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Some citations

“Algebraic statistics is concerned with the development of techniques in algebraic
geometry, commutative algebra, and combinatorics, to address problems in statistics and
its applications. On the one hand, algebra provides a powerful tool set for addressing
statistical problems. On the other hand, it is rarely the case that algebraic techniques
are ready-made to address statistical challenges [...] This way the dialogue between
algebra and statistics benefits both disciplines.” Lectures on Algebraic Statistics by Drton,

Sturmfels, Sullivant, Birkhäuser 2009

“Algebraic statistics is the use of algebra to advance statistics. Algebra has been useful
for experimental design, parameter estimation, and hypothesis testing.” Wikipedia

“It might seem natural that where a statistical model can be defined in algebraic terms
it would be useful to use the full power of modern algebra to help with the
description of the model and the associated statistical analysis.” Algebraic and geometric

methods in statistics, Gibilisco, Riccomagno, Rogantin Wynn (eds), Cambridge 2010

“[...] build a bridge between the approximate data of the real world and the exact
structures of commutative algebra” Approximate commutative algebra, Robbiano and

Abbott (eds), Springer 2009



[...] experimental design in the language of contingency table can be taken as the study
of tables with prohibited cells and Markov bases for models over such designs can be
better developed;

the links between optimal experimental design and the algebraic method in experimental
design has not yet been established, although optimal designs often exhibit symmetries
and formal invariant theory might be use;

computational algebra in main-stream probability theory is ripe for more development
and we should be particularly interested when there are applications in statistics.

The foundations in areas like semi-group theory in Markov chains and algebraic
combinatorics for counting special congurations using generating function techniques,
together with asymptotics, may prove to be fruitful leads to statistical applications.
Algebraic methods in statistics and probability II, Viana and Wynn (eds), AMS 2009
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Design

D finite set of points in Rk Ideal(D)

L ∼ R[D] = {f : D −→ R} R[x1, . . . , xk ]/ Ideal(D)

Saturated hierarchical models L order ideals

Products in L normal form

Example: Plackett-Burman (PB8) design with eight runs, seven factors
and generator + - - + - + +



Design and identifiable models Pistone, Wynn ‘96

Use R::=Q[x[1..7]], Lex;

PB8:= [ [ 1,-1,-1, 1,-1, 1, 1], [ 1, 1,-1,-1, 1,-1, 1],

[ 1, 1, 1,-1,-1, 1,-1], [-1, 1, 1, 1,-1,-1, 1],

[ 1,-1, 1, 1, 1,-1,-1], [-1, 1,-1, 1, 1, 1,-1],

[-1,-1, 1,-1, 1, 1, 1], [-1,-1,-1,-1,-1,-1,-1] ] ;

I:=IdealOfPoints(PB8); I;

Ideal( x[7]^2 - 1, x[6]^2 - 1, x[5]^2 - 1,

x[4] + x[5]x[7], x[3] - x[5]x[6]x[7],

x[2] + x[6]x[7], x[1] + x[5]x[6] )

-------------------------------

QuotientBasis(I);

[1, x[7], x[6], x[5], x[6]x[7], x[5]x[7], x[5]x[6], x[5]x[6]x[7]]

-------------------------------

NF( x[1]x[2]x[3]x[4]x[5]x[6]x[7] , I );

-1

-------------------------------
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Indicator Function Pistone, Rogantin ‘07, Ye ‘03

Use R::=Q[x[1..7]];

D:=[-1,1]><[-1,1]><[-1,1]><[-1,1]><[-1,1]><[-1,1]><[-1,1];

PB8:= [ ... ];

IdealOfPoints(PB8);

[ 1, x[7], x[6], x[5], x[4], x[3], x[2], x[1]]

-------------------------------

InFun1:=Fu(PB8,D);InFun1;

- 1/16x[1]x[2]x[3]x[4]x[5]x[6]x[7]

+ 1/16x[1]x[3]x[4]x[5] + 1/16x[1]x[2]x[3]x[6]

+ 1/16x[2]x[4]x[5]x[6] + 1/16x[2]x[3]x[4]x[7]

+ 1/16x[1]x[2]x[5]x[7] + 1/16x[1]x[4]x[6]x[7]

+ 1/16x[3]x[5]x[6]x[7]

- 1/16x[1]x[2]x[4] - 1/16x[2]x[3]x[5] - 1/16x[3]x[4]x[6]

- 1/16x[1]x[5]x[6] - 1/16x[1]x[3]x[7] - 1/16x[4]x[5]x[7]

- 1/16x[2]x[6]x[7]

+ 8/128

-------------------------------
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Betti and models Berstein, Maruri... ‘10

If D ⊂ 2d , then L is of square free monomials. It corresponds to an
abstract simplicial complex. Its Betti numbers give information on the
“connectiveness” property of the identifiable model.

Use R::=Q[x[1..7]], DegLex; Lex;

PB8:= [ ... ]; I:=IdealOfPoints(PB8); QuotientBasis(I);

HilbertSeries(R/I);

[1, x[7], x[6], x[5], x[4], x[3], x[2], x[1]]

-------------------------------

[1, x[7], x[6], x[5], x[6]x[7], x[5]x[7], x[5]x[6], x[5]x[6]x[7]]

-------------------------------

(1 + 7x[1]) (1 + 3x[1] + 3x[1]^2 + x[1]^3)

-------------------------------

In DegLex β0 = 1 and β1 = 7 in Lex β = (1, 3, 3, 1)
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Betti and design Carlsson ‘09, Pirino ‘11
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Note

Use R::=Q[x[1..7]], Lex; PB8:= [ ... ] ;

I:=Ideal(x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]);

Foreach T In PB8 Do

V:=[ K+T | K In PB8 ];

W:=[ [Abs(K)/2 | K In A] | A In V ];

I:=I+Cast( [LogToTerm(A) | A In W], IDEAL);

EndForeach;

I:=I+Ideal([ X^2 | X In Indets()]);

GBasis(I); HilbertSeries(R/I);

[ x[1]x[3]x[7], x[1]x[5]x[6], x[4]x[5]x[7], x[1]x[2]x[4],

x[3]x[4]x[6], x[2]x[6]x[7], x[2]x[3]x[5],

x[1]^2, x[2]^2, x[3]^2, x[4]^2, x[5]^2, x[6]^2, x[7]^2 ]

-------------------------------

(1 + 7x[1] + 21x[1]^2 + 28x[1]^3 + 7x[1]^4)

-------------------------------
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Quadrature Fassino, Pistone, Youssef, Wynn in progress

For D, a term-ordering, G a τ -G-basis of I (D), and a polynomial p

p(x) =
∑
g∈G

sg (x)g(x) + r(x)

=
∑
g∈G

sg (x)g(x) +
∑
d∈D

p(d)ld(x)

where ld is the Lagrange polynomial for d ∈ D.
Let µ be a measure which admits all moments and X ∼ µ. Then

Eµ (p(X )) = Eµ (r(X )) =
∑
d∈D

p(d) Eµ (ld(X ))

for all p s.t. Eµ (p(X )− r(X )) = 0
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Hermite case

Let µ be the standard Gaussian distribution over the real and let Hi

(i = 0, 1, . . .) be the Hermite polynomials. Let D = {x : Hn(x) = 0}.
Then

p(x) = q(x)Hn(x) + r(x) with degx r < n

Eµ (p(X )) =
∑

d∈D p(d) Eµ (ld(X )) if and only if cn(q) = 0

where q(x) =
∑+∞

i=0 ci (q)Hi (x).

Let D = {(x1, . . . , xk) : Hni (xi ) = 0 i = 1, . . . , k}. Then

p(x) =
∑k

i=1 qi (x)Hni (xi ) + r(x) with degxi r < ni

Eµ (p(X )) = Eµ (r(X )) if and only if cni (qi (x)) = 0 for i = 1, . . . , k .

Note that the cn are linear combinations of the coefficients of p.
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Generalisations

To a fractions of the zeros of the Hermite polynomials.

To D any set of points, in particular sparse grids.

For Hermite we are finalising macros in cocoa whose indeterminates are
the Hermite polynomials. Generalise them to other classes of polynomials.
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The contingency table of a design Aoki, Takemura ‘06, Rapallo,

Rogantin ‘10

Let D be a fraction of a full factorial design possibly with replicated values

B1 B2 B3

A1 4 1 0
A2 N.A. 2 2

it can be read as a contingency table whose entries are the number of
replicates: nij = fij .

The counting polynomial, a straightforward generalisation of the indicator
function, can be computed to give information on the design structure.

More interestingly, this opens the way to the applicability of Markov bases
in the analysis and design of experiments.
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Markov Bases Diaconis Sturmfels ‘93, Rapallo, Dinwoodie, Kuhnt...

Let D ⊂ Rk be the set of cells of a contingency tables,
T : D −→ Nd \ {0} a function, Ft = {f : D → N :

∑
x f (x)T (x) = t},

the level curve of T at t.

A Markov basis is a set of functions f1, . . . , fm : D −→ Z such that

1
∑

x fi (x)T (x) = 0 for all i = 1, . . . ,m and

2 for f , f ′ ∈ Ft f
′ = f +

∑A
j=1 ej fij with ej = ±1 and f +

∑a
i=1 ej fij ≥ 0,

0 ≤ a ≤ A ≤ m (there is a path from f to f ′ which preserves Ft)

From this construct a stationary Markov chain on Ft with transition matrix

π(f , f + fi ) = 1/(2m) if f + fi ≥ 0
π(f , f − fi ) = 1/(2m) if f − fi ≥ 0

Ex.

[
2 4
3 1

]
+

[
1 −1
−1 1

]
keeps the margin.
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Polynomials and integer valued functions

To x ∈ D associate an indeterminate px .

To the non-negative integer valued function f : D → N associate

pf (x) :=
∏

x∈D p
f (x)
x (2, 4, 3, 1)↔ p2x1p

4
x2p

3
x3p

1
x4

To the integer valued function f : D → Z associate pf
+(x) − pf (x)

(1,−1,−1, 1)↔ px2px3 − px1px4
To the multivalued integer function T : D −→ Nd \ {0} associate the
ring homomorphism

φT : R[D] −→ R[t1, . . . , td ]

1x 7−→ t
T1(x)
1 . . . t

Td (x)
d x1 x2 x3 x4

1 2 3 4
1 3 2 4

↔ (
t1t2, t

2
1 t

3
2 , t

3
1 t

2
2 , t

4
1 t

4
2

)
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Markov bases and toric models

Let IT be the kernel of φT , namely IT = {f ∈ R[D] : φT (f ) = 0}.
Note that ∑

x

f (x)T (x) = 0⇐⇒
(
pf

+(x) − pf
−(x) ∈ IT

)
and that IT is the set of polynomials in the (px , x ∈ D) indeterminates
that vanish on the set of monomials {tT (x) : x ∈ D}.
{f1, . . . , fm} is a Markov basis ⇐⇒

〈
pf

+
i (x) − pf

−
i (x) : i = 1, . . . ,m

〉
= IT

From this algebraic MCMC and exact test for contingency tables, model
selection, p-value computation for sparse data, ...

Note that IT is a toric ideal, i.e. generated by binomials.
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Algebraic statistical models

If a family of probability distributions on a measurable space can be
described through equalities (and inequalities) of (ratios of) polynomials,
then it is a (semi)-algebraic statistical model.

Example (two-way tables)

Let ∆ = {P ∈ RI×J :
∑

i,j Pij = 1,Pij ≥ 0} and f1, . . . , fn be polynomials in the

Pij . Then if {P ∈ RI×J : f1((Pij)i,j) = . . . = fn(P) = 0} ∩∆ 6= ∅ it is an
algebraic statistical model.
The independence model is toric and its defining polynomials are

Pi,jPk,h − Pi,hPk,j for 1 ≤ i < k ≤ I ; 1 ≤ j < h ≤ J

Also the independence model is

{P : P = cr t} ∩∆

with c , r probability distributions.
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Mixture of independence models Rapallo, Carlini ‘10

The mixture of k-independence model is

{P : P = α1c1r
t
1 + . . .+ αkck r

t
k} ∩∆

with ci , ri , (α1, . . . , αk) probability distributions, namely cij , rij ≥ 0 and∑
j cij = 1 =

∑
j rij .

That is the model does not contain all matrices of rank ≤ k .

The non-negative rank of an I × J matrix P, denoted with rank+(P) is the
smallest integer k such that there exist non-negative vectors c1, . . . , ck and
r1, . . . , rk and the decomposition P = c1r

t
1 + . . .+ ck r

t
k holds.

There is no algorithm for the computation of the non-negative rank.

On the importance of inequalities see also Settimi, Smith ‘00, Zwiernik ‘10.
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Algebraic independence models for multi-way tables

Let X ,Y ,Z be binary random variables with X ⊥ Y |Z namely

on z = 0 P(X = i ,Y = j |Z = 0) = P(X = i |Z = 0)P(Y = j |Z = 0)

on z = 1 P(X = i ,Y = j |Z = 1) = P(X = i |Z = 1)P(Y = j |Z = 1)

Applying the previous result to both conditions and intersecting

Z = 0 X = 0 X = 1

Y = 0 p000 p010
Y = 1 p100 p110

1 2

Z = 1 X = 0 X = 1

Y = 0 p001 p011
Y = 1 p101 p111

3 4

IX⊥Y |Z = 〈p000p110 − p010p100, p001p111 − p011p101〉

MX⊥Y |Z = {P ∈ R23 : p000p110− p010p100 = 0 = p001p111− p011p101} ∩∆



Do the distributions in MX⊥Y |Z satisfy the condition

P(Y = Z = 0|X = 0)

P(Y = Z = 1|X = 0)
=

P(Y = Z = 0|X = 1)

P(Y = Z = 1|X = 1)
?

(Almost) equivalently does the minor “14” belong to the model?

(5)

(6)

(1)

(2)

(3)

(4)

with PolynomialIdeals ;
!,O, Add, Contract, EliminationIdeal, EquidimensionalDecomposition, Generators,

HilbertDimension, IdealContainment, IdealInfo, IdealMembership, Intersect, IsMaximal,
IsPrimary, IsPrime, IsProper, IsRadical, IsZeroDimensional, MaximalIndependentSet,
Multiply, NumberOfSolutions, Operators, PolynomialIdeal, PrimaryDecomposition,
PrimeDecomposition, Quotient, Radical, RadicalMembership, Saturate, Simplify,
UnivariatePolynomial, VanishingIdeal, ZeroDimensionalDecomposition, in, subset

T1d p000$p110 K p010$p100, p001$p111 K p011$p101;
p000 p110Kp010 p100, p001 p111Kp011 p101

Md T1 ;
p000 p110Kp010 p100, p001 p111Kp011 p101

T2d p000$p111Kp100$p011;
p000 p111Kp100 p011

IdealMembership T2, M ;
false

IdealMembership p000$p110 K p010$p100, M ;
true
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How many distributions satisfy the model?
We started with 8 parameters. How many free parameters are there?
X ⊥ Y |Z and X ⊥ Z |Y

with PolynomialIdeals :
T1 d p000$p110 Kp010$p100, p001p111 Kp011$p101 :
T2 d p000$p101Kp100$p001, p010$p111Kp110$p011 :
Md T1, T2 :
IsProper M ;       # M is not the saturated model nor the empty model

true
IsZeroDimensional M ;      # M is not a finite set

false
NumberOfSolutions M ;

N
MaximalIndependentSet M ;

p001p111, p110, p010, p100, p011
HilbertDimension M ;

5

This suggests a non-standard set of 5 parameters.
Now M should still be intersected with the simplex.
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On the many parametrizations Pistone, Wynn, Kobayashi, Smith,

Zwiernik ...

On a finite set D ⊂ Nk \ {0} consider an exponential model

p(x ;ψ) = exp(ψ0000 + ψ0100x2 + ψ0001x4)
exp(ψ1000x1 + ψ1100x1x2 + ψ1001x1x4) exp(ψ0010x3 + ψ0110x2x3 + ψ0011x3x4)

raw probabilities (p(d), d ∈ D) ∈ ∆

vector space representation

{
pθ = θ0000 +

∑
α∈L0 θαx

α

θ0000 = 1−
∑

α∈L0 θαmα

where mα = E0(Xα)

(toric)

{
p(x ;ψ) = exp

(∑
α∈M ψαx

α
)

=
∏

α∈M exp (ψαx
α)

= ζ0
∏

α∈M0
ζx

α

α = p(x ; ζ)

where ζα = exp(ψα)

Use elimination theory to change parametrization

ζ ↔ p ↔ θ

For example, elimination of ζ from the p-ζ equations gets an implicit representation of
the model, which for graphical model consists of a set of binomials.
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From H.P. Wynn’s talk at Wogas 2

x : control (or input) variables
θ: a basic parameter vector
η: a parameter vector that may be considered as depending on x (e.g. a
mean).

An algebraic statistical model is a statement that (x , θ, η) lie on an affine
algebraic variety:

h(x , θ, η) = 0,

together with a statement that the joint distribution of outputs Y1, ...Yn

depends on
θ, (xi , ηi ), i = 1, . . . , n

Regression: if η is a mean η = f (x , θ) and f is a polynomial, then
η − f (x , θ) = 0. Eliminate θ to get an implicit description of the
relation between x and η.
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Variance components: if Σij = Cov(Yi ,Yj) then (Σ−1)ij = 0 implies
algebraic conditions on the entries of Σ.

Gaussian independence models (Drton et al ‘08, Massa in progress).

For X ∼ Nk(0,Σ) the condition X3 ⊥ X2|X1 corresponds to
σ11σ23 − σ12σ13 = 0 together with Σ being semi-definite positive
which is a semi-algebraic condition.

As in the discrete case some operations with models can be
performed by manipulating the model ideals.
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