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The Problem
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Localization microscopy with highly overlapping sources using
non-negative matrix factorization
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I Want to analyse a time-lapse sequence of images of a
specimen labelled with fluorophores switching between ON
and OFF states, in order to localize the sources

I Conventional methods (PALM, fPALM, STORM, dSTORM)
actively drive a large majority of the fluorophores into an
OFF state

I This avoids overlaps between individual point spread
functions (PSFs), but leads to low throughput

I Quantum dots (QDs) are brighter than alternatives,
reducing acquisition times

I However, QD blinking cannot be controlled so we need to
analyze overlapping sources
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Quantum dots: blinking
Quantum dots - blinking
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Outline

I The NMF model
I iNMF enhancements
I Competitor methods
I Quantitative Evaluation
I Comparisons on Simulated and Real Data
I Localization in Depth
I Conclusions
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The NMF Model
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I D is N × T , W is N × K , H is K × T
I Scale so that

∑
j wjk = 1
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Fitting the Model

I Poisson likelihood is the natural choice for microscopy

log p(D|W ,H) =
∑
xt

(
dxt log

K∑
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)
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I Corresponds to Kullback-Leibler divergence used by Lee
and Seung (2001)

I Multiplicative updates
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where � denotes the element-wise division of matrices
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Iterative NMF (iNMF)

I Multiplicative updates are convex wrt W and H separately,
but non-convex jointly

I Multiple restarts can be used, but we did not find good
solutions with this method

I We exploit prior knowledge that wks (PSFs) are likely to
have compact structure

I Rank columns wk of W according to their L2 norm
I Larger L2 scores tend to have sparser structure
I Hoyer (2004) used target L2 sparseness, rather than as a

ranking
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Winit, Hinit

(Random posi-
tive matrices.)

j = 1

NMF j ≤ K
Sort columns of W .
(Permute rows of H .)

Replace first j columns of Winit

with first j columns of sorted W .
(Correspondingly for rows of Hinit.)
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W , H

YES
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Choosing K

I We use a over-estimate based on PCA
I We demonstrate that iNMF recovers the optimal number of

emitters if K is over-estimated
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iNMF in Actioniterative NMF (iNMF)

60 11 / 22



Handling many sources

P11

K=51

P12

K=51

P13

K=63

P14

K=48

P15

K=54

P16

K=87

P17

K=17

P21

K=41

P22

K=41

P23

K=50

P24

K=49

P25

K=60

P26

K=47

P27

K=31

P31 P32

K=30

P33

K=37

P34

K=60

P35

K=51

P36

K=62

P37

P41 P42 P43

K=52

P44

K=52

P45

K=47

P46

K=35

P47

P51

K=28

P52 P53

K=30

P54

K=31

P55

K=23

P56

K=29

P57

K=24

P61 P62 P63

K=37

P64

K=39

P65

K=32

P66

K=44

P67

K=31

P71 P72 P73 P74 P75 P76 P77

I iNMF applied to each patch, then the results are stitiched
back together
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Competitor Methods

I CSSTORM: (Zhu et al, 2012). Acts on each frame
separately, uses ideas from compressed sensing re spatial
sparsity of sources

I 3B (Bayesian Blinking and Bleaching, Cox et al, 2011).
Fits a hidden Markov chain for each source. Expensive
MCMC approximations over location, blur, and brightness
of each source, and jump moves over number of sources

I bSOFI balanced Super-resolution Optical Fluctuation
Imaging (Geissbuehler et al, 2012). Does not localize
emitters but analyses higher order statistics of intensity
fluctuation
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Simulations: Quantitative Evaluation

I Scatter sources randomly at a given density, time series
generated by down-sampling a telegraph process

I For each method measure localization precision and ability
to recover individual sources

I Use Precision-Recall curve and calculate the Average
Precision (AP)

I Use methodology from PASCAL VOC competition to define
TPs, FPs, FNs
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Precision/recall curve
Interpolated precision

I Ranking of sources according to mean intensity meant(hkt)
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Comparisons on Simulated and Real Data

a

b

(b) is tubulin fibres of a HEp-2 cell immuno-labelled with QDs
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iNMF vs ICA
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Localization in Depth
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A neurone with neurotransmitter receptor subunits labeled with
QD605. Data kindly supplied by Anja Huss
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Conclusions

I NMF is a natural formulation for localization microscopy
with QDs

I Local optima problems in fitting led to the iNMF algorithm
I Outperforms competitors on localization and detection task

(assessed on synthetic data)
I Promising results on real data
I Access to shape of each PSF allows localization in 3D
I Code at https://github.com/aludnam/inmf

21 / 22



Acknowledgments

I Work supported in part by grants EP/F500385/1 and
BB/F529254/1 to the University of Edinburgh School of
Informatics DTC in Neuroinformatics and Computational
Neuroscience (www.anc.ac.uk/dtc) from EPSRC, BBSRC
and MRC

I Thanks to:
I Stefan Geissbuehler and Marcel Leutenegger for providing

the bSOFI algorithm and help with bSOFI evaluation
I David Baddeley and Anja Huss for providing us with data of

three dimensional samples
I Susan Cox, Martin Kielhorn and Kai Wicker for interesting

discussions

22 / 22


