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The overall goal
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EEG & MEG in a nutshell
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M/EEG Measurements
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M/EEG Measurements: Notation
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MRI image (this type of anatomic data was used to estimate the triangulated interfaces for
the BEM in section 2.4.3). This step is rather complex but well handled by software such
as BrainVisa [36] or FreeSurfer [50], which provide almost fully automatic pipelines to run
the segmentations. Such pipelines are generally not integrated in commercial M/EEG source
imaging software that therefore only provide volumic source spaces with 3D grids.

The current generators that produce the electromagnetic fields are known to be located in
the gray matter forming the cortex. This implies that the estimated sources should at least
be constrained to be located within the gray matter. This is achieved with surfacic source
models. To argue even more in favor for such models, we would like to mention that the fMRI
community also tends to map the 3D data acquired onto cortical surfaces [64]. Another reason
for this is that anatomical landmarks are more easily defined on cortical segmentation than
on volumic data.

From now until the end of this chapter, we will focus on surface based distributed models.

Orientation vs. no orientation constraint
With distributed dipolar source models, the orientation of the dipoles can either be defined

a priori using the normal to the cortical mesh (cf. figure 3.1(c)), or left unconstrained. When
the dipoles orientations are left unconstrained, 3 orthogonal dipoles are positioned at each
location. With MEG, since sensors are blind to the radial component of the field, only 2 can
be used. Considering our knowledge on the structure of the neural assemblies formed by the
pyramidal neurons (cf. chapter 1), constraining the orientation is a reasonable assumption.
One can also argue that the more a priori are used to compute neural estimates, the better
it is. However, practice shows that the orientation is a critical parameter for a dipole since it
affects its forward field on the M/EEG sensors a lot more that its 3D position. This suggests
that if orientation constraints are used, the normals to the cortical mesh should be very
accurately estimated. Depending on the brain location of the sources this can be more or less
challenging.

In this chapter, many illustrations are presented on the somatosensory cortex lying on the
post-central gyrus. The central sulcus and central gyrus of the cortex are major structures
of the human cortex and are very well segmented with anatomical pipelines. For this reason
the orientation constraint is generally well justified in this brain region.

3.2 MINIMUM NORM SOLUTIONS AND ITS VARIANTS

When orientations are fixed and only the amplitudes of the dipolar current generators
need to be estimated, the forward problem results in the following linear problem:

M = GX + E (3.3)

where G stands the forward operator, M corresponds to the measurements (Electric potential
or/and magnetic field), X contains the unknown amplitudes of the sources and E is the noise.

We denote the number of sources by dx, the number of sensors by dm and the number of
time instants by dt. With these notations, we have, M � Rdm�dt , G � Rdm�dx , X � Rdx�dt and
E � Rdm�dt .

In practice, dm is in the range of 10, for low resolution EEG, and 400, for high resolution
MEG and EEG combined studies. The parameter dt is commonly between 1 and a few thou-
sand. With the digital amplifiers used in M/EEG, the sampling rate can be over 1000 Hz
which leads to high values of dt when recording several seconds of signal. The number of
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Distributed model
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Distributed model
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102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.
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Inverse problem framework

12

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

⇥
Data fit

Penalized (variational) formulation (with whitened data):

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �
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X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0
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2
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3. Cross-validated shrinkage (SC)

4. Probabilistic PCA (PPCA)

5. Factor Analysis (FA)

We compared 5 strategies:
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CSC = (1� ↵CV )C + ↵CV µI

µ = mean(diag(C))





MEG and EEG data



log likelihood scores
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The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.
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The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

back to M = G X + E
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+ E

≈10 000 dipoles ≈
100 sensors noise
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Change the represensation
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50 STFT coef.

[“Wavelet shrinkage” Donoho & Johnstone 94]
[“Soft thresholding” Donoho 95]

[Application to evoked EEG, O. Bertrand et al. 94]
[Application to ST EEG, Quiroga et al. 03]

etc.

Original STFT

[Moussallam, Gramfort, Richard, Daudet, Signal Processing Letters 2014 ]
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inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

Z
TF coefficients
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M 

M = GZΦ + E
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G
forward operatordata 

Objective:  estimate Z given M

+ E
noise

TF coefficients 

Z Z
TF dictionary

Φ

Fr
eq

ue
nc

y 

[Gramfort et al., Time-Frequency Mixed-Norm Estimates: Sparse M/EEG 
imaging with non-stationary source activations, Neuroimage 2013]
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Time-frequency (TF) regularization
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data fit

The classical approach [MNE, dSPM, sLORETA]:

regularization
we propose:

Ẑ = arg min
Z

kM�GZ�Hk2
F + ��(Z), then X̂ = Ẑ�H

X̂ = arg min
X

kM�GXk2
F + ��(X), � > 0

•     : is a TF dictionary (STFT)

•     : coefficients of the TF transform of the sources

�
Z

Advantage:
localization in 

space, time and frequency
in one step
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What regularization?
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�(Z) = �(⇢kZk1 + (1� ⇢)kZk21)
Time

Sp
ac

e `21

Time

Sp
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e `2

Time
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e `21 + `1

Time
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e `1

�(X) = kXk21 =
X

i

sX

t

|xi,t|2
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Proximal gradient algorithm
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non-di↵erentiable [21]: F(Z) = f

1

(Z) + f

2

(Z). The cost function in (2) belongs
to this category. However, we need to be able to compute the proximal operator
associated to f

2

.

Definition 1 (Proximity operator). Let ' : RM ! R be a proper convex

function. The proximity operator associated to ', denoted by prox
'

: RM ! RM

reads:

prox
'

(Z) = arg min
V2RM

1
2
kZ�Vk2

2

+ '(V) .

In the case of the composite prior in (3), the proximity operator is given by
the following lemma.

Lemma 1 (Proximity operator for `

21

+ `

1

). Let Y 2 CP⇥K

be indexed by

a double index (p, k). Z = prox
�(⇢k.k1+(1�⇢)k.k21)(Y) 2 CP⇥K

is given for each

coordinates (p, k) by

Z

p,k

=
Y

p,k

|Y
p,k

| (|Y
p,k

|� �⇢)+
0

@1� �(1� ⇢)qP
k

(|Y
p,k

|� �⇢)+2

1

A
+

.

where for x 2 R, (x)+ = max(x, 0) , and by convention

0

0

= 0 .

This result is a corollary of the proximity operator derived for hierarchical
group penalties recently proposed in [22]. The penalty described here can indeed
be seen as a 2-level hierarchical structure, and the resulting proximity operator
reduces to successively applying the `

21

proximity operator then the `

1

one.
The pseudo code is provided in Algorithm 1. The Lipschitz constant L of the

gradient of the smooth term in (2) is given by the square of the spectral norm
of the linear operator Z ! GZ�

H. We estimate it with the power iteration
method.

Algorithm 1 FISTA with TF Dictionaries
Input: Measurements M, lead field matrix G, regularization parameter � > 0 and I

the number of iterations.
Output: Z?

1: Auxiliary variables : Y and Z
o

2 RP⇥K , and ⌧ and ⌧
o

2 R.
2: Estimate the Lipschitz constant L with the power iteration method.
3: Y = Z? = Z, ⌧ = 1, 0 < µ < L�1

4: for i = 1 to I do
5: Z

o

= Z?

6: Z? = prox
µ�⌦

`
Y + µGT (M�GY�H)�

´

7: ⌧
o

= ⌧

8: ⌧ =
1+
p

1+4⌧

2

2
9: Y = Z? + ⌧

o

�1
⌧

(Z? � Z
o

)
10: end for

[Jenatton et al. 2011, Gramfort et al. IPMI 2011]
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THM: It boils down to 2 successive thresholdings
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Simulation results (part 1)
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(j) X�
TF ⇥21+⇥1
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Fig. 3. Simulations results with SNR = 6 dB. (a) simulated source activations. (b)
Noiseless simulated measurements. (c) Simulated measurements corrupted by noise. (d-
e-f) Estimation with �1 prior. (g-h-i) Estimation with �21 prior [8]. (j-k-l) Estimation
with composite TF prior. (f-i-l) show the sparsity patterns obtained by the 3 di�erent
priors as explained in Fig. 1. Result (j) shows how the composite TF prior improves
over (d) and (g). (l) presents also a higher level of sparsity compared to (f) and (i).

3.2 Experimental results with MEG data

We also applied our method to somatosensory MEG data. In this experiment,
the right median-nerve was stimulated at the wrist with 0.2 ms constant cur-
rent pulses above the motor threshold. The inter-stimulus interval was random
between 3 - 12 s in an event-related design. MEG data were acquired using
a 306-channel Neuromag Vectorview system. The signals were recorded with
a bandpass of 0.01 - 250 Hz, digitized at 1004 samples/s and averaged o�ine
triggered by the stimulus onset. All epochs containing EOG signals higher than
150 µV peak-to-peak amplitude were discarded from the averages, resulting in
68 averaged epochs. For source estimation, the noise-covariance matrix was esti-
mated from the baseline period of 200 ms before stimulus onset in the raw data.
The sources were estimated assuming unconstrained orientations. The Gabor
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Simulation results (part 2)
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Fig. 3. Simulations results with SNR = 6 dB. (a) simulated source activations. (b)
Noiseless simulated measurements. (c) Simulated measurements corrupted by noise. (d-
e-f) Estimation with �1 prior. (g-h-i) Estimation with �21 prior [8]. (j-k-l) Estimation
with composite TF prior. (f-i-l) show the sparsity patterns obtained by the 3 di�erent
priors as explained in Fig. 1. Result (j) shows how the composite TF prior improves
over (d) and (g). (l) presents also a higher level of sparsity compared to (f) and (i).

3.2 Experimental results with MEG data

We also applied our method to somatosensory MEG data. In this experiment,
the right median-nerve was stimulated at the wrist with 0.2 ms constant cur-
rent pulses above the motor threshold. The inter-stimulus interval was random
between 3 - 12 s in an event-related design. MEG data were acquired using
a 306-channel Neuromag Vectorview system. The signals were recorded with
a bandpass of 0.01 - 250 Hz, digitized at 1004 samples/s and averaged o�ine
triggered by the stimulus onset. All epochs containing EOG signals higher than
150 µV peak-to-peak amplitude were discarded from the averages, resulting in
68 averaged epochs. For source estimation, the noise-covariance matrix was esti-
mated from the baseline period of 200 ms before stimulus onset in the raw data.
The sources were estimated assuming unconstrained orientations. The Gabor
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Fig. 3. Simulations results with SNR = 6 dB. (a) simulated source activations. (b)
Noiseless simulated measurements. (c) Simulated measurements corrupted by noise. (d-
e-f) Estimation with �1 prior. (g-h-i) Estimation with �21 prior [8]. (j-k-l) Estimation
with composite TF prior. (f-i-l) show the sparsity patterns obtained by the 3 di�erent
priors as explained in Fig. 1. Result (j) shows how the composite TF prior improves
over (d) and (g). (l) presents also a higher level of sparsity compared to (f) and (i).

3.2 Experimental results with MEG data

We also applied our method to somatosensory MEG data. In this experiment,
the right median-nerve was stimulated at the wrist with 0.2 ms constant cur-
rent pulses above the motor threshold. The inter-stimulus interval was random
between 3 - 12 s in an event-related design. MEG data were acquired using
a 306-channel Neuromag Vectorview system. The signals were recorded with
a bandpass of 0.01 - 250 Hz, digitized at 1004 samples/s and averaged o�ine
triggered by the stimulus onset. All epochs containing EOG signals higher than
150 µV peak-to-peak amplitude were discarded from the averages, resulting in
68 averaged epochs. For source estimation, the noise-covariance matrix was esti-
mated from the baseline period of 200 ms before stimulus onset in the raw data.
The sources were estimated assuming unconstrained orientations. The Gabor



Alexandre Gramfort                              Neurostats 2014

(a) MEG data (Gradiometers only) (b) GX?

TF-MxNE

(explained data)

(c) X?

MxNE

(d) X?

TF-MxNE

(e) Source locations in bilateral auditory
cortices

Fig. 6. Results obtained with
TF-MxNE and MxNE for an auditory
stimulation (left hear stimulation)
with unfiltered combined MEG/EEG
data. Estimation was performed with
a loose orientation (parameter 0.2),
with a depth compensation of 0.9
on a set of 7498 cortical locations
(G 2 R364⇥22494). Estimation with
�
space

= 50% of �max

space

leads to 2
active brain locations in both auditory
cortices. TF-MxNE leads to smooth
time courses and zeros during baseline.

5.2.2 Visual data

The model parameters (loose orientation, depth bias, scalar weighting, �
time

and Gabor dictionary) used were the same as for the auditory condition. The
spatial regularization was however changed to �

space

= 30% of �max

space

. Results
are presented in Figure 7.

Figure 7-a presents the raw evoked response, restricted to the gradiometers.
Sources reconstructions lead to three dipoles. According the automatic par-
cellation of the cortex provided by FreeSurfer, two sources are localized in the
early visual cortex V1, while a third one is positioned on the dorsal part of

19

MEG Auditory data

33

A1i
A1c

Protocol: 50 epochs of auditory tones in left ear
(305 MEG, 59 EEG channels)

16ms Chronometry
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MEG Visual data
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Protocol: 50 epochs of visual 
flash in left hemi-field

(305 MEG, 59 EEG channels)
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MNE Software for MEG and EEG

36

http://www.github.com/mne-tools
http://www.martinos.org/mne

MNE software for processing MEG and EEG data,  A. Gramfort, M. Luessi, E. Larson, D. 
Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, M. Hämäläinen, Neuroimage 2013

http://www.github.com/mne-tools
http://www.github.com/mne-tools
http://www.martinos.org/mne
http://www.martinos.org/mne


Development of the MNE software
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Gratz

http://martinos.org/mne/stable/contributing.html

http://martinos.org/mne/stable/contributing.html
http://martinos.org/mne/stable/contributing.html
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