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Abstract

We propose a novel method for Bayesian

phylogenetic ‘tall data’ inference by comb-
ing the idea of subsampling with annealed

sequential Monte Carlo (SMC) |

1]. Unlike

the previous SMC methods in phylogenet-
ics, the subsampling SMC has the same
state space for all the intermediate dis-
tributions, which allows standard Markov
chain Monte Carlo (MCMC) tree moves
to be utilized as the basis for SMC pro-

posal distributions.

The proposed algo-

rithm possesses the attractive property of
SMC methods, as well as the ability of

subsampling |2

| for ‘tall data’ inference.

Bayesian ‘Big Data’
Phylogenetics

= We are interested in the study of

evolutionary relationships among
biological species (taxa).
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Site Independence
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« Data y: Super long biological sequences

(e.g. DNA sequence) of a set of species.

= The likelihood model is based on site

independence assumption.

« Our interest is the posterior

distribution of parameters x = (6, t)
P
r(z) = LWlz)p(z)
P(y)

« Posterior expectation of

E(p(x)) = [ m(dz)p(z).

Challenges in inference

Expensive in evaluating the
unnormalized posterior.

« Multimodal posterior distributions.

= The estimation of normalization

constant P(y) = [ P(y|x)p(x)dx.

Markov chain Monte Carlo

t, t ts ts to

ty ts t7 tg
ACBD BCDA ACBD ABDC ABDC ABDC ABDC ADBC BCAD

.
o2> =
d o

[

« Cannot fully explore the multimodal

tree space.

« Not scalable to ‘big data’

« Challenge in normalization constant

estimation.
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Intermediate Sequence of
Subsampling SMC

® Let us decompose the unnormalized

posterior distribution as
#S

— p(:l?) Sl;Ilp(yS"r)?

V()

= s refers to one batch of sites in biological
sequence.
« #5 represents the total number of batches.

® Specity a power sequence
O=¢p< 1 <---<orp=1
® Define the sequence of intermediate

distributions for subsampling as follows:

#S
. (@) = ple) T plys|2)">*"
where
1 if ¢, > s5/#8,
(s, ¢r) =40
F#S - ¢r— (s — 1) otherwise.

olt’s a general version of the target
sequence for annealed SMC
algorithm|1].

« Figure 1

Subsampling SMC
Algorithmic Framework

provides an overview of the

subsampling SMC framework.

= Use a list of weighted samples

(e, Wi 1)y to approximate 7y ().

« The algorithm alternates between the

following three steps:

® compute the weights using samples from the
previous 1teration,

® perform MCMC moves to propose samples,

®resample to prune particles with small
weights (triggered by effective sample size).

= We perform weighting before proposing

new samples, which is different from
the standard SMC algorithm [3].

- The fact that W, only depends on

T,_1 1 allows us to adaptively

if ¢, < (5 —1)/48. determine ¢ (s, ¢,) (r=1,..., R).

« Qutput an approximation of posterior
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Figure 1: Subsampling SMC

MCMC Proposals for
Bayesian Phylogenetics

o Sample particles x,  ~ K (Zr_14, ), &

transition kernel K, admitting 7, as
stationary.

® K, is built via a mixture of
Metropolis-Hastings (MH) moves;
® The proposals of MH moves are:

= ¢,: the multiplicative branch proposal;

= q.: the global multiplicative branch proposal;

= q.: the stochastic nearest neighbor
interchange (NNI) proposal;

- ¢»: the stochastic NNI proposal with
resampling the edge:;

- ¢: the subtree prune and regraft (SPR)
move.

Experiments

Evolutionary model: Kimura
2-parameter (K2P) model with 6 = 2.

= 10 taxa and 6000 sites.
- Run adaptive annealed SMC [1] with

8 = 4 to obtain ¢, (7“21,"’ 7R)'

Parallelism: an advantage over MCMC
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Complexity analysis
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Figure 2: Ratio of cost (subsampling/annealing) as

a function of batch size.
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Figure 3: Comparison of subsampling SMC algo-

rithms with different size of batch sites.

Discussion & Future work

« More scalable to phylogenetic ‘tall
data’: parallelism; subsampling.

« 'To incorporate an adaptive
L R).
« Propose control variates to reduce the

variability in the log-likelihood
estimate.

temperature scheme ¢, (r =1, ..
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