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1 Administrative Details

Webpage

Any further information and announcements will be placed on the workshop webpage:
warwick.ac.uk/crism/workshops/hypothesistesting

Getting Here

• Information on getting to the University of Warwick can be found at
warwick.ac.uk/about/visiting

• Parking permits can be acquired at no further cost at
https://carparking.warwick.ac.uk/events/contemporary-issues-in-hypothesis-training

Registration and Locations

• Registration is open 9:00–9:15 and 10:30–11:00, Thursday 15th September, in the
main atrium of the Zeeman building. Tea and coffee will be available.

• Talks will be held in room MS.04, Zeeman Building. MS.04 is on the second floor,
up both sets of main stairs from the atrium.

• Breakfast is provided for those with on-campus accommodation.

• Lunch is provided on Thursday and Friday in the atrium of the Zeeman building
(and undergraduate workroom).

• Dinner is not provided (with the exception of the workshop dinner on Thursday,
for those who have registered for this). There are several restaurants on campus,
see the facilities section below.

• The poster session and wine reception is on Thursday from 16:30 to 18:30, in the
atrium of the Zeeman building.

• The workshop dinner is on Thursday at 19:00, at the Radcliffe restaurant, for those
who have registered.

• The workshop ends at 17:00 on Friday 16th September.

Accommodation

Accommodation is in en-suite rooms on campus. Keys can be collected from the confer-
ence reception in the student union atrium, with the exception of invited speakers who
should collect their keys from Radcliffe reception. All rooms have linen and toiletries.
Rooms will be available after 15:00 for check in. All bedrooms must be vacated by 9:30am
on the day of departure.

Internet Access

• Campus: Wireless access is most easily available via eduroam, which is supported
across most of the Warwick campus. See eduroam.org.

• Accommodation: Wireless access is available, ask for log-in details whenever you
check-in to your accommodation.
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Facilities

• Pubs and Resaurants:

– Xananas, Students’ Union: warwicksu.com/xananas

– Le Gusta, Arts Centre: warwick.ac.uk/services/retail/legusta

– The Dirty Duck, Students’ Union: warwicksu.com/thedirtyduck

– For other options, see warwick.ac.uk/services/retail/openingtimes

• Shop: Rootes Grocery Store, next to the Students’ Union. Open 8am - 8pm.

• Arts Centre: warwickartscentre.co.uk

• Sports Centre: warwick.ac.uk/sport

• Health Centre: uwhc.org.uk

• Pharmacy: Students Union Atrium. Open 9am - 6pm.

Telephone Numbers

• Emergency: Internal - 22222; External - 024 7652 2222

• Security: Internal - 22083; External - 024 7652 2083

• Department of Statistics: Internal - 574812; External - 024 7657 4812

Taxis

• Swift Cabs 024 7777 7777

• Trinity Street Taxis 024 7699 9999
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2 Timetable

All talks will take place in room MS.04 in the Mathematics & Statistics Building.

Thursday, 15th September

9:00 – 9:15: Registration and coffee
Morning session chaired by Joris Mulder
9:15 – 9:30: Opening remarks by Dalia Chakrabarty
9:30 – 10:30: Christian Robert
10:30 – 11:00: Coffee break and registration
11:00 – 11:30: Nick Chater
11:30 – 12:00: Tom Nichols
12:00 – 12:30: Sudip Bose (remote)
12:30 – 14:00: Lunch
Afternoon session chaired by Christian Robert
14:00 – 15:00: Andrew Gelman (remote)
15:00 – 15:30: Coffee break
15:30 – 16:30: David Draper
16:30 – 18:30: Poster session, cheese and wine
19:00 – 22:00: Workshop dinner, Radcliffe restaurant

Friday, 16th September

Morning session chaired by David Draper
9:30 – 10:30: Jim Berger
10:30 – 11:00: Coffee break
11:00 – 11:30: Susan Ellenberg
11:30 – 12:00: Anne-Laure Bouslateix
12:00 – 12:30: Alexandra Carpentier
12:30 – 12:45: Louis Lyons
12:45 – 14:30: Lunch
Afternoon session chaired by Jim Berger
14:30 – 15:30: Joris Mulder
15:30 – 16:00: Coffee break
16:00 – 17:00: Floor opened for discussions.
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3 Invited talks, in order of appearance

Testing hypotheses as a mixture estimation problem
Christian P. Robert, Université Paris-Dauphine, University of Warwick, Institut

Universitaire de France

We consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model
comparison. Our alternative to the traditional construction of posterior probabilities that
a given hypothesis is true or that the data originates from a specific model is to consider
the models under comparison as components of a mixture model. We therefore replace
the original testing problem with an estimation one that focus on the probability weight
of a given model within a mixture model. We analyse the sensitivity on the resulting
posterior distribution on the weights of various prior modelling on the weights. We stress
that a major appeal in using this novel perspective is that generic improper priors are
acceptable, while not putting convergence in jeopardy. Among other features, this allows
for a resolution of the Lindley-Jeffreys paradox. When using a reference Beta B(a, a) prior
on the mixture weights, we note that the sensitivity of the posterior estimations of the
weights to the choice of a vanishes with the sample size increasing and advocate the
default choice a = 0.5, derived from Rousseau and Mengersen (2011). Another feature
of this easily implemented alternative to the classical Bayesian solution is that the speeds
of convergence of the posterior mean of the weight and of the corresponding posterior
probability are quite similar.
Joint work with K. Kamary, K. Mengersen and J. Rousseau
arxiv.org/abs/1412.2044

The psychology of explanation
Nick Chater, Warwick Business School

How does the brain explain the world around us? And how does the brain’s approach
contrast with scientific and statistical methodology? I suggest that cognition operates
using a “cycle of thought:” a slow, sequential process, each step of which involves “fo-
cusing” on a very narrow pattern complete problem (e.g., recognizing a face, or a word, or
planning an action). The sequentiality of the process arises because each pattern comple-
tion draws on a parallel memory search over prior memory traces; such searches can only
be conducted one at a time without interference. According to this picture of cognition,
the brain (1) considers data sequentially ; (2) considers one hypothesis at a time; (3) but
can propose and assess “local” adjustments to that hypothesis; (4) cannot compare very
different hypotheses directly, but only via qualitative arguments; (5) has no memory for
past data, but just the “explanation” of that data. The memory-based computational ap-
proach typically generates “shallow” explanations—each new set of data is “explained”
by mapping it on to explanations of prior data. Constructing explicit statistical and sci-
entific methodologies is required precisely because the brain does not operate according
to these principles by default.
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Large scale evaluation of random field theory inference in fMRI
Thomas E. Nichols, University of Warwick

A fundamental goal in “brain mapping” with functional Magnetic Resonance Imaging
(fMRI) is localising the parts of the brain activated by a task. The standard tool for making
this inference has been Random Field Theory (RFT), a collection of results for Gaussian
Processes of the null statistic image. RFT provides inference on individual voxels (voxel-
wise) and sets of contiguous suprathreshold voxels (cluster-wise) while controlling the
familywise error rate, the chance of one or more false positives over the brain. I have
spent much of my career developing RFT methods as well as complementary resampling-
based inference method, always carefully evaluating the methods with simulated Gaus-
sian Process realisations. The focus of the talk will be new, large-scale evaluations with
real data. Usually, convincing scientists to spend time collecting null data is a challenge,
but in fMRI an entire discipline has evolved around the ”resting state”. In resting state
fMRI, instead of comparing brain activity between states, subjects are asked to lie in the
scanner in a state of ”resting wakefulness”, and the pattern of connectivity between re-
gions is studied. We exploited 1000’s of publicly available resting state fMRI datasets,
putting them to work as real data realisations of the null hypothesis for putative task
fMRI experiments. These massive real data evaluations show that, even with n = 20 or
40 subjects, RFT suffers from slightly conservative voxel-wise inferences and sometimes
catastrophically liberal cluster-wise inferences. I will discuss the reasons for these failures
of RFT and practical solutions going forward.
Joint work with A. Eklund and H. Knutsson.

Frequentist vs. Bayesian testing: when are data more extreme?
Sudip Bose, George Washington University

In comparing Bayesian hypothesis testing with frequentist, several authors, notably
Berger, Sellke and Sivaganesan have calculated lower bounds on posterior probabilities
and on Bayes factors and compared them with p-values. We consider a different sort
of comparison – what sets of data are more or less extreme in Bayesian and frequentist
analyses? We present some results for the exponential family.

Hypothesis testing is a bad idea
Andrew Gelman, Columbia University

Through a series of examples, we consider problems with classical hypothesis testing,
whether performed using classical p-values or confidence intervals, Bayes factors, or
Bayesian inference using noninformative priors. We locate the problem not in the use of
any particular statistical method but rather with larger problems of deterministic think-
ing and a misguided version of Popperianism in which the rejection of a straw-man null
hypothesis is taken as confirmation of a preferred alternative. We suggest solutions in-
volving multilevel modeling and informative Bayesian inference.
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The Jaynes information criterion (JIC), the role of parsimony in Bayes Factors,
and a comparison of predictive and structural Bayesian model choice criteria

David Draper, University of California at Santa Cruz

Bayes factors are one way to compare two models, M1 (simpler) and M2, in settings in
which M1 contains a structural singleton: a single point in a continuous parameter space
that, e.g., is uniquely specified by a scientific theory of interest. The role of parsimony
in making such comparisons via Bayes factors is in general implicit, as opposed to the
situation with approximate Bayes factors such as BIC, in which an explicit tradeoff be-
tween goodness of fit and parsimony is evident. In the first part of this talk I’ll intro-
duce the Jaynes Information Criterion (JIC), which is a method — related to a proposal
by Jaynes (2003) — for deriving Bayes factors that generalizes BIC, in the sense that the
fit/parsimony tradeoff is always explicit with JIC (across all possible parametric prior
choices, not just with the unit-information prior specific to BIC). In the second part of
the talk I’ll present a comparison of Bayesian and non-Bayesian model selection criteria
based on predictive accuracy (AIC, log scores and [interestingly] DIC) with criteria based
on identification of correct model structure (BIC and more general Bayes factors).

The use of rejection odds and rejection ratios in testing hypotheses
Jim Berger, Duke University

Much of science is (rightly or wrongly) driven by hypothesis testing. Even in situations
where the hypothesis testing paradigm is correct, the common practice of basing infer-
ences solely on p-values has been under intense criticism for over 60 years. We discuss,
as an alternative, the use of the odds of a correct rejection of the null hypothesis to incor-
rect rejection. Both pre-experimental versions (involving the power and Type I error) and
post-experimental versions (depending on the actual data) are considered. Implementa-
tions are discussed that range from depending only on the p-value to consideration of full
Bayesian analysis. A surprise is that all implementations even the full Bayesian analysis
have a strong frequentist justification. Versions of these techniques can be implemented
that require only minor modifications to existing practices, yet overcome some of their
most severe shortcomings.
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The role of hypothesis testing in clinical trials
Susan S. Ellenberg, University of Pennsylvania

Many statistical methods and tools have been developed to guide scientific decision-
making. A tool widely used in medical research, particularly in the area of clinical trials in
which one investigates whether one medical approach is superior to another, is hypothe-
sis testing. Methods for hypothesis testing were first developed early in the 20th century,
and they have taken hold in medical research because they address the straightforward
question that medical researchers have when they undertake a comparative study: does
approach A have any advantage over approach B with respect to a particular outcome?
A hypothesis test allows us to quantitate the uncertainty about this comparison. A small
p-value suggests that our observed outcome would be unlikely under the assumption
that neither treatment has any advantage over the other. Of course, there are many other
factors to consider in making a decision to choose A or B. One needs to consider the mag-
nitude of the difference; a trivial difference might produce a very low p-value in a very
large study. One needs also to consider other relevant outcomes, which may or may not
favor the approach shown to have an advantage for the primary outcome. One needs to
consider whether the quality of the study conduct supports the credibility of the finding.
Most of the objections to hypothesis testing have to do with the tendency of many re-
searchers, journal editors and regulators to view the p-value as the absolute determinant
of the study conclusion, rather than as a tool to guide interpretation of the study results.

Can and should the choice of statistical methods be more “evidence-based”?
Anne-Laure Boulesteix, LMU Munich

The goal of medical research is to develop interventions that are, with respect to pa-
tient outcome, superior to existing ones in some sense. Similarly, the goal of research
in methodological computational statistics is to develop data analysis tools that are supe-
rior to existing ones in some sense. Methodological aspects of the evaluation of medical
interventions have been devoted a lot of attention in the literature and it is now well-
accepted that medicine should be at least partly “evidence-based”. Although statisti-
cians (including ourselves) are convinced of the importance of good study designs and
evidence-based approaches (in particular, statistical inference) in the context of clinical
research, they often tend to ignore these principles when designing their own studies
for evaluating statistical methods in the context of their methodological research. In this
paper, we draw analogies between clinical trials and real data based benchmarking ex-
periments in methodological statistical science, with datasets playing the role of patients
and methods playing the role of medical interventions. Based on this analogy, we sug-
gest directions for potential improvements of study designs for the evaluation of statisti-
cal methods based on real data and for better interpretation of these studies, in particular
with respect to statistical testing and sample size issues, inclusion criteria for datasets and
various types of bias. More generally, we discuss the concept of “evidence-based” statisti-
cal research, its limitations and its impact for the design and interpretation of benchmark
experiments.
Joint work with A. Hapfelmeier
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Rank testing and confidence sets for matrix completion
Alexandra Carpentier, University of Potsdam

In general, there is a strong connection between the problem of model testing, and the
problem of constructing adaptive and honest confidence sets. This presentation will be
about rank model testing/estimation and adaptive and honest confidence sets for high
dimensional, bounded and low rank matrix completion. Two design assumptions will be
considered, namely a) that the (noisy) entries of the matrix are sampled uniformly at ran-
dom and b) that each (noisy) entry of the matrix has a given probability of being revealed.
If an additional information on the noise that is added to the entries, e.g. its variance, is
not available, then one can prove that although adaptive and honest confidence sets ex-
ist in model a), they do not exist in model b). This highlight a fundamental difference
between models a) and b), which does not exist in the case of optimal and adaptive esti-
mation of the low rank matrix (where the optimal rates of estimation are the same up to
logarithmic factors in both models).
Joint work with O.Klopp, M.Loeffler and R.Nickl

The particle physicists’ approach to hypothesis testing
Louis Lyons, High Energy Physics, Imperial College

In searching for new phenomena in Particle Physics,we compare the null hypothesis (just
standard known physics) with an alternative ( standard physics plus some specific form
of new physics, such as the production of supersymmetric particles). This involves sev-
eral statistical issues. These include our use of p-values, and why we avoid Bayesian
methods in searches; our extreme criterion (5 sigma) for discovery claims; the ’modified
frequentist method’ (CLs = p1/(1 − p0)) that is used for excluding alternative hypothe-
ses; the ’Look Elsewhere Effect’, etc. These topics are discussed, and are illustrated by
the analysis resulting in the discovery of the Higgs Boson at the CERN Large Hadron
Collider.

Bayesian hypothesis testing in the social sciences
Joris Mulder, Tilburg University

Researchers in the social and behavioral sciences often formulate competing hypotheses
with equality and/or order constraints on the parameters of interest. The goal is then to
test these hypotheses using the observed data. Bayes factors have proven useful for this
testing problem because (i) Bayes factors can be straightforwardly used for testing mul-
tiple nonnested hypotheses in a direct manner; (ii) Bayes factors automatically balance
between fit and complexity; and (iii) Bayes factors have an intuitive interpretation as the
relative evidence in the data between two hypotheses. All these properties are not shared
by the Fisherian p-value, the dominant testing criterion in social research. This talk con-
sists of two parts. In the first part, a Bayes factor is proposed for a multiple hypothesis test
on bivariate, ordinal and partial correlations. In the second part, information consistency
is investigated for various Bayes factor tests in normal linear models.
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4 Posters

Bayesian model selection for the validation of computer codes
Pierre Barbillon, AgroParisTech / INRA

Poster board 1

Complex physical systems are increasingly modeled by computer codes which aim at pre-
dicting the reality as accurately as possible. During the last decade, code validation has
benefited from a large interest within the scientific community because of the requirement
to assess the uncertainty affecting the code outputs. Inspiring from past contributions to
this task, a testing procedure is proposed in this paper to decide either a pure code pre-
diction or a discrepancy-corrected one should be used to provide the best approximation
of the physical system. In a particular case where the computer code depends on uncer-
tain parameters, this problem of model selection can be carried out in a Bayesian setting.
It requires the specification of proper prior distributions that are well known as having
a strong impact on the results. Another way consists in specifying non-informative pri-
ors. However, they are sometimes improper, which is a major barrier for computing the
Bayes factor. A way to overcome this issue is to use the so-called intrinsic Bayes factor
(IBF) in order to replace the ill-defined Bayes factor when improper priors are used. For
computer codes which depend linearly on their parameters, the computation of the IBF
is made easier, thanks to some explicit marginalization. In the paper, we present a special
case where the IBF is equal to the standard Bayes factor when the right-Haar prior is spec-
ified on the code parameters and the scale of the code discrepancy. On simulated data,
the IBF has been computed for several prior distributions. A confounding effect between
the code discrepancy and the linear code is pointed out. Finally, the IBF is computed for
an industrial computer code used for monitoring power plant production.

Distinguishing distributions with interpretable features
Wittawat Jitkrittum, Gatsby Unit, UCL

Poster board 2

Two semimetrics on probability distributions are proposed, given as the sum of differ-
ences of expectations of analytic functions evaluated at spatial or frequency locations (i.e,
features). The features are chosen so as to maximize the distinguishability of the dis-
tributions, by optimizing a lower bound on test power for a statistical test using these
features. The result is a parsimonious and interpretable indication of how and where
two distributions differ locally. An empirical estimate of the test power criterion con-
verges with increasing sample size, ensuring the quality of the returned features. In real-
world benchmarks on high-dimensional text and image data, linear-time tests using the
proposed semimetrics achieve comparable performance to the state-of-the-art quadratic-
time maximum mean discrepancy test, while returning human-interpretable features that
explain the test results.
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Pragmatic evaluation of the performance of valid and invalid stopping rules
for hypothesis tests

Michael J. Lew, University of Melbourne
Poster board 3

In the current debates about the reliability of scientific results it is common to nominate
inappropriate statistical testing procedures among the problems and while it is true that
statistical practices could be improved, usual discussions of the possible contribution of
hypothesis testing to the problem focus mainly on false positive errors. However, most of
the analytical practices that increase false positive errors concurrently reduce false nega-
tive errors and or the sample size and so any evaluation of the performance of hypothesis
testing procedures should include considerations of both types of error as well as sample
size. In this study the performance of Student’s t-test with a variety of stopping rules was
evaluated pragmatically at a range of sample sizes, effect sizes and, in contrast to com-
mon practice, using a variety of loss functions. The results using dichotomous outcomes
of each run indicate that, under many reasonable circumstances, informal procedures
with optional stopping are superior to the standard procedure where sample size is fixed
in advance of seeing the data, despite yielding false positive errors more frequently than
the nominal rate. In other words, the increased power from optional stopping more than
compensated for the increased rate of false positives for a range of loss functions and ef-
fect sizes. A formal sequential test that yields exactly the nominal false positive error rate
was also found to be superior, and, in contrast to the informal optional stopping rule pro-
cedures, it was never inferior to the fixed sample size rule test. Advice that might follow
from a more complete evaluation of the performance of hypothesis testing differs from
the usual advice to apply frequentist type I error control procedures more rigorously or
to eschew hypothesis testing altogether.

Automatic Bayes factors for testing equality and inequality constrained
hypotheses on variances

J. Mulder, Tilburg University
Poster board 4

In comparing characteristics of independent populations, researchers frequently expect
a certain structure of the population variances. These expectations can be formulated
as hypotheses with equality and/or inequality constraints on the variances. In this arti-
cle we consider the Bayes factor for testing such (in)equality constrained hypotheses on
variances. Application of Bayes factors requires specification of a prior under every hy-
pothesis to be tested. However, specifying subjective priors for variances based on prior
information is a difficult task. We therefore consider so-called automatic or default Bayes
factors. These methods avoid the need for the user to specify priors by using information
from the sample data. We discuss three automatic Bayes factors for testing variances. The
first is a Bayes factor with equal priors on all variances, where the priors are specified
automatically using a small share of the information in the sample data. The second is
the fractional Bayes factor, where a fraction of the likelihood is used for automatic prior
specification. The third is an adjustment of the fractional Bayes factor such that the parsi-
mony of inequality constrained hypotheses is properly taken into account. Results from
a simulation study indicate that the adjusted fractional Bayes factor converges fastest to
the true hypothesis.
Joint work with F. Böing-Messing.
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Confidence sets - Going beyond voxel-level and cluster-level null hypothesis
testing

Thomas Nichols, University of Warwick
Poster board 5

Null hypothesis testing is the foundation of brain mapping but critics have often raised
the issue of the “null hypothesis fallacy”, that the null hypothesis is never true. Recent
studies using 100 fMRI sessions per subject have illustrated this problem, finding effects
everywhere in the brain. While limited sample size prevents discovery of such universal
activation (or deactivation), more “big data” studies are providing such power (e.g. Hu-
man Connectome Project, N = 1, 200; UK Biobank final N = 100, 000). With such sample
sizes, traditional null hypothesis testing is of limited value. In this work we apply recent
work (Sommerfeld, Sain, Schwartzman, 2015) to develop confidence sets (CSs) on clus-
ters. Whereas traditional voxel- or cluster- wise inferences indicate where the null, i.e. an
effect size of 0, can be rejected, the CSs are statements about non-zero effect sizes anal-
ogous to confidence intervals. They operate on either raw units or (standardised) effect
sizes (e.g. Cohen’s d). For a cluster constructed with cluster-forming threshold c, the CSs
comprise two sets of voxels: The upper CS is smaller, giving the voxels we infer to be
truly larger than c; the larger lower CS is best described by its complement – all voxels
outside this set we infer to be truly smaller than c. We describe the method and apply it
to datasets from the Human Connectome Project, demonstrating the value of this spatial
inference method.
Joint work with A. Bowring, A. Schwartzman, and M. Sommerfeld.

A new Bayesian test to test for the intractibility-countering null
Kangrui Wang, University of Leicester

Poster board 6

This poster discusses a new Bayesian test of hypothesis, that tests for the null, when the
likelihood is intractable outside the null model. Thus, the null can be considered to be
the simplifying assumption that can counter intractability of the more complex model,
(that the simpler null model is nested within). Bayes Factors are shown to be known up
to a ratio of unknown data-dependent constants in such a situation. The main instru-
ment of use in this new test is the “generated data”, that is generated from the model in
which the null is true. Thus, the support in the measured data for the null can be given
by the ratio of the marginalised posteriors of the model parameter given the measured,
and that given the generated data. However, when we are asked to compare support
for a null in one data, to another data of a different size, or compare supports in a given
data for null models in which model parameters have different dimensionalities, the ra-
tio mentioned above is seen to confound interpretation. In such applications, we define
support in a measured data for a null by identifying parameter values that are as or more
consistent with the measured data than is minimally possible given the generated data,
and marginalising the posterior of the model parameter, over such values. Application
to galactic data is undertaken to illustrate differential support in two sets of such data
for the hypothesis that the galactic state space is isotropic in shape, thus explaining the
difference in the results of performing unsupervised learning of the galactic gravitational
mass density using such data sets.
Joint work with C. Spire and D. Chakrabarty.
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