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Motivation: Uncovering neural connectivity

How are these brain regions interacting?

Multiregression
dynamical models
(MDMs; Catriona
Queen and Jim Smith,
1993):

Y1(t)

Y2(t)

...

Y3(t)

θ1(t)

θ2(t)

θ3(t)

Y1(t + 1)

Y2(t + 1)

...

Y3(t + 1)

θ1(t + 1)

θ2(t + 1)

θ3(t + 1)



Motivation: Uncovering neural connectivity

How are these brain regions interacting?

Multiregression
dynamical models
(MDMs; Catriona
Queen and Jim Smith,
1993):

Y1(t)

Y2(t)

...

Y3(t)

θ1(t)

θ2(t)

θ3(t)

Y1(t + 1)

Y2(t + 1)

...

Y3(t + 1)

θ1(t + 1)

θ2(t + 1)

θ3(t + 1)



Motivation: Uncovering neural connectivity
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Figure: fMRI data; replicate data from the same subject. DAGs
estimated from time series data using MDMs.

Node Number Symmetry Summary
1 Bilateral Motor:hand/face
2 Bilateral Sensory:All-but-face
3 Bilateral Motor:All-but-face
4 Bilateral UNKNOWN
5 Left Dominant Sensorimotor: L Hand+Arms
6 Right Dominant Sensorimotor: R Hand+Arms
7 Bilateral Sensory: Trunk-to-feet
8 Bilateral Sensory: Face
9 Bilateral Auditory
10 Bilateral Sensorimotor:All-but-face - Sensory:Face



An ideal algorithm
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Figure: fMRI data; joint learning of all DAGs simultaneously. [λ is a
“regularity” parameter.]

But how might this work? Seems challenging...
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But how might this work? Seems challenging...



Joint statistical model for multiple DAGs

G (1) G (2) G (3) G (K)G (K−1)

Y (1) Y (2) Y (3)

. . .

Y (K−1) Y (K)

θ(1) θ(2) θ(3) θ(K)θ(K−1)

. . .

Population structure N

DAGs

Subjects

Parameters

Figure: A Bayesian hierarchical model for multiple DAGs.



Joint statistical model for multiple DAGs

Joint prior over multiple DAGs:

p(G (1:K)|N) ∝

 ∏
(k,l)∈N

r(G (k),G (l))


︸ ︷︷ ︸

regularity

×

(
K∏

k=1

m(G (k))

)
︸ ︷︷ ︸
multiplicity correction

Structural Hamming distance:

log(r(G (k),G (l))) = −λ
∑
(j ,i)

I{j ∈ G
(k)
i ∆G

(l)
i }.

Binomial correction:

m(G (k)) =
P∏
i=1

(
P

|G (k)
i |

)−1
I{|G (k)

i | ≤ dmax}.
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Joint statistical model for multiple DAGs

Joint prior over DAGs and the network N:

p(G (1:K),N) ∝ p(G (1:K)|N)p(N)

where η controls the density of the network N and

log(p(N))
+C
= η‖N‖.

Then interest is in the “doubly joint” MAP

(Ĝ (1:K), N̂) := arg maxG (1:K),Np(Y (1:K)|G (1:K),N)p(G (1:K),N).
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Why are multiple DAGs challenging? Acyclicity.

Design a local move that encourages more similar DAGs...
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Check no cycles are created.



Why are multiple DAGs challenging? Acyclicity.

Delete an edge from each cycle.



Why are multiple DAGs challenging? Acyclicity.

But these new DAGs are as different as when we started!

Clearly a different approach is needed.



Integer linear programs for MAP DAGs

Inference for single DAGs is “easy”:

Consider a Bayesian network Y with respect to a directed acyclic
graph (DAG) model G . i.e.

pY (y |G ) =
P∏
i=1

p(yp|yGi
,Gi ).

There is interest in the maximum a posteriori (MAP) estimate

Ĝ := arg maxG pY (y |G )p(G ).

Choose a “nice” p(G ) =
∏P

i=1 pGi
(Gi ).
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Integer linear programs for MAP DAGs

Cussens ’10 and Jaakola et al. ’10 cast the MAP estimator in a
DAG model as an integer linear program (ILP):

max f Tx subject to Ax ≤ b, Cx = d , x ∈ Zd

Objective function:

f Tx = log[pY (y |G )p(G )] =
P∑
i=1

log[p(yi |yGi
,Gi )pGi

(Gi )]

=
P∑
i=1

∑
π⊆{1:P}

log[p(yi |yπ, π)pGi
(π)]xi ,π

where xi ,π = I{Gi = π} and e.g. x = (0, 0, 1, 0, 0, 0, . . . , 1, 0, 0).

Q: How to ensure x corresponds to a well-defined DAG?
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Integer linear programs for MAP DAGs

Convexity: ∑
π⊆{1:P}

xi ,π = 1 ∀i ∈ {1 : P}

No self-loops:

xi ,π = 0 ∀π ∈ i

Acyclicity (version of Jaakola et al., ’10):∑
i∈C

∑
π⊆{1:P}
π∩C=∅

xi ,π ≥ 1 ∀∅ 6= C ⊆ {1 : P}.

These constraints together exactly characterise the space of DAGs.



Integer linear programs for multiple DAGs

Claim: (Ĝ (1:K), N̂) is characterised by an extended ILP.

Sketch: Need to encode N in the state vector x :

E (k,l) := I{(k, l) ∈ N} ∀k, l with k < l

Now construct binary indicators of individual edges and
disagreement between edges:

e
(k)
j ,i =

∑
π⊆{1:P}

j∈π

x
(k)
i ,π ∀i , j , k.

d
(k,l)
j ,i = I{j ∈ G

(k)
i ∆G

(l)
i } ∀i , j , k , l with k < l

D
(k,l)
j ,i = I{j ∈ G

(k)
i ∆G

(l)
i and (k , l) ∈ N} ∀i , j , k, l .

XOR and AND constraints ≡ integer linear inequalities.
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Example: AND constraint A = AND(B ,C )

+A −B ≤ 0

+A −C ≤ 0

−A +B +C ≤ 1

This linearisation of AND is optimal, in the sense that it describes
all facets of the convex hull of feasible solutions for the AND
constraint.



Some preliminary results...



Results: Simulation study
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Figure: Simulated data; fixed N = complete, varying λ. [MCC =
Matthews’ correlation coefficient.]

Intuition: A modest amount of regularisation should help, but too
much can lead to artefacts.



Results: Group analysis of fMRI data
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Figure: fMRI data on two subjects; learning λ.



Results: Group analysis of fMRI data
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Figure: fMRI data on six subjects; learning N. [λ = 4]



Summary
To do:

I Large-scale empirical study

I Informative group priors (e.g. based on demographic covariates or
genealogy)

I Causal semantics for transfer learning
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