

Multi-subject Bayesian joint detection & estimation in fMRI

Philippe Ciuciu

joint work with Solveig Badillo

NeuroStats 2014 WS, Sep. 3-5, 2014 University of Warwick

2/31 Brain Activity Measurement in fMRI

fMRI: BOLD effect Blood oxygenation level dependent signal

[Ogawa et al., PNAS 1990]

Motivations

→ HRF shape estimation at the group-level:

- Group comparisons (patients vs controls, young vs elderly subjects)
- Effect of treatment (Placebo vs Drug) in clinical trials
- Compare hemodynamic variability sources (region, condition, ...)

Outline

- Current approaches
- Bayesian joint detection & estimation (JDE) formalism
- Multi-subject extension
- Results
- Conclusions

Group-level HRF estimation

Classical approach:

1/ Perform subject-by-subject estimation2/ Average over subjects

subject 1 subject 3 subject 2 \rightarrow not robust to outliers group-level HRF

Standard brain mapping analysis

HRF recovery within the GLM

General Linear Model (SPM)

[Frackowiak et al., Hum. Brain Func. 1997]

- HRF variability :
 - Within-subject, between-subjects, between-groups (children, patients, ...)
 [Miezin et al., NeuroImage 2000; D'Esposito et al, NeuroImage 2003; Handwerker et al, NeuroImage 2004]

Finite Impulse Response (FIR)

[Henson et al., Hum. Brain Func. - Chap. 10]

r

HRF recovery within the GLM

- Limits of the FIR model:
 - Synchronous paradigms
 - Putative loss of sensitivity
 - Lack of robustness

Interplay between detection and estimation

Joint detection and estimation (JDE)

[Makni et al., IEEE TSP 2005, NeuroImage 2008]

Group-level HRF estimation

Multi-subject inference:

• Semi-parametric *univariate* estimation framework

$$h_{j,m}^{s}(t) = A_{j,m}^{s} h_{j,m}^{G} \left(\frac{t + D_{j,m}^{s}}{W_{j,m}^{s}} \right)$$

[Zhang et al., NeuroImage 2013]

- Semi-parametric joint Detection-Estimation *univariate* framework [Degras & Lindquist, NeuroImage 2014]
- Non-parametric Bayesian JDE *multivariate* framework

[Badillo et al, IEEE PRNI 2014]

Outline

- Current approaches
- Bayesian joint detection & estimation (JDE) formalism
- Multi-subject extension
- Results
- Conclusions

Forward Modeling of fMRI Time Series

[Makni et al., *NeuroImage* 2008] [Vincent et al., *IEEE TMI* 2010]

Whole Brain Analysis

JOINT A POSTERIORI LAW

$p(\boldsymbol{h}_{\gamma}, \boldsymbol{A}, \boldsymbol{L}, \boldsymbol{\Theta} | \boldsymbol{Y}) \propto p(\boldsymbol{Y}, \boldsymbol{h}_{\gamma}, \boldsymbol{A}, \boldsymbol{L}, \boldsymbol{\theta}_{0}) p(\boldsymbol{A} | \boldsymbol{\theta}_{\boldsymbol{A}}) p(\boldsymbol{h}_{\gamma} v_{\boldsymbol{h}_{\gamma}}) p(\boldsymbol{L} | v_{\boldsymbol{\ell}}) p(\boldsymbol{\theta}_{0}) p(\boldsymbol{\theta}_{\boldsymbol{A}}) p(v_{\boldsymbol{h}_{\gamma}}, v_{\boldsymbol{\ell}})$

- Hybrid MH-Gibbs sampling
- Posterior mean estimates
- Faster VEM alternative

[Vincent et al., *IEEE TMI* 2010] Risser et al., *JSPS* 2011] [Chaari et al., *IEEE TMI* 2013]

Within-subject Results

[Chaari et al, IEEE TMI 2013; Badillo et al, NeuroImage 2013]

Outline

- Current approaches
- Bayesian joint detection & estimation (JDE) formalism
- Multi-subject extension
- Results
- Conclusions

Multi-Subject JDE Forward Model

MS-JDE Supplementary Prior

17/31

HRF Priors:

$$\boldsymbol{h}_{\gamma}^{s} \sim \mathcal{N}(\boldsymbol{h}_{\gamma}^{G}, v_{\boldsymbol{h}_{\gamma}^{s}}\boldsymbol{R}) \quad \boldsymbol{R} = (\boldsymbol{D}_{2}^{T}\boldsymbol{D}_{2})^{-1}$$

$$\boldsymbol{h}_{\gamma}^{G} \sim \mathcal{N}(\boldsymbol{0}, v_{\boldsymbol{h}_{\gamma}^{G}}\boldsymbol{\Sigma}_{G})$$

$$\boldsymbol{\Sigma}_{G} = (\boldsymbol{D}_{2}^{T}\boldsymbol{D}_{2})^{-1}$$

MS-JDE Supplementary Prior

HRF Priors:

Potential subject-specific shift of the peak

$$\boldsymbol{h}_{\gamma}^{s} \sim \mathcal{N}(\boldsymbol{h}_{\gamma}^{G} + \alpha_{s}\boldsymbol{h}_{\gamma}^{G}, v_{\boldsymbol{h}_{\gamma}^{s}}\boldsymbol{R})$$

can be generalized to other population distribution (eg, mixtures, Student)

MS-JDE Directed Acyclic Graph

MCMC implementation: see [Badillo et al, IEEE PRNI 2014] for details

Outline

- Current approaches
- Bayesian joint detection & estimation (JDE) formalism
- Multi-subject extension
- Results
- Conclusions

Simulated Data

→ Fast event-related paradigm

TR=1s; N=300 scans, SOA~3.6s, 1run

→ Simulation of activated areas

→ Group-level HRF

→ Subject-level HRF $\boldsymbol{h}_{\gamma}^{s} \sim \mathcal{N}(\boldsymbol{h}_{\gamma}^{G}, v_{\boldsymbol{h}_{\gamma}^{s}}\boldsymbol{R})$

Simulation of 4D data:

$$\boldsymbol{y}_{j}^{s} = \sum_{m=1}^{M} \boldsymbol{a}_{j}^{m,s} \boldsymbol{X}^{m} \boldsymbol{h}_{\gamma}^{s} + \boldsymbol{P} \boldsymbol{\ell}_{j}^{s} + \boldsymbol{b}_{j}^{s}$$

- \checkmark 400 time points
- Response levels:

- Drift: $\boldsymbol{\ell}_j^s \sim \mathcal{N}(0, 3.2 \boldsymbol{I}_4)$
- Noise: $\pmb{b}_j^s \sim \mathcal{N}(0, \sigma_{j,s}^2)$

Validation on simulations

subject-specific HRF

22/31

GT: Ground Truth SS-JDE: Single-subject JDE MS-JDE: Multi-subject JDE

Validation on simulations

subject-specific HRF

GT: Ground Truth SS-JDE: Single-subject JDE MS-JDE: Multi-subject JDE

subject-specific HRF

Validation on simulations

Localizer Dataset

- Fast event-related paradigm, 1 run, 400 scans, TR=1s, mband-EPI sequence (CMRR, Mineapolis), mb=3, no-PI, 3x3x3 mm³, SOA~3.6 s

- 10 conditions, visual or auditory modality

Results on Elderly Subjects

Results on Elderly Subjects

Results on Elderly Subjects

MS-JDE model captures inter-subject variability

Group comparison

The PyHRF software

Summary

Multi-subject HRF estimation can be helpful for group comparison

- Joint detection & estimation is the right framework!

 - Neither necessarily Bayesian nor non-parametric HRF
 But multivariate analysis of evoked activity is crucial
 Main issue: multi-subject parcellation
- More complex random-effect models can be envisaged
- Computational bottleneck: parallelize all steps that you can!
- Perspectives :
 - Comparison with B-spline HRF decomposition
 - Multi-subject JPDE
 - Assess the relevance of hemodynamics characteristics as potential biomarkers in clinical trials (phMRI)