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Introduction

Bayes Theorem

π(θ | Y ) =
π(Y | θ)π(θ)

π(Y )

Y — data
θ — parameters
π(θ | y) — posterior density
π(Y | θ) — likelihood
π(θ) — prior density
π(Y ) — marginal density

Simple, yet profound
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Introduction

Example—Gaussian Data

Y = (Y1, . . . ,Yn), where each Yi is Gaussian dist:

[Yi | µ] ∼ N(µ, σ2)

µ ∼ N(ν, φ2)

ν, φ2 and σ2 known constants
Then

[µ | Y ] ∼ N(m, v)

where

v =
σ2φ2

nφ2 + σ2

m =

(∑n
i yi

σ2 +
ν

φ2

)
/v
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Introduction

Example (cont.)

This example is a simple ”toy example” with a simple posterior
distribution

Most models today are much more complicated
Including Neuroimaging examples

Very high dimensional Hierarchical models
Posteriors have no closed form

Must rely on Monte Carlo simulation techniques
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Introduction

Monte Carlo Simulation

Markov Chain Monte Carlo

Metropolis algorithm
Metropolis-Hastings algorithm
Gibbs sampling
Metropolis-within-Gibbs

Particle filtering

...to name a few

Theory guarantees these all converge to the posterior distribution
No guarantee how long it will take
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Introduction

Monte Carlo Simulation

For complex problems, including those in Neuroimaging,
these (MC)MC simulations methods computationally intense
“behave poorly”—samples highly correlated (called slow mixing)

Must run the simulation a very long time to obtain good estimates
of the posterior

Weeks to months

Back to this latter
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Neuroimaging Examples

Pre-surgical fMRI

Liu, Z., Berrocal, V. J., Bartsch, A. J., Johnson, T. D. (2014) Pre-Surgical fMRI data
analysis using a spatially adaptive conditionally autoregressive model. Submitted to
Bayesian Analysis.

Standard fMRI methods have too strict control of false positives

For pre-surgical fMRI, control of false negatives is vital
Don’t want to cut out functionally eloquent regions by mistake

As is control of smoothing between boundaries of high and low
signal intensity

Want to smooth where signal changes slowly
Don’t want to smooth where signal is rapidly changing

This motivates our approach
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Neuroimaging Examples

Pre-surgical fMRI—Our Approach

At voxel i model the signal indep. with mean µi and var. σ2
i

Place a spatially adaptive CAR model on the µi
Spatially correlates the means
Spatially adapts smoothness to the image[

Yi | µi , σ
2
i

]
∼ N(µi , σ

2
i )[

µi | µ−i , σ
2
i

]
∼ N

∑
j∼i

µj/Ni , ciσ
2
i


[
ln(σ2

i ) | ln(σ
2
−i), φ

2
]
∼ N

∑
j∼i

ln(σ2
j )/Ni , φ

2/Ni


ci = pi/(1− pi), pi ∼ Beta(α, β)

pi controls the amount of smoothing in the full conditional of µi
Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 10 / 39



Neuroimaging Examples

Pre-surgical fMRI—Our Approach

Bayesian decision theory: loss function penalizes false positives
and false negatives asymmetrically.

With the guidance of a subject area expert
We penalize false negatives 11 times more heavily than false
positives

We compare results with those from
two other spatially adaptive CAR models

Speed: Fast, about 1 hour
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Neuroimaging Examples

Pre-surgical fMRI—Results
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Neuroimaging Examples

Group Level fMRI Analysis

Xu, L., Johnson, T. D., Nichols, T. E., Nee, D. (2009) Modeling inter-subject variability
in fMRI activation location: a Bayesian hierarchical spatial model. Biometrics 65
1041–1051.

Study of Proactive Interference Resolution
Proactive interference occurs when current information is lost
because it is mixed up with previously learned, similar, information

One’s ability to resolve proactive interference is key to in
determining how much information one can store in short term
memory
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Neuroimaging Examples

Group Level fMRI Analysis

Recent probes task
Subject given a small set of items to remember (a list of 6 letters,
say) in a short time period (target probe)

The subject then given a short list of items (recognition probe) that
may (positive probe) or may not (negative probe) be a subset of the
target probe
The recognition probe could further be a member of a previous trial
(recent probe) or not (non-recent probe)
Subjects show slower reaction time and increased error rates when
rejecting recent negative probes compared to non-recent negative
probes
Performance decrease a marker of proactive interference

The left lateral prefrontal cortex is a region linked to proactive
interference resolution
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Neuroimaging Examples

Group Level fMRI Analysis—Overview of Our Approach

A Bayesian Spatial Hierarchical Model

Level 1: subject level data
Unsmoothed Z-stat image modeled as a mixture distribution
Spatial correlation accounted for in the mixing weights

Level 2: subject level data
Cluster mixing wt means about “activation centers”

Level 3: population level data
Activation centers cluster around pop level centers

Level 4: Dirichlet process prior
Population parameters modeled as a Dirichlet process

SLOW—days to converge
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Neuroimaging Examples

Group Level fMRI Analysis—Patient Level Results (Sbj 4)
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Neuroimaging Examples

Group Level fMRI Analysis—Patient Level Results (Sbj 6)
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Neuroimaging Examples

Group Level fMRI Analysis—Patient Level Results (Sbj 13)
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Neuroimaging Examples

Group Level fMRI Analysis—Patient Level Results (Sbj 15)
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Neuroimaging Examples

Group Level fMRI Analysis—Marginal PPD of Ind Centers
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Neuroimaging Examples

Group Level fMRI Analysis—Marginal PPD of Population Centers
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Neuroimaging Examples

Other Areas

For every imaging problem there is a Bayesian solution

Review paper:
Zhang, L., Guindani, M., Vannucci M. (2014) Bayesian Models for
fMRI Data Analysis, WIRES: Computational Statistics (to appear)

Particle Filtering:
Aston, J. A. D., Johansen, A. D. (2014) Bayesian Inference on the
Brain: Bayesian Solutions to Selected Problems in Neuroimaging,
To appear in Proceedings of the IWBCTA 2013, Varanasi, India..

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 18 / 39



Alternatives to MCMC

Algorithms

Approximation Algorithms

Stochastic

Hamiltonian Monte Carlo
(HMC)
Reimannian Manifold HMC
(RMHMC)

Theory guarantees approx.
error can be made arbitrarily
small
Should assess sensitivity to
priors

Deterministic

Variational Bayes (VB)
Integrated Nested Laplacian
Approximation (INLA)

No such theory

Should conduct thorough sim.
studies to assess approx. error
Should assess sensitivity to
priors
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Alternatives to MCMC

HMC

H(q,p) = U(q) + K (p)

H(q,p)—The (separable) Hamiltonian
U(q)—Potential energy function
K (p)—Kinetic energy function
q—Position vector of the particles (parameter vector)
p—Momentum vector of particles (latent vector)

Partial derivatives of the Hamiltonian determine how q and p
change over time
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Alternatives to MCMC

HMC

Hamiltonian (partial differential) equations:

dqi

dt
=

∂H(q,p)
∂pi

=
∂K (p)
∂pi

dpi

dt
= −∂H(q,p)

∂qi
= −∂U(q)

∂qi
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=
∂K (p)
∂pi

dpi

dt
= −∂H(q,p)

∂qi
= −∂U(q)

∂qi

For HMC:
U(q)—minus the log posterior density
K (p) = 1

2p′M−1p
M is a SPD matrix, typically a scalar multiple of the identity matrix

IF analytic solution to Hamilton equations, we have a deterministic
solution to our Bayesian problem
Typically need to solve equations numerically
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dt
=

∂H(q,p)
∂pi

=
∂K (p)
∂pi

dpi

dt
= −∂H(q,p)

∂qi
= −∂U(q)

∂qi

For HMC:
Integrals approx. by iterating with the Leapfrog Method
Solution will be biased (due to approx. error) unless

Metropolis update performed (either accept or reject current state)
Acceptance rates typically high (so almost deterministic solution)

Mixing typically much faster than Metropolis-Hastings
Don’t have to draw as many samples
http://mc-stan.org
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Alternatives to MCMC

RMHMC

For RMHMC:
K (q,p) = 1

2p′M−1(q)p
Don’t need to guess M(q)

Automatically adjusts to geometry of parameter manifold

M(q) is expected Fisher info. matrix + negative Hessian of
log-prior
For RMHMC, need the inverse of M(q) (no longer diagonal)

In most imaging problems the dim. of M(q) is too large to invert
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Alternatives to MCMC

VB

Approximates solution to π(θ | y) with a density q(θ)

Restrict q to a manageable class of densities
q(θ) =

∏p
i=1 qi(θi) (mean-field approximation)

q is a member of a parametric family

Minimize the K-L distance between q(θ) and π(θ | y):∫
q(θ) ln

[
q(θ)

π(θ | y)

]
dθ

Iterate until some convergence criteria is met

KEY: find a good variational density q that is much easier to deal
with than π(θ | y)
Typically much faster than MCMC

However, posterior variances underestimated—sometimes severely
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Alternatives to MCMC

INLA

Consider the posterior of a latent Gaussian model: π(x , θ | y)
Posterior marginals are

π(xi | y) =

∫
π(xi | θ, y)π(θ | y)dθ

π(θj | y) =

∫
π(θ | y)dθ−j

Construct nested approximations:

π̃(xi | y) =

∫
π̃(xi | θ, y)π̃(θ | y)dθ

π̃(θj | y) =

∫
π̃(θ | y)dθ−j

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 24 / 39



Alternatives to MCMC

INLA

Consider the posterior of a latent Gaussian model: π(x , θ | y)
Posterior marginals are

π(xi | y) =

∫
π(xi | θ, y)π(θ | y)dθ

π(θj | y) =

∫
π(θ | y)dθ−j

Construct nested approximations:

π̃(xi | y) =

∫
π̃(xi | θ, y)π̃(θ | y)dθ

π̃(θj | y) =

∫
π̃(θ | y)dθ−j

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 24 / 39



Alternatives to MCMC

INLA

Now

π(θ | y) ≈ π̃(θ | y) ∝ π(x , θ, y)
π̃G(x | θ, y)

∣∣∣∣
x=x∗(θ)

This is a Laplace approx.

Also
π(xi | θ, y)

approximated by another Laplacian approximation.
Numerical integration used to approximation the full marginals
Very fast and accurate

R package available that solves many problems
http://www.r-inla.org
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Alternatives to MCMC

Which One?

It all depends

INLA or STAN—little time setting up model and fast
If special problem—must program (VB, INLA and HMC)

Programming will be time consuming
INLA and VB should run faster than HMC
INLA and VB:

No theory to guarantee arbitrarily small approximation error
Since both rely on approximations, I recommend simulation studies to
assess statistical properties of estimators—time consuming and
should compare to MCMC or HMC solution

HMC:
Need analytic derivatives
Need to tune numerical integration step
Theory ensures approximation error can be made arbitrarily small
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Alternatives to MCMC

Simulation Study: HMC, VB or INLA?

Interested in LGCPs on the brain (3D problem)

Will require coding
Regardless of whether I choose INLA, VB or HMC

Conducting simulation study on small 64× 64 grid (note: 2D)
INLA can fit LGCP models on 2D grids

Generated 2D intensity function (LGCP)
Simulated 1000 point patterns based on this intensity
Assessed stat. properties of estimators from INLA, VB and HMC
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Alternatives to MCMC

Simulation Study—Results

True Simulation Values: µ = 5 σ−2 = 0.286 E(N) = 792.1

HMC INLA VB
Parm Bias MSE Bias(rel) MSE(rel) Bias(rel) MSE(rel)

µ 0.071 0.014 0.261(3.69) 0.077(5.39) 1.23(17.07) 1.52(106.73)

σ−2 0.015 6e−4 0.061(4.15) 0.004(7.01) 0.281(19.20) 0.079(131)

E(N) 0.877 791 -179(-204) 32666(41.28) -11.36(-13) 958.5(1.21)

E(N) is the expected number of points over the region.
It is the integrated intensity function.
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Alternatives to MCMC

Simulation Study—Results
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Alternatives to MCMC

Simulation Study—Results
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Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?

Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature

Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent

Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component

Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

Parallelization

Are Bayesian methods amenable to parallelization?
Stochastic algorithms serial in nature
Likelihood, however, typically conditionally independent
Can parallelize likelihood, which is usually the most computationally
expensive component
Particle filtering—easy to parallelize. Each particle independent.

Clusters/multi-CPU machines
Best for task parallelization

GPUs
Best for data parallelization
Extremely good at “embarrassingly parallel” operations

Johnson (University of Michigan) NeuroBayes Sept. 4, 2014 30 / 39



Parallelization

GPU Example

Ge, T., Müller-Lenke, N., Bendfeldt, K., Nichols, T. E., Johnson, T. D. (2014) Analysis
of Multiple Sclerosis lesions via spatially varying coefficients. AOAS 8 1095–1118.

A study of Multiple Sclerosis MRI data

Want to correlate clinical symptoms with lesion location
Lesions segmented by Neuroradiologists
Work with binary images as outcomes

Spatial generalized linear model (probit or logit link)
Clinical symptoms + nuisance covariates

Parameters are spatially varying over the brain and are spatially
correlated
GMRF used to model the spatial correlation
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Parallelization

GPU Example—MS high-resolution imaging

Data are T2 hyperintense lesions
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Parallelization

GPU Example

Covariates:
15 subject specific covariates

7 FSS, PASAT score, age, gender, disease duration
4 MS subtypes (dummy coded into 4 variables)

Problem Size:
≈ 66 million observations (275K voxels × 239 subjects)
≈ 41 million spatially varying coefficients (275K voxels × 15
covariates)
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Parallelization

Spatially Varying Coefficients: Cerebellar Func. System Score

6 mm left of midline β
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Parallelization

GPU Example

Timing:
10K iterations after 20K of burning

CPU: (Serial code). 38.67 sec/iteration (3.3 GHz processor, Linux)
GPU: (Parallel code). 0.21 sec/iteration (NVIDIA K20c, 2496
threads)

Speed up: approximately 184 times faster.
13.4 days (CPU) vs. 1hr 45min (GPU)
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Concluding Remarks

Conclusion

Recent work in simulation algorithms is drastically reducing the
computational expense/workload

Combined with the ability to easily incorporate
prior information
spatial and temporal correlation

The future of Bayesian Analysis in Neuroimaging appears Bright
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