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Early visual processing

LGN
V1

retina

From the eye to the primary visual cortex (V1)
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Simple and complex cells

• Basic dichotomy of neurons in primary visual cortex (V1)

• Simple cells modelled as linear functions of input:

“Receptive fields” can be simply plotted

• Complex cells considered strongly nonlinear

– Invariance (tolerant) to location (phase) of input

– Modelled as sum of squares of simple cell outputs

Complex cells:Simple cells:
Tolerant to exact locationSelective to orientation

and location of the bar
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Theories of response properties of visual neurons

• Edge detection

• Joint localization in space and frequency

• Texture classification

• But: the above give only vague predictions.

• Here: Statistical-ecological approach (Barlow, 1972)

– What is important in a real environment?

– Natural images have statistical regularities.

– Can we “explain” receptive fields by basic statistical

properties of natural images?

– Emergence : a lot of precise predictions from only a couple

statistical assumptions.

• Extremely relevant to image processing /engineering
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Outline of this talk:

• Statistical models that account for some properties of the

(primary) visual cortex.

– Independent Component Analysis / Sparse Coding

– Various extensions

• Properties in visual cortex explained

– simple cells

– complex cells

– spatial organization (topography)

• Multi-layer approach can predict properties beyond V1.
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Linear statistical models of images

= s1· + s2· + · · · + sk·

• Denote by I(x, y) the gray-scale values of pixels.

• Model as a linear sum of basis vectors:

I(x, y) =
∑

i

Ai(x, y)si (1)

• What are the “best” basis vectors for natural images?
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Independent Component Analysis (Jutten and Hérault, 1991)

• Linear model:

I(x, y) =
∑

i

Ai(x, y)si (2)

• In ICA, we assume that

– The si are mutually statistically independent

– The si are nongaussian, e.g. sparse

– For simplicity: number of Ai equals number of pixels

• Then, the actual basis vectors Ai can be estimated, if the data is

actually generated using the linear model (Comon, 1994).

• Thus we get the best basis vectors from one statistical viewpoint.
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Sparsity

• A form of nongaussianity often encountered in natural signals

• A random variable is “active” only rarely
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• Outputs of linear filters are usually sparse when input is natural

images.
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Sparse coding and ICA

• Sparse coding (Barlow 1972): Find linear representation

I(x, y) =
∑

i

Ai(x, y)si (3)

so that the si are as sparse as possible.

• Important property: a given data point is represented using only

a limited number of “active” (clearly non-zero) components si.

• In contrast to PCA, active components change from image patch

to patch.

• Deep result: For images, ICA is sparse coding.

• Vectorizing whitened image as x, denoting inverse system by wi:

min
orthog w1,...,wn

Ê{|wT
i x|} (4)
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ICA / sparse coding of natural images

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)

Using the FastICA algorithm (Hyvärinen, 1999)
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ICA of natural images with colour

(Hoyer and Hyvärinen, 2000)
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Model II: Independent subspace analysis

• Components estimated from natural images are not really

independent.

• The statistical structure much more complicated (of course!).

• Independent components cannot be found for most kinds of data:

There are not enough free parameters.

• Dominant form of dependency after ICA is correlation of energies

Signals which are uncorre-

lated but whose squares are

correlated.

Aapo Hyvärinen University of Helsinki



Natural Image Statistics

Using subspaces to model dependency

(Hyvärinen and Hoyer, 2000)

• Assumption: the si can be divided into groups or subspaces

(Cardoso, 1998), such that

– the si in the same group are dependent on each other

– dependencies between different groups are not allowed.

• We also need to specify the distributions inside the groups

– Use classic complex cell model, norm of projection in subspace

– Leads to correlation of squares

– Maximize independence / sparsity of complex cell output
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Computation of features in independent subspace analysis
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Independent subspaces of natural image patches

Each group of 4 basis vectors corresponds to one complex cell.
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Model III: Spatial organization in V1

• In the brain, response properties mostly change continuously

when moving on the cortical surface.

• We introduced Topographic ICA (Hyvärinen and Hoyer, 2001)

• Cells (components) are arranged on a

two-dimensional lattice

• Again, simple cell outputs are sparse, but not independent:

Correlations of squares follows topography.

• Learn by maximizing likelihood which measures sparsity:

− log p(x|W) =
∑

i

Ê







√

∑

j

hij(wT
i x)

2







(5)

where h is distance on topographic grid.
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Topographic ICA on natural image patches

Basic vectors (simple cell RF’s) with spatial organization
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Digression: Generalizations leading to unnormalized models

• Generalize ISA and topographic ICA by estimating two layers

p(x;W,M) =
1

Z(W,M)
exp[

∑

i

G(
∑

i

mij(w
T
j x)

2)] (6)

• This is an unnormalized model:

Density function p is known only up to a multiplicative constant

Z(W,M) =

∫

exp[
∑

i

G(
∑

i

mij(w
T
j x)

2)]dx

which cannot be computed with reasonable computing time

• Common problem in non-Gaussian models, e.g. ICA with more

components than observed variables

p(x;W) =
1

Z(W)
exp[−

∑

i

|wT
i x|] (7)
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Recent methods for unnormalized statistical models

• Score matching (Hyvärinen, JMLR, 2005)

– Take derivative of model log-density w.r.t. x, so partition

function disappears

– Fit this derivative to the same derivative of data density

– Easy to compute due to a integration-by-parts trick

• Noise-contrastive estimation

(Gutmann and Hyvärinen, JMLR, 2012)

– Learn to distinguish data from artificially generated noise

– Logistic regression learns ratios of pdf’s of data and noise

– For known noise pdf, we have in fact learnt data pdf
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Another unnormalized model:

Linear correlations between components

• Many methods force components to be strictly uncorrelated

• So, any remaining linear correlations cannot be observed

• However, the “true” components could be correlated even linearly

• In ongoing work (Sasaki et al, 2013, 2014) we learn correlated

components

− log p(x|W) =
∑

i

Ê{|wT
i x|}+

∑

i,j

βijÊ{|wT
i x−wT

j x|}−logZ(βij)

(8)
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Model IV: Three-layer model

• Goal: Alternating selectivity and invariance in many layers

• Neurons are selective to certain properties of the stimulus:

– response is strong when those properties take specific values

• Neurons are tolerant (invariant) to properties:

– response does not change much when those properties change

• Example: Simple vs. complex cells in the primary visual cortex:

Complex cells:Simple cells:
Tolerant to exact locationSelective to orientation

and location of the bar
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Nonlinearities for neural selectivity and tolerance

• Selectivity has been modelled as

– AND operation / MIN operation

• Tolerance (invariance) has been modelled as

– OR operation / MAX operation

• Here, we use convex and concave nonlinearites

– E.g. (
∑

i x
4
i )

1/4 : similar to MAX

– E.g. (
∑

i x
1/4
i )4 : similar to MIN

• Two first layers similar to squaring + square root in complex cells

• Learning by maximization of sparsity in each layer
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Layer three responses in three-layer model

Receptive

field (RF)

Inhibitory

RF

Optimal 2nd layer activity

(horizontal, vertical, diagonal)

Strongly acti-

vating images
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Neurophysiological modelling vs. Deep learning

• Deep learning means neural network with many layers

• Result is often a black box: interpretation difficult

• For neurophysiological modelling, we would prefer a network

where

– The role of each unit is clear

– All cell responses model biological responses

• Instead of blindly stacking many layers on top of each other, we

must think about what each layer is doing
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For more information on basic models
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Conclusion

• Properties of visual neurons can be quantitatively modelled by

statistical properties of natural images.

• Answers the Why question important in neuroscience

• Simple cell receptive fields can be learned by maximizing sparsity

/ independence of linear filters.

• By modelling dependencies between simple cell ouputs we can

model complex cells and topography

• Three-layer models can use alternating selectivity and invariance

• Theoretical development on estimation of unnormalized models

• Many applications in image processing and computer vision
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