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THE GEOMETRY OF DECISION THEORY

A. PHILIP DAWID AND STEFFEN L. LAURITZEN

ABSTRACT. A decision problem is defined in terms of an outcome space, an
action space and a loss function. Starting from these simple ingredients, we
can construct: Proper Scoring Rule; Entropy Function; Divergence Function;
Riemannian Metric; and Unbiased Estimating Equation. We illustrate these
for the case of a Riemannian outcome space.

From an abstract viewpoint, the loss function defines a duality between the
outcome and action spaces, while the correspondence between a distribution
and its Bayes act induces a self-duality. Together these determine a “decision
geometry” for the family of distributions on outcome space. This allows gen-
eralisation of many standard statistical concepts and properties. In particular
we define and study generalised exponential families.

1. INTRODUCTION

Consider a statistical decision problem (X, .A, L), defined in terms of an outcome
space X, action space A, and real-valued loss function L. Letting P be a suitable
class of distributions over X such that L(P,a) := Ex~pL(X, a) exists for all a € A,
P € P, we introduce, for P,Q € P, xz € X

Bayes act: ap := arginf,c4 L(P,a)
Scoring rule: S(z,Q) := L(z,aq)
Entropy function: H(P) := S(P,P)
Divergence function: d(P,Q) := S(P,Q) — H(P)
These quantities have special properties inherited from their construction [5]. In
particular:
e H(P) is concave in P
S(P,Q) is affine in P
e S(P,Q) is minimised in Q at Q = P
d(P,Q) — d(P, Qo) is affine in P
d(P,Q) > 0, with equality if Q@ = P

Conversely, these properties essentially characterise entropy functions, scoring rules
and divergence functions that can arise in this way. In [5, 6] they are illustrated
for a number of important cases, and used to determine the optimal choice of an
experimental design.

2. MINIMUM DIVERGENCE ESTIMATION

Let Q = {Qp} C P be a smooth one-parameter family of distributions. Given

data (x1,...,z,), with empirical distribution P, € P, a popular method of esti-
mating 6 is by the minimum divergence criterion:
(1) 6:= argmain d(ﬁn7 Qo).
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When d derives from a decision problem as above, this is equivalent to minimising
the total empirical score:

(2) 0 = argmein;S(xi,Qe)

— in which form it remains meaningful even when b, ¢P.
Defining now s(z,0) := (d/d0)S(z,Qg), we see that §(X) will satisfy the esti-
mating equation

(3) > s(X;,0) =0.

i=1
Theorem 2.1. The estimating equation (3) is unbiased.
Proof. The quantity Eq,_ S(X,Qp) is minimised in 0 at §y. Thus at § = 6,
0 = (d/d0)Eq, S(X,Qu)
= Eq,,s(X,0).
]

This result generalises readily to multi-dimensional parameter spaces.

We can thus apply standard results on unbiased estimating equations to describe
the properties of the minimum empirical score estimator 0: in particular, it will
typically be consistent, though not necessarily efficient.

2.1. Quasi-likelihood [13, 11, § 9.2.1]. Suppose X and A are both Euclidean
space R™. Let h be a differentiable strictly concave function on X, and consider
the decision problem with loss function

L(z,a) = h(a) + %Lc(ljb)(xj —a’)

(where we use Einstein’s summation convention for repeated indices).
Then (@
oh(a) , ; ,
— i _ i
L(Pv a) - h(a) + daj (/j'P a )7
where pp is the mean vector of P. This is minimised for ¢ = pp, so that the
corresponding proper scoring rule is

oh ; ;
(@ §(.Q) = ) + 2D (1 ),
ol
Q
the entropy function is H(P) = h(up), and the divergence is
Oh(pq)

d(P,Q) = h(pq) — h(up) + —=> (1t — 11y
gy
Because of their dependence only on mean vectors we will also write S(z, u) and
d(v,p) (v,p € X).

It is readily checked that

0S(z, )

(5) o = —ki;(p) (2’ — 1),
where
. O%h(p)

(so that K () := (k;j(p)) is a positive definite matrix).
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Property (5) establishes —S(z, 1) as a quasi-likelihood function for the model in
which the dispersion matrix is specified as the function V() = K(u)~! of the mean
w. Conversely, if (5) holds then K (x) must have the form of (6) for some concave
function h, so every quasi-likelihood can be obtained from a decision problem in
this way. In particular, quasi-likelihood estimation under a constraint p € F can
be conducted by minimising the empirical score S(z, ) — or, equivalently, the
divergence d(z, ) — subject to the constraint. It follows from (5) that this will
always yield an unbiased estimating equation, in illustration of Theorem 2.1.

3. ESTIMATING A DENSITY ON A RIEMANNIAN SPACE

Hyvérinen [10] has proposed a method for estimating a density over a Euclidean
space that can be performed without knowledge of the normalisation constant.
Here we generalise this to to the case of an outcome space X that is a Riemannian
manifold, with metric defined by an inner product (-, -) on the tangent space at
each point * € X (we do not mention the base point = explicitly). We write ||v]|?
for (v,v). Let u denote the corresponding volume measure on X.

As action space A, we take the set of scalar fields f such that |[Vf||> — 0 as
approaches the boundary of X. Here V f denotes the natural gradient of f, which
is a vector field.

Our loss function is given by:

(7) L(z,k) := k' Ax (evaluated at x).
Here A denotes the Laplace-Beltrami operator, with coordinate expression, for a
scalar field f:
) 1
Af:=0,0"f + 5(8’]‘) 9;(log det g),

where ¢ is the metric tensor, and ' f := g% 0; f is the coordinate expression of V f.
Then Af is a scalar field.

For P, we take the the set of probability distributions P over X that are abso-
lutely continuous with respect to p, and such that the natural density p := dP/du (a
scalar field) satisfies logp € A. We assume existence of all the required expectations
below.

The expected loss function is

L(Pr) = / (Ar)(p/) du
- / (Vi V(p/r)) di,

on applying Stokes’s theorem.
Introducing 7 := p%, we find:

L(p.m) == [ IVrlP du
and
LPoR) = L(Pm) = [ [V (/)P
which is always non-negative, and vanishes if and only if K o 7.
We thus have the following expressions:

Bayes act: kp := p%

Entropy: H(P) = — [||Vp?|?du

Scoring rule: S(z,Q) = ¢ 2Aq? (evaluated at z)

Expected score: S(P,Q) = — [(Vq?,V(p/q?)) du
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Divergence: d(P,Q) = [¢ HV(I?/Q)%HZGZM

We remark that L(x, ), S(x,Q), d(P, Q) can be calculated even if we only know
Kk or g up to a scale factor. In particular, use of the estimating equation (3) does
not require knowledge of the normalising constant for distributions in Q, which is
often hard to obtain. We further remark that, since d(P, Q) and H(P) are defined
only for distributions P € P, whereas P, ¢ P, the expression of the estimation
rule in terms of minimum discrepancy, as in (1), is no longer meaningful; however,
there is no such difficulty in minimising the empirical score, as in (2).

We can re-express the above quantities in terms of [p := logp and lg. We obtain:

5.Q) = Sl + I Vigl?
S(P,Q) = iEp(VleQVZP,Vl(ﬁ
H(P) = —1Bp|Vip|?

d(P,Q) = iEpuvzp—szn2

We do not need to know p to calculate the divergence: d(P, Q) is unchanged if we
interpret [p and lg as log-densities with respect to any fixed underlying measure.

When X is Euclidean, 2d(P,Q) becomes the criterion proposed in [10, equa-~
tion (2)]; while 2.5(x,Q) is the expression whose expectation (first theoretical,
then empirical) appears in [10, equations (3) and (4)].

We remark that the above proper scoring rule S(z,Q) is determined by the
values of [g in an arbitrarily small neighborhood of z. Contrast this with the result
of [3] that the only proper scoring rule depending only on the value of lg at x is
essentially identical with —lq.

4. DECISION GEOMETRY: GENERAL FRAMEWORK

We now return to the general decision problem of § 1, and introduce a concrete
framework within which we can naturally define and manipulate geometric proper-
ties associated with the problem. The theory outlined below can be made rigorous
for the case of a finite outcome space X, and is indicative of properties that (under
appropriate technical conditions) should hold more generally.

Let W be the vector space of all signed measures over X', and V the vector
space of all functions on X. These spaces are in duality with respect to the bilinear
product (m, f) = [ f(z)dm(z). In particular (P, f) = Ex.p{f(X)} for P a
probability distributions on X. The set P of all distributions on X is a convex
subset of W, and thereby inherits its natural parallel displacement V. At any
P € P, the tangent space to P is naturally represented as the subspace W+ :=
{m € W : m(X) = 0}, which identification defines an affine connexion, also denoted
by V, on P.

The dual of W is the quotient space V' := V/1, where 1 denotes the one-
dimensional space of constant functions on X. We denote by 7% the natural pro-
jection from V to V*, and by V* the natural parallel displacement on V.

Consider now a decision problem (X, .4, L). With L understood, we henceforth
identify a € A with its loss function L(-,a), thus converting the action space into
a subset £ of V, which we shall assume closed and bounded from below. Allowing
randomised acts, £ is convex. Let L£* denote its lower boundary, consisting of
the admissible acts. Without any essential effect, we henceforth replace £ by the
convex set {v € V : v > a for some a € L}, which has the same lower boundary
L*. Then Tp :={v €V : (P,v) = H(P)} is a supporting hyperplane to £, and we
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can characterise £ dually as {v € V : (P,v) > H(P), all P € P}.

For present purposes we make the following Basic Assumptions:

(i) For any P € P there is exactly one Bayes act p € £*.}
(ii) Distinct distributions in P have distinct Bayes acts in £*.2
(iii) Every a € L* is a Bayes act for some P € P.

The function A : P — L* taking each P to its Bayes act p is then a (1,1) corre-
spondence. The supporting hyperplane Tp now becomes the tangent plane to £ at
p, intersecting £ at the single point p.
We note the following identifications:
The expected loss L(P,a) is (P, a)
The Bayes act is the score function: p(-) = S(-, P)
S(P,Q)is (P, q)
H(P)is (P, p)
d(P,Q) is (P, q —p).

Now let LT := 7n(L£*) C V'. Note that at most one member of a ray v :=
{v+k:k€R} € VT canbein L*, sothat 77 : L* — LT isa (1, 1) correspondence.

Lemma 4.1. £T is convez.

Proof. We have to show that, for P,Q € Pand 0 < a < 1, there exist R € P, k € R
such that r(z) = ap(z) + (1 — a) q(x) — k.

For Il € P, let k(II) := « S(II, P) + (1 — &) S(I, Q) — H(II) = ad(II, P) + (1 —
a)d(I1,@Q). This is a non-negative convex function on P. Let k := infrep k(II),
and suppose that this infimum is attained at R € P. Alsolet v := ap+(1—a)q—k.

For any IT € P, (I, v) = a (I, p) + (1 — ) (IL, ¢) — k = k(II) + H(II) — k > H(II),
whence v € L. Moreover (R,v) = H(R) = inf,ecz(R,a). Thus v = r, the Bayes act
for R, and the required property is demonstrated. O

We have thus shown that the map A* := 7% o A provides a (1, 1) correspondence
between the convex sets P C Wand LT C V. (Since the orientation of the tangent
plane Tp in V to £ at p = A(P) is determined by P, we further see that, knowing
AT, we can recover £* and A up to an unimportant translation by a constant.)
This correspondence determines the decision geometry on P induced by the given
decision problem. In particular, in addition to the parallel displacement V inherited
by P directly as a convex subset of W, it also inherits a parallel displacement V*
through its correspondence with the convex subset £T of V.

Differential geometry. The tangent space to the manifold P at any point P is nat-
urally represented by W™, and that to £* at any point p™ by V*. Under our basic
assumptions, the function AT is differentiable at P € P° (the interior of P), its
derivative thus supplying an isomorphism between W= and V+. Through this, V*
is converted into an affine connexion (also denoted by V*) on P°; and the natural
bilinear product is converted into an inner product on W, so defining a metric g
on P°. These constructions and properties, which are special cases of the general
theory of [13], make (P°,g,V,V*) a dually flat statistical manifold [1, 14, 2]. We
remark that V is always the mixture connexion, whereas V* and the metric will
depend on the specific decision problem. For the special case that the loss is defined
by the logarithmic score, —lg(z), we recover the information geometry, which was
introduced in terms similar to the above in [4]. Eguchi [8] has studied the decision

LWe use corresponding upper case and lower case symbols for a distribution in P and its Bayes
act in L.
2This is equivalent to the scoring rule S being strictly proper.
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geometry associated with a separable Bregman score [12, 9].

However, much of the geometric framework can be fruitfully applied at a global
level, without invoking the differentiable structure. We illustrate this below.

4.1. Generalised exponential family. Let F be the intersection of some affine
subspace of V* with £, and & = (A\*)71(F) the corresponding subfamily of P.
We call such € a linear generalised exponential family (LGEF). As a convex subset
of V*, F has a natural affine parametrisation and parallel displacement V*, which
thus transfer to £. A 1-dimensional LGEF is a V*-geodesic.

Since ¢(-) = S(+,Q), a LGEF £ = {Qs : 3 € B C R*}, with an affine parametri-
sation, is thus defined by the linear loss property [9, § 7.2]:

k

for some m, t; € V, with Gy then a uniquely determined function of 3. Applying
Theorem 2.1 we find dfy/dB; = —Eq,{t:(X)} (8 € B°).

Let t := (t1,...,t), and define, for 7 € R*: T, := {P € P : Ep{t(X)} = 7}.
Suppose? that there exists P, € I',NE. Since S(P,Q) = (P, q), an easy calculation,
using (8), yields:

(P—Pr,pr—q)=0 (PeT,.,Qef).

This in turn implies the “Pythagorean equality”:

(9) d(P,Pr) +d(P-,Q)=d(P,Q) (PeT;,Qeé).
It readily follows that, for any P € I';,

1 P, = i P, Q).

(10) - = argiin d(P,Q)

When P is the empirical distribution ﬁn of data (x1,...,x,) from X, if there
exists P; € € satisfying Ep {t(X)} =t :=n"'3Y " | t(;), then this will minimise
the empirical score >\ ; S(z;,Q) over Q € &.

Now fix Q € P, take m = ¢, and, for given t; € V, let £ be given by (8): then &
is a LGEF containing Q. Again, if there exists P, € I'; N & then (9) holds for all
P €T, whence we readily deduce

(11) P; = arg min d(P, Q).

What happens when I', # () but I'> "€ = (0?7 In this case P, can still be defined
by (11), but will not now be in £ (P, will in fact lie on the boundary of P). The
family €™ D & of all P, given by (11) constitutes a full generalised exponential
family. In general this will not be flat — indeed, even in simple problems it need
not correspond to a smooth submanifold of V* [9, Example 7.1]. Nonetheless,
under mild conditions we can apply minimax theory to a suitable game between
Nature and Decision Maker, constructed from the decision problem, to derive the
Pythagorean inequality (a strengthening of (9) and so a fortiori of (11)):

(12) d(P,P,) +d(P,Q) <d(P,Q)  (PeT,).

3This need not hold in general: see below.
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One might conjecture that (10) also continues to hold in the form P, = arg mingegm d(P, Q)
for P € T';, but this need not be so [9, § 7.6.1].

Griinwald and Dawid [9] investigate further game-theoretic aspects of statistical
decision problems related to convex duality and the existence of saddle-points,
including but extending beyond properties of generalised exponential families. It is
likely that many of these can be given interesting geometric interpretations within
the framework set out above. However to incorporate the full generality of the
game-theoretic approach within the geometry it would be important to find ways
of relaxing our basic assumptions (i) and (ii).

REFERENCES

[1] Amari, S. and Nagaoka, H. (1982). Differential geometry of smooth families of probability
distributions. Technical Report METR 82-7, Department of Mathematical Engineering and
Instrumentation Physics, University of Tokyo.

[2] Amari, S. and Nagaoka, H. (2000). Methods of Information Geometry, Translations of Mathe-
matical Monographs, Vol. 191. American Mathematical Society and Oxford University Press,
Providence, Rhode Island.

[3] Bernardo, J. M. (1979). Expected information as expected utility. Annals of Statistics, 7,
686—-90.

[4] Dawid, A. P. (1975). Discussion of [7]. Annals of Statistics, 3, 1231-4.

[5] Dawid, A. P. (1998). Coherent measures of discrepancy, uncertainty and dependence, with
applications to Bayesian predictive experimental design. Technical Report 139, Department
of Statistical Science, University College London.
http://www.ucl.ac.uk/Stats/research/abs94.html#139.

[6] Dawid, A. P. and Sebastiani, P. (1999). Coherent dispersion criteria for optimal experimental

design. Annals of Statistics, 27, 65-81.

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second-

order efficiency) (with Discussion). Annals of Statistics, 3, 1189-242.

[8] Eguchi, S. (2005). Information geometry and statistical pattern recognition. To appear in
Sugaku Exposition, Amer. Math. Soc.

[9] Griinwald, P. D. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum dis-
crepancy, and robust Bayesian decision theory. Annals of Statistics, 32, 1367-433.

[10] Hyvérinen, A. (2005). Estimation of non-normalized statistical models by score matching. J.
Machine Learning Research, 6, 695—709.

[11] Kass, R. E. and Vos, P. W. (1997). Geometrical Foundations of Asymptotic Inference. John
Wiley and Sons.

[12] Lafferty, J. (1999). Additive models, boosting and inference for generalized divergences. In
Proceedings of the Twelfth Annual Conference on Computational Learning Theory (COLT
’99), pp. 125-33. University of California at Santa Cruz.

[13] Lauritzen, S. L. (1987a). Conjugate connections in statistical theory. In Geometrization of
Statistical Theory: Proceedings of the GST Workshop, (ed. C. T. J. Dobson), pp. 33-51.
ULDM Publications, Department of Mathematics, University of Lancaster.

[14] Lauritzen, S. L. (1987b). Statistical manifolds. In Differential Geometry in Statistical Infer-
ence, IMS Monographs, Vol. X, pp. 165-216. Institute of Mathematical Statistics, Hayward,
California.

=

DEPARTMENT OF STATISTICAL SCIENCE, UNIVERSITY COLLEGE LONDON, GOWER STREET, LON-
poN WCIE 6BT, UK

E-mail address: dawid@stats.ucl.ac.uk

URL: http://tinyurl.com/2675a

DEPARTMENT OF STATISTICS, UNIVERSITY OF OXFORD, 1 SOUTH PARKS ROAD, OXFORD OX1
3TG, UK

E-mail address: steffen@stats.ox.ac.uk

URL: http://www.stats.ox.ac.uk/ steffen/



