test statistic t in (1.4), except for the subtraction of
the bias correction in the numerator and the use of e instead of x in the denominator.
As before, we refer t∗ to the t-distribution on (k − 2) degrees of freedom.
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5.2 Example

To illustrate these calculations, we revisit the example used in Copas and Jackson (2004),
a systematic review of k = 14 clinical trials into the effectiveness of corticosteroids in cases
of premature birth (see the cited paper for further details, including a table giving the raw
data). Here, θ is the log-odds ratio measuring the reduction in infant deaths for active
treatment versus placebo. As there is no evidence of between-study heterogeneity, the
standard fixed effects analysis is used to give an estimated log-odds ratio of −0.477 with
standard error 0.118, a strongly significant treatment effect.

However the radial plot in Figure 1 shows evidence of a small study effect, with the
smaller studies (points to the left of the graph) tending to report more negative estimates
of θ (i.e. greater improvements in mortality). Two regression lines are shown on the
plot. The solid line is constrained to pass through the origin, and has slope −0.477, the
regression we would expect if the model (1.1) is correct. The dashed line is the usual
(unconstrained) least squares linear regression. The substantial difference between these
lines is again indicative of a small study effect. The dashed line has intercept α̃ = −1.217
and residual standard deviation s = 0.872. The conventional Egger test statistic in (1.4) is
t = −2.213, giving a (2-sided) P-value of 0.047 on k − 2 = 12 degrees of freedom. Thus,
taking the conventional significance level as 5%, the Egger test indicates a significant small
study effect.

Estimating the quantities required for our asymptotic approximations, we find
α̂ = −0.043 and σ̂α = .622, giving t∗ = −1.990, a (2-sided) P-value of 0.070. The test
statistic has shrunk by 10%. In this case, the difference between t and t∗ is quite small, but
enough to cast doubt on the alleged significance of a small study effect.

However, the sample sizes in some of these trials are small (only 23 and 22 in one study)
and the probabilities p1 and p2 are also small (the numbers of infant deaths observed in
this small trial are 0 and 1). Such sparse data raise doubts about the accuracy of our
asymptotic approximations. As a check, Table 1 reports the results of a limited parametric
bootstrap simulation designed to assess the actual significance levels of these tests. We have
generated independent samples from 14 pairs of binomial distributions, taking the sample
sizes as the actual values of m1 and m2 and the probabilities as p1 = 0.079 and p2 = 0.135,
these two numbers being the averages across the studies of the empirical estimates of p1 and
p2. For each simulated data set we calculate t and t∗ and compare these with the 95th and
971

2
th percentiles of the t distribution on 12 degrees of freedom, namely 1.783 and 2.179.

For example, the first numerical row of the table records the percentage of simulated data
sets with t ≤ −1.783 (left tail), with t ≥ +1.783 (right tail), and with |t| ≥ 1.783 (actual
2-tailed significance level), and similarly for the other rows in the table. These figures are
based on 100, 000 simulations, giving Monte Carlo standard errors of 0.07 and 0.05 on the
percentages shown for the 5% and 21

2
% tests respectively. This suggests that most of the

percentages in the table are correct to the accuracy given, with errors at most one in the
first decimal place.

Comparing the first and last columns of the table, the 2-tailed significance levels of
t are about 1% higher than nominal, whereas those of t∗ match the nominal levels more
closely. However, the major effect is the bias in α̃, which shifts the intercept downwards
leading to more false rejections in the left tail than the right. The bias correction in t∗
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over-corrects for this, leading to an imbalance the other way round, although the two tails
for t∗ are more nearly equal than for t. The table suggests that even for relatively sparse
data, the asymptotic corrections are reasonably effective in achieving nominal significance
levels, equally divided between the left and right tails.

nominal (2-sided) test actual actual actual (2-sided)
significance level % left tail % right tail % significance level %

10 t 6.8 4.4 11.2
t∗ 4.7 5.6 10.3

5 t 3.7 2.1 5.8
t∗ 2.3 2.9 5.2

Table 1. Bootstrap significance levels for the corticosteroids meta analysis.

The size of the bias correction depends on the characteristics of the studies in the review,
through the quantities b and c in (3.7) and (3.8). Sometimes the bias correction is zero, for
example when the trials are balanced (m1 = m2) and there is no treatment effect (p1 = p2),
for in this case b = c = 0 and so E(α̃) = 0. In Section 6 we go on to consider a wider range
of possibilities, some of which produce a much more marked distortion of significance levels
than we see in Table 1.

6 Simulation study

In this section we present some further simulation results for 2 × 2 tables. Clearly it is
impossible to cover all possibilities, but for Figs 2-4 below we have made the following
choices:

• k, the number of studies, is between 10 and 100

• all studies are balanced with m1 = m2 = m, where the values of m are chosen
randomly from the uniform distribution between 30 and 150

• θ = log(0.67), an odds ratio of 2/3 (or equivalently 1.5 if the labels on the treatments
are reversed)

• pE, defined to be the average of p1 and p2 on the logit scale, is 0.3 or 0.1. With
θ = log(.67) this means that (p1, p2) is either (0.26, 0.34) (with pE = 0.3) or (0.08, 0.12)
(with pE = 0.1). In the second case the data can be quite sparse.

For each randomly generated set of 2× 2 tables, the values of t in (1.4) and t∗ in (4.3) are
calculated as set out in Section 5. The simulations are repeated 10, 000 times.

Firstly, we illustrate the bias in t by looking at its distribution when k = 50. Figure 2
shows kernel density estimates for t and t∗, compared with the density of the t-distribution
on k − 2 = 48 degrees of freedom. For both values of pE the densities of t∗ are virtually
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indistinguishable from the t-distribution, but the densities of t are noticeably shifted to the
left. The vertical lines represent the quantiles of the t-distribution for a two-sided test at
the 10% level. At the smaller value of pE nearly all the rejections for the test based on t
will be in the left tail. Essentially, the quantity α̂ defined in Section 5 is estimating the
degree of shift shown in Figure 2.

Figure 3 shows the actual Type I error rates for t and t∗ for nominal 10% (two-sided)
and 5% (one-sided) tests. In all four cases shown, the inflation in significance level of t
increases as k increases, and can be very substantial. This is in line with the findings of
Macaskill et al. (2001), Schwarzer et al. (2002), Peters et al. (2006) and Harbord et al.
(2006). With pE = 0.3 (when there are no small frequencies) the Type I error rates of t∗

keep very close to the nominal levels. For more sparse data (pE = 0.1), t∗ overcompensates
for the imbalance in the tails, as already noted in Table 1 above. In this case t∗ gives an
overly conservative one-sided test, but then the Egger test shows an even greater distortion
in the opposite direction i.e. rejects the null hypothesis too often.

To investigate the power of the tests based on t and t∗ we need to simulate data from
models representing varying degrees of publication bias. Since, with θ < 0, we would expect
publication bias to result in a negative intercept for the radial plot, working with one-sided
tests seems more meaningful. For each study, we simulate its 2× 2 table and test to see if
the treatment effect is significant (testing H0 : θ = 0 against H1 : θ < 0), using significance
level αp. We continue simulating 2 × 2 tables until H0 is rejected. All the tables obtained
in this way therefore show a significant treatment effect at the αp level. If αp = 1 all tables
are accepted and there is no publication bias. The smaller is αp the more severe is the
selection and hence the greater is the potential for publication bias.

It would clearly be misleading simply to compare the proportion of simulations in which
the tests based on t and t∗ reject the null hypothesis of no publication bias, because of the
great imbalance in the Type I error rates. For a fair comparison of power, we need to be sure
that they have the same probability of rejection when the null hypothesis is true. We define
the ”shifted Egger test” to be the one-tail test using t, but using a nominal significance αs

which may be different from the target significance level. From the above simulations we
estimate αs so that the actual Type I error rate of the Egger test is 5%. This means that
we compare t against a percentile of the t-distribution which is further into the left tail
than the 5th percentile.

Figure 4 compares the power functions of t∗ and the shifted version of t, for pE = 0.3 with
k = 10 and k = 50. These graphs plot the probability of rejecting the hull hypothesis of no
publication bias against the significance level αp. The t∗ test is less powerful, as expected
because of the added variability from estimating the intermediate quantities needed in
Section 5.1. However, the power functions shown in Figure 4 are quite similar, especially
at k = 50, suggesting that the power of the Egger test is not substantially compromised by
the proposed bias correction.

More generally, power plots like Figure 4 illustrate the difficulty of the whole idea of
trying to test for publication bias. When αp = 0.5, which means that all studies with θ̂ > 0
are filtered out, the probability of being able to detect this from the data is disappointingly
low, even with 50 studies. When αp = 0.1, we would need at least 20 studies for there to
be any reasonable chance of being able to detect that selection of this severity was taking
place.
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A strong assumption in these simulations so far is that p1 and p2 remain the same for
all k studies. This is unrealistic: even the fixed effects model allows these probabilities to
vary between studies provided θ is constant. We have rerun the above simulations with
pE generated randomly, with medians 0.3 and 0.1 and normal distributions for logit(pE).
With median 0.3 and coefficient of variation of logit(pE) up to 50%, the results are almost
indistinguishable from those already shown for fixed pE = 0.3. For median 0.1 this also
holds for coefficient of variation up to 20% — a higher variability for logit(pE) in this case
is unrealistic in that pE can be very close to zero in which case both arms of the trial will
have no observed events.

The above comparisons depend strongly on the value of θ. Our choice θ = log(0.67)
represents the kind of moderate treatment effect that one might hope to find in clinical
trials or epidemiological studies. When θ = 0, there is no bias in the radial plot and so t
and t∗ are essentially the same. We have rerun the simulations for the stronger treatment
effect θ = log(0.5), or equivalently θ = log(2). The inflation in the significance level of t is
then much more marked, for example with k = 100 and pE = 0.1 the actual significance of
the two-sided Egger test at the nominal 10% level is in fact 70%. However, the shape (but
not the magnitude) of the various plots in Figs 2-4 remains broadly similar.

7 Discussion

1. Each point (1.3) of the radial plot can be thought of as an estimate of the true point
(θ
√

n/σ,
√

n/σ) for that study. These true points become unbounded as n → ∞. Thus
the asymptotics in this paper are somewhat non-standard, unlike more usual asymptotic
discussions where we are studying properties of estimates of fixed parameters. Note in
particular that the covariance notation used in Sections 2-5 refers to variation across rather
than within studies. For example, the variance ca,a in (3.3) is a positive quantity even
through the study specific a’s are defined as fixed parameters.

2. The radial plot is a key to several aspects of meta analysis, not just testing for
publication bias. For example, the constrained least square slope is just the usual fixed
effects estimate of θ, and the residual sum of squares gives the usual chi-squared test for
heterogeneity. Thus, at least in principle, the asymptotic theory of Sections 2 and 3 allows
us to address wider aspects of the bias inherent in nearly all of the literature in meta
analysis, caused by the assumption that within study variances are known when in practice
they are estimated.

3. The Egger test was proposed by Egger (1997) in a British Medical Journal article,
and has been very widely used. However there have been many papers raising doubts about
its statistical validity, including letters published in the same journal soon after the original
paper (e.g. Irwig, et al., 1998). We have retained the Egger test and its simple graphical
motivation, whilst addressing its statistical problems with the proposed bias correction.
An alternative approach, suggested in several recent papers, is to abandon the Egger test
altogether and develop better tests for publication bias (for example Harbord et al., 2005;
Macaskill et al., 2001; Peters et al., 2006). All these tests are claimed to have a more stable
Type I error rate than the Egger test.

4. The fixed effects assumption lies behind the motivation of the Egger test, and is
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assumed in the theory of Section 3. But in practice the Egger test seems to be used with
scant regard to whether a fixed or random effects model would be more appropriate. Using
the estimated residual variance rather than the true variance in the denominator of t gives
some robustness to heterogeneity, as confirmed by repeating the simulations of Section 6
with θ varying randomly with variance τ 2. We find that when τ 2 is small the sampling
properties of t and t∗ are very similar to those shown above for τ 2 = 0. When τ 2 is
large, unweighted least squares on the radial plot is no longer appropriate and we would
need to rework the theory of Section 3. This would be much more challenging than the
development here, particularly as estimates of τ 2 would depend on all the data and not just
on the individual points in the radial plot.

5. An emphasis on testing for publication bias runs the risk of encouraging the belief
that if there is no significant evidence of publication bias then no bias exists. This can
be grossly misleading, particularly when k is small, as is often the case in practice. Study
selection can have a marked effect on the estimate of θ without being detectable from the
data, as evident from the power functions shown in Figure 4. Arguably, sensitivity analysis
is a better approach, interpreted in the scientific context of each particular systematic
review. See Rothstein et al. (2005) for a general discussion of publication bias and its
importance in meta analysis.
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Figure 2: Distributions of t and t∗
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Figure 3: Actual Type I error rates for tests based on t and t∗
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Figure 4: Power functions for t∗ and shifted-t
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