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Overview

• Introduction to Computational Information Geometry
• Encompasses and extends both Amari’s information

geometry and Lindsay’s mixture geometry
• Aims to unlock the power of information geometry to

mainstream users by being computational
• Illustrate talk through examples
• Joint work with Karim Anaya-Izquierdo, Frank Critchley

and Paul Vos
• Thanks to EPSRC Grant Number EP/E017878/1
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Big Picture

• The way that parametric statistical models lie in a
‘space of all models’ is important

• We will use high-dimensional (extended) multinomial
space as a proxy for the ‘space of all models’

• Show that this computational approach encompasses
both Amari’s information geometry and Lindsay’s
mixture geometry

• The geometry of the (extended) multinomial space is
highly tractable and mostly explict so very good for
building a computational theory

• Long term aim is to build software which releases to
power of these geometric theories to mainstream
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Information Geometry

• Developed by Efron [10], Amari [4], Barndorff-Nielsen
[6], [7] and others, see the book by Kass and Vos [13]

• Used in understanding asymptotic analysis, information
loss, the properties of estimators . . .

• How to connect two density functions f (x) and g(x) in
the space of all models?
-1: ρf (x) + (1 − ρ)g(x)

+1: f (x)ρg(x)1−ρ

C(ρ)

• These define two different affine geometries.
• Duality: non-linear relationship between them given by

Fisher information.
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Example: censored exponential
family

• Censored exponential example, [13, 17], with observed
R.V. y = min(z, t) and x the censoring indicator has
model p (y |λ1(θ), λ2(θ)) where
(λ1(θ), λ2(θ)) = (− log θ,−θ)

exp
[
λ1x + λ2y − log

[
1
λ2

(
eλ2t − 1

)
+ eλ1+λ2t

]]
this is curved exponential family

• Bias of MLE is given by information geometric formula

− 1
2n

{
Γ

(−1) a
cd gcd + h(−1) a

κλ gκλ
}

• This formula is ‘not difficult’ in the sense only uses
sums and partial derivatives, but not used in practice

• Can this be computed numerically? treat formula as
pseudo-code
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Mixture Geometry

• Inference in the general class of mixture models has
many hard problems:

• singularities and multimodality in the likelihood
• parameterisation issues
• boundary problems
• identification problems

• Lindsay [16] has shown how to compute
Non-Parametric Maximum Likelihood Estimate using
convex and affine geometry

• Mixtures are very open to geometric analysis for
example local mixture models, [18] & [3]

• Other common approaches: EM and MCMC
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Lindsay’s geometry

• Embeds problem in finite dimensional affine space
determined by sample size [14]

• For data x1, . . . , xn look at convex hull of curve
(f (x1 : θ), . . . , f (xn : θ)) ⊂ Rn.
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• The directional derivative in embedding space key to
finding MLE
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Lead by examples

• Show by examples how to build a CIG computational
framework

• Start from finite discrete models and lead to general
continuous models

• Show how to make information geometry tractable for
mainstream users

• Show how to extend Lindsay’s mixture geometry
• Open questions concerning foundations of inference

and modelling
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Mixtures of binomials

• Consider data from a mixture of binomials of size 30:
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• If size is k the space of models is the simplex{
(π0, π1, · · · , πk )|πi ≥ 0, and

∑
πi = 1

}
• Note that include zero probabilities
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Information Geometry of
Simplex

(a) !1!geodesics in !1!simplex
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Geometry of Simplex

• Simplicial models are extended exponential families
since boundaries are included

• ±1-geometries individually explict and have closed form
• hard computational tasks mixed parameterisation, see

[7]
• Fisher information explicit; rank varies with dimensional

of face



Computational
Information
Geometry

Paul Marriott

Introduction

Computational
framework
Finite, discrete

Likelihood in
simplex
Shape of likelihood

Fisher spectrum

Mixture
geometry
Applications

Generalisations
Finite, continuous

More Applications:
Information geometry

Infinite to finite

Summary

Geometry of Simplex

• Working in high dimensional simplex with large number
of cells

• Typically the sample size is (much) smaller than
dimension

• Sparse high dimensional simplical geometry
• The information geometry is explicit–mostly in closed

form
• Normal n-asymptotics can’t work
• THEOREM: there is a k -asymptotic theory for

distribution of Deviance, see [2]
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Shape of likelihood

• Working in high dimensional sparse spaces much of
our statistical folk-law needs to be reconsidered

• Log-likelihood not approximately quadratic
• THEOREM:

• Log-likelihood concave but not strictly concave
• There are many directions (in fact −1-affine spaces)

where likelihood is flat- data can tell us nothing in these
directions

• Empirical MLE lies on face of simplex, not an interior
point
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Shape of likelihood

Subspaces of constant likelihood

Empirical MLE
Positive Face

Zero Face



Computational
Information
Geometry

Paul Marriott

Introduction

Computational
framework
Finite, discrete

Likelihood in
simplex
Shape of likelihood

Fisher spectrum

Mixture
geometry
Applications

Generalisations
Finite, continuous

More Applications:
Information geometry

Infinite to finite

Summary

Fisher information
• Fisher information at π = (π1, . . . , πk ) is Diag(π)− ππT

• Can be arbitrarily close to singular in interior of simplex
• It is singular as take limit on faces
• THEOREM: The singular value decomposition of

Fisher information very well understood.
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Mixture inference

• In simplex mixtures
∑

ρiπ(θi) are fundamentally not
identified

• Consider finding MLE in convex hull of curve π(θ) in
simplex

• THEOREM: If π(θ) is exponential family then convex
hull has maximal dimension in simplex

• THEOREM: There are very good low dimensional
approximations to convex hull (local mixtures)
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Mixture inference

• Use the geometry of the way that the low dimensional
curve is embedded in the high dimensional simplex to
get greatly improved algorithms

• THEOREM: The spectrum of the SVD of a set of points
on the curve determines the quality of an approximation
to the MLE in the convex hull

• This approximation method very direct method of
computing MLE (and their variability) in the convex hull
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Lindsay’s geometry and simplex

Mixture MLE

Global MLE

Exponential Family

Positive Face
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Binomial mixture application
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Generalisations?

• Have show that in discrete and finite case have a
computational framework for the ‘space of all
distributions’

• High dimensional sparse simplex- sets of limits
important, [9]

• Two types of affine geometry and Fisher information
• Spectral techniques very useful in order to implement

numerical methods
• Can we get proxy for space of all distributions in more

general settings?
• Comment: Computational systems must be finite and

that inference is fundamentally a finite process
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Pain data
• Pain data: (Wallace 1980). Hours of post-operative

pain relief.
• Inference question: is there a difference between types

of drug used?
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• Measurements only recorded to nearest hour and no
recordings after 24 hours

• Could model with censored exponential model
mentioned above
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Discretisation

• Binomial example naturally discrete... here have
discretised a continuous model

• Discretising induces statistical curvature in models
• There are finite number of bins, one of which is

semi-infinite
• There are (ordered) values of the random variable to

associate with each bin
• THEOREM: for finite bins information loss associated

with discretisation can made arbitrarily small by
controlling conditional variance in bins

• Distinguish between Exponential Families which are
discretised and Exponential Families in thesimplex
models
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Discretisation

• Pitman: [19]
”· · · statistics being essentially a branch of
applied mathematics, we should be guided in
our choices of principles and methods by the
practical applications. All actual sample
spaces are discrete, and all observable
random variables have discrete distributions.
The continuous distribution is a mathematical
construction, suitable for mathematical
treatment, but not practically observable.”
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More Applications

• We saw earlier the information geometric computations
for censored exponential family, [17]

• Bias of MLE is given by information geometrical formula

− 1
2n

{
Γ

(−1) a
cd gcd + h(−1) a

κλ gκλ
}

• In the application problem is discrete and finite
• Can treat these formulae as pseudo-code for numerical

implementation in large sparse simplex
• The resulting code unlocks all results of information

geometry to the mainstream user
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Infinite to finite: mixture of
exponentials

• Consider a problem based on mixing over exponential
distributions

Mixture of exponential
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• Can discretise but now have potentially infinite number
of bins
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Infinite simplex

• There exists geometry of infinite simplex [1]
• Information geometry of infinite dimensional families

[12] and [11] uses Hilbert or Banach space structures
• In our approach different ‘faces’ of the infinite simplex

have different support and different moment structures
• There still exist ±1 geodesics between distributions, but

there are boundaries.
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Infinite simplex
• Infinite Fisher information possible, even in mixtures of

exponentials [15]
• Look geodesics joining standard normal and Cauchy,

[8]
• +1- geodesic f (x)ρg(x)1−ρ/C(ρ)
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• −1- geodesic (1 − ρ)f (x) + ρg(x), What if ρ << 1/n?
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Infinite to finite

• To work with finite model need to make modelling
assumptions

• THEOREM: Need to be able to truncate the Laplace
transform

• Asymptotics vs fixed sample size inference: when
taking fixed size approach no empirical tests possible to
check modelling assumptions

• Limits to empirical knowledge-seen before in flat
directions of likelihood in sparse simplex
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Application: Weibull example

• Weibull is not in curved exponential family class needed
for classical Information Geometry

• After making modelling assumptions can embedded
Weibull family in large sparse simplical model with
small loss for inference

• Make into a Curved Exponential Family so have
extended Amari both theoretically and practically

• The numerical code then makes the results of extended
information geometry available to mainstream user
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Summary

• The way that parametric statistical models lie in a
‘space of all models’ is important

• We will use high-dimensional (extended) multinomial
space as a proxy for the ‘space of all models’

• Show that this computational approach encompasses
both Amari’s information geometry and Lindsay’s
mixture geometry

• The geometry of the (extended) multinomial space is
highly tractable and mostly explict so very good for
building a computational theory

• Long term aim is to build software which releases to
power of these geometric theories to mainstream
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