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Dependences between variables

B The question: qiven two (or more) time sequences, are we able
to characterize the statistical relationship between the two (or
more) vectors?

⇓
Dependences detection

B Moreover: what do we mean by “dependence”? Do we have an
operational definition? And a measure?



Dependence?
Let us just review briefly the main points of the discussion

B Interdependence

B Causal dependence

• general statistical dependence which
only reflects the statistical covariation
of signals
• coherency measures
• cross–correlograms
• mutual information

• distinguish driving and responding
elements
• detect asymmetry in the coupling of
subsystems
• polish up information due to common
history and input signals



Mutual Information
B Benefits

B Drawbacks

• sensitive to general (not only linear)
dependences, i.e. it is zero only if the two
random variables are strictly independent

• neither contains dynamical nor directional
information, i.e. it is symmetric

• so... causal relationships can be detected
only if associated to time delays

• ...but still does not distinguish information
actually exchanged from that due to the
response of a common input

• It is difficult to estimate

A good measure of dependence but still not the best one.



The statistical issue: d=2 to understand

Definition
The mutual information (MI) of a 2-dimensional random vector
X = (X1,X2) is given by

MI(X1,X2) =

∫
R2

f1,2(x1, x2) log2
[
f1,2(x1, x2)
f1(x1)f2(x2)

]
dx1dx2. (1)

Remark:
B If X1 and X2 are independent MI(X1,X2) = 0.
B MI and Entropy are related through the well known equation

MI(X1,X2) = H(X1) + H(X2) − H(X1,X2).

B MI is the Kullback–Leibler distance between P1,2 and P1 × P2.



Copulas and Mutual Information

Theorem
Let U1 = F1(X1) and U2 = F2(X2). The MI (1) of the 2-dimensional
random vector X = (X1,X2) can be obtained as

MI(X1,X2) = −H (U1,U2) (2)

where F1 is the distribution function of X1 and H is the differential
entropy.

Eq. (2) reads: MI is minus the entropy of the “copula”, i.e. the entropy
of the random vector U whose joint distribution is the copula function
associated to the original random vector X .

Defs



Estimation of MI

Idea: Use the relationship between MI and Entropy:
B transform the original sample in a new sample with uniform

marginals through U1 = F(X1),U2 = F(X2);
B estimate the entropy of the obtained sample.

⇓
Extension to the d− dimensional case!



Mutual Information: general d

The definition is not unique as it depends on the grouping chosen for
the components of the random vector X = (X1, . . . ,Xd).

Definition
For any n multi-indices (α1, . . . , αn) of dimensions h1, . . . ,hn
respectively, such that h1 + · · ·+ hn = d and partitioning the set of
indices {1,2, . . . ,d} the following quantities

MI(Xα1 , . . . ,Xαn ) =

∫
Rd

fα1,...,αn log2
fα1,...,αn

fα1 · · · fαn

=

∫
Rd

f1,...,d(x1, . . . , xd)×

log2

 f1,...,d(x1, . . . , xd)
f
α1
1,...,α

1
h1
(x
α1
1
, . . . , x

α1
h1
) · · · fαn

1,...,α
n
hn
(xαn

1
, . . . , xαn

hn
)

 dx1 . . . dxd ,

are all d–dimensional extensions of the bidimensional MI.



Mutual Information and Entropy

B The d−dimensional MI can be expressed as a sum of Entropies

MI(Xα1 , . . . ,Xαn) = H(Xα1) + · · ·+ H(Xαn) − H(X1, . . . ,Xd). (3)

B MI is the Kullback–Leibler distance between P1,...,d and
Pα1 × · · · × Pαn .

??

Is it possible again to transform the sample and get the MI as the
entropy of the transformed sample?



Copulas and MI: dimension d

B It is not possible to use copula functions to handle multivariate
distribution with given marginal distributions of general
dimensions.

!!

The only copula compatible with any assigned multidimensional
marginal distributions is the independent one.

Defs



Linkage and MI

Theorem
Let X = (X1, . . . ,Xd) be a d–dimensional random vector. For any n
multi-indices (α1, . . . , αn) of dimensions (h1, . . . ,hn) respectively,
such that h1 + · · ·+ hn = d and partitioning the set of indices
{1,2, . . . ,d}, it holds

MI(Xα1 , . . . ,Xαn) = −H(Uα1 , . . . ,Uαn), (4)

where (Uα1 , . . . ,Uαn) = (Ψα1(Xα1), . . . , Ψαn(Xαn)).

Proof



Ψαj : Linkage function

Definition
The linkage corresponding to the d-dimensional random vector
(Xα1 , . . . ,Xαn) is defined as the joint distribution L of the vector
(Uα1 . . . ,Uαn)

(Uα1
1
, . . . ,Uα1

h1
, . . . ,Uαn

1
, . . . ,Uαn

hn
) = (Ψα1(Xα1), . . . , Ψαn(Xαn)) . (5)

where
• Ψαi : Rhi → [0,1]hi , i = 1, . . . ,n with

Ψαi (xαi
1
, . . . , xαi

hi
) =

(Fαi
1
(xαi

1
),Fαi

2|α
i
1
(xαi

2
|xαi

1
), . . . ,Fαi

hi
|αi

1,...,α
i
hi−1

(xαi
hi
|xαi

1
, . . . , xαi

hi−1
));

• (α1, . . . , αn) multi-indices of dimensions (h1, . . . ,hn) respectively,
such that h1 + · · ·+ hn = d partitioning the set {1,2, . . . ,d};

• Fαi , i = 1, . . . ,n: hi-dimensional c.d.f. of Xαi = (Xαi
1
, . . . ,Xαi

hi
)

• Fα1,...,αn : d−dimensional joint c.d.f. of Xα1 , . . . ,Xαn .



The estimation algorithm

B Estimate the conditional c.d.f.’s in eq. (9). Denote these
functions as Ψ̃αi = (F̃αi

1
, F̃αi

2|α
i
2
, . . . , F̃αi

hi
|αi

hi−1
), for i = 1, . . . ,n;

B For k = 1, . . . ,N calculate Uk = (Uk
α1 , . . . ,Uk

αn), where
Uk
αi = (Ψ̃α1(Xk

α1), . . . , Ψ̃αn(Xk
αn)), for i = 1, . . . ,n;

B Estimate the MI(Xα1 , . . . ,Xαn) as the differential entropy in eq.
(4) of the transformed sample (U1, . . . ,UN).

For the particular case when d = 2 the procedure becomes the
following:
B estimate the c.d.f.’s U1 = F1(X1),U2 = F2(X2). Denote the

estimated functions as (F̃1, F̃2);
B calculate Uk = (F̃1(Xk

1 ), F̃2(Xk
2 )), for k = 1, . . . ,N;

B estimate MI(X1,X2) as the differential entropy in eq. (2) of the
transformed sample (U1, . . . ,UN).



Algorithm details

B Use the kernel method to estimate the the linkage functions
B Use the nearest-neighbor method to estimate the differential

entropy:

Ĥ =
d
N

N∑
j=1

log2
(
λj
)
+ log2

[
Sd(N − 1)

d

]
+

γ

ln(2) (6)

where γ = −
∫∞
0 e−v ln vdv ∼= 0.5772156649 is the

Euler-Mascheroni constant, λj is the Euclidean distance of each
sample point to its nearest neighbor and Sd = dπr/2

Γ( d
2+1) with Γ the

gamma function is the area of a unit d-dimensional spherical
surface (for example S1 = 2, S2 = 2π, S3 = 4π, . . . ). K-L



Results: Gaussian bivariate vector
Comparison between the proposed, the KSG and plain entropy
methods. KSG plain
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Figure : Standard Gaussian vector with ρ = 0.9. Here
MI(X1,X2) = 1.1980 bit. Color map: black and white for the estimator we
propose, red for KSG and blue for plain entropy.



Results: assigned bivariate distribution
X1,X2 have joint c.d.f.

F1,2(x1, x2) =
{

(x1+1)(ex2−1)
x1+2ex2−1 (x1, x2) ∈ [−1,1]× [0,∞]

1− e−x2 (x1, x2) ∈ (1,∞]× [0,∞]

and marginal Uniform on [−1,1] and Exponential with E(X2) = 1.
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Figure : Color map: black and white for the proposed estimator, red for KSG
and blue for plain entropy.



Results: Three dimensional vectors
X = (X1,X2,X3) Gaussian random vector with standard normal
components and covariance matrix ρX1,X2 = ρX2,X3 = ρX1,X3 = 0.9.
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Figure : Color map: black and white for the proposed estimator, blue for plain
entropy.



Results: Four dimensional vectors
Multivariate Gaussian random vector, with multi–indices to group the
components α1 = (1,2) and α2 = (3,4).
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Figure : Color map: black and white for the proposed estimator, blue for plain
entropy.
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Copula function

Definition
A two-dimensional copula is a function C : [0,1]2 → [0,1] with the
following properties:
1. C(u;0) = C(0; v) = 0 and C(u;1) = u,C(1; v) = v for every

u, v ∈ [0;1];
2. C is 2-increasing, i.e. for every u1,u2, v1, v2 ∈ [0;1] such that

u1 ≤ u2, v1 ≤ v2,

C(u1, v1) + C(u2, v2) − C(u1, v2) − C(u2, v1) ≥ 0

Remark:
B A copula function is a 2-dimensional joint distribution.



(Sklar’s) Theorem

Theorem
Let F1 and F2 be two univariate distributions. It comes that
C(F1(x1),F2(x2)) defines a bivariate probability distribution with
margins F1 and F2.

Theorem
Let F1,2 be a two-dimensional distribution function with margins F1
and F2. Then F1,2 has a copula representation:

F1,2(x1, x2) = C(F1(x1),F2(x2))

The copula C is unique if the margins are continuous.

back



Copulas: general d

Definition
A d−dimensional copula (or d−copula) is a function
C : [0,1]d → [0,1] with the following properties:
1. for every u = (u1, . . . ,ud) ∈ [0,1]d , C(u) = 0 if at least one

coordinate is null and C(u) = uk if all coordinates are 1 except uk ;
2. for every a = (a1, . . . ,ad) and b = (b1, . . . ,bd) ∈ [0,1]d such that

a ≤ b, VC([a,b]) ≥ 0.
Here VC is the so called C−volume of [a,b], i. e. the n−th order
difference of C on [a,b].

VC([a,b]) = ∆bd
ad∆

bd−1
ad−1 . . . ∆

b1
a1C(u), (7)

where
∆
bk
akC(u) = C(u1, . . . , uk−1, bk , uk+1, . . . , hd) − C(u1, . . . , uk−1, ak , uk+1, . . . , hd).



Sklar’s Theorem: dimension d
Theorem
For any d−dimensional c.d.f. F1,...,d of the random vector
X = (X1, . . . ,Xd) there exists a d−copula C such that for all
x = (x1, . . . , xd) ∈ Rd

F1,...,d(x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)), (8)

where Fi are the univariate margins. If the margins are continuous,
then the copula C is uniquely determined. Otherwise, C is uniquely
determined over RanF1 × · · ·×RanFd , where RanFi is the range of
the function Fi .

Conversely, if C is a copula and Fi , i = 1, . . . ,d are one-dimensional
distribution functions, then the function F1,...,d(x1, . . . , xd) defined in
(8) is a d-dimensional distribution function with margins Fi ,
i = 1, . . . ,d.

back



Linkage and MI (II)

Proof: Consider the following change of variables:

Uα1
1

= Fα1
1
(Xα1

1
)

Uα1
2

= Fα1
2|α

1
1
(Xα1

2
|Xα1

1
)

...
Uα1

h1
= Fα1

h1
|α1

1,α
1
2,...,α

1
h1−1

(Xα1
h1
|Xα1

1
,Xα1

2
, . . . ,Xα1

h1−1
)

Uα2
1

= Fα2
1
(Xα2

1
)

...
Uαn

1
= Fαn

1
(Xαn

1
)

...
Uαn

hn
= Fαn

hn
|αn

1,...,α
n
hn−1

(Xαn
hn
|Xαn

h1
, . . . ,Xαn

hn−1
).

(9)

back
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