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Betti numbers and designs of experiments

Algebraic techniques in experimental designs were pioneered by Pistone
and Wynn (1996). Recently, the models identified with those techniques
have been observed to be of a low average degree. In other words, the
hierarchical monomials forming the model are those that, while still
being linearly independent (moduli design ideal), are of low weighted
degree. An interesting characterization of the complexity of such models
is given by the number of generators of the leading term ideal, i.e. the
generator set of those monomials not in the model. This number is
computed by the Betti numbers associated to the ideal of leading terms.

I will present some examples related to generic designs which highlight
that, most of the models are simultaneously of minimal aberration and
have maximal Betti numbers. Some further extensions to designs which
are fractions of factorial designs will be discussed.
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1. The algebraic approach to identifiability
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The algebraic approach

Identifications of models from a given design can be achieved by
computational commutative algebra techniques (Pistone and Wynn,
1996), with the design D considered as an algebraic variety (i.e. a
solution of a system of polynomial equations).

•Models are identified

• Confounding relations between factors are generalized

This approach has been worked in the context of industrial
experimentation (Halliday et al., 1996), mixture designs (Maruri et al.,
2006).

The collection of algebraic models (Caboara et al., 1997) has been
identified to be of low average degree (Bernstein et al., 2010). This is a
characterisation of the centroid of the model. Recent work characterises
instead the border of the model (Maruri et al., 2010).
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Rings, polynomial division (Cox et al., 1996)

• R[x] = R[x1, . . . , xd] the polynomial ring.

• The ideal generated by a finite set of points D ⊂ R
d is

I(D) = {f ∈ R[x] : f (x) = 0, x ∈ D} ⊂ R[x].

• A term order τ is a total ordering in monomials in
T d = {xα : α ∈ Z

d
≥0}, compatible with monomial simplification: i)

xα � 1, α 6= 0, ii) xα � xβ ⇒ xα+γ � xβ+γ for xα, xβ, xγ ∈ T d.

• A Gröbner basis Gτ is a finite subset of I(D) such that
〈LT(g) : g ∈ Gτ〉 = 〈LT(f ) : f ∈ I(D)〉.

• For any f ∈ R[x], unique remainder r in division of f by I(D)

f =
∑

g∈Gτ

gh + r (1)

.
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Quotient rings (Cox et al., 1996)

• R[D] is the collection of polynomial functions φ : D 7→ R.

• The elements of R[D] are in one to one correspondence with
equivalence classes of polynomials modulo I(D) and we have an
isomorphism R[D] ∼ R[x]/I(D).

• A basis for R[x]/I(D) is given by those monomials that cannot be
divided by any of LT(g) for g ∈ Gτ .

• The reminder in Eq. (1) is known as the normal form of f (modulo
I(D)), i.e. NF(f ) = r.
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Generalised confounding (Pistone and Wynn, 1996)

• Design D, n points, d factors.

• Study the D through the design ideal I(D) ⊂ R[x].

• The support for a model is given by those monomials not divisible by
the leading terms of the RGröbner basis Gτ ⊂ I(D).

Design D
x1

x2

ut

ut
ut

term order τ : x1 � x2
Model = {1, x1, x2, x1x2, x22}

Gτ = {x21 + 2x1x2 + x22 − x1 − x2, x
3
2 − x2, x1x

2
2 − x1x2 − x22 + x2}

• Exact polynomial interpolator = saturated regression model.

• Hierarchical polynomial model: staircases.
• Link with aliasing/confounding f (x) = g(x), x ∈ D.
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Examples

• Factorial design 2d with levels ±1. For any term ordering, its design
ideal I(D) has Gröbner basis Gτ = {x2i − 1, i = 1, . . . , d} and
identifies the model {1, x1} × · · · × {1, xd}

• Indicator function blends naturally to create the ideal of a design
fraction, e.g. the indicator (x1 − x2)(x2 − x3) removes the
treatments ±(1,−1, 1) from the 23 design. The fraction F has six
runs and for the standard term order in CoCoA, the model identified is
{1, x1, x2, x3, x1x3, x2x3}.

• Confounding by normal form: NF(x1x2x3) = x1 − x2 + x3.

• Technique applicable to any design whose points have continuous
factors: LH, RSM, optimal. Adaptable to other structures: block,
row-column, . . .

. . . linear independence with a term order, but much more!
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A column selection algorithm (Babson et al., 2003)

• Compute the design model matrix for the set of terms V d
n .

• Using a term ordering �w, order the columns of the matrix.

• Pick the first n columns which form a linearly independent set.

1 x1 x2 x21 x1x2 x22 x31 · · ·
1 0 0 0 0 0 0
1 1 0 1 0 0 1
1 0 1 0 0 1 0
1 1 −1 1 −1 1 1
1 −1 1 1 −1 1 −1

b b b b

b b

b

b

bcbc

bcbcbc

bc bc

bc

bcbc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

V d
n := {x ∈ Z

d
≥0 :

∏d
i=1(xi + 1) ≤ n}

V 2
4

Z
2
≥0

By row elimination, the methodology retrieves Gw for I(D).

It is a variation of the FGLM algorithm for change of basis Faugere et al.
(1993).
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2. The fan of a design

• As we scan over all possible term orders, we obtain the algebraic fan
of D, see (Caboara et al., 1997 and Maruri, 2007).

• Not all identifiable hierarchical models belong to the algebraic fan, i.e.
∅ ⊂ A ⊆ S ⊆ Cd,n.

D
x1

x2

A = { , }, S \ A = { }

• The models in A correspond to the vertexes of the state polyhedron
S(I), e.g. we add up the exponent vectors for
L = {1, x1, x2, x1x2, x22}, ᾱL =

∑
Lα = (2, 4).

(2, 4)

(4, 2)
(3, 3)

S(I) = conv(ᾱL : L ∈ A) + R
d
≥0
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3. Linear aberration
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Linear aberration of model L

• Taking the motivation from the concept of aberration, we want to fill
out lower degrees before higher:

A(w,L) =
1

n

∑
wiᾱLi

wi ≥ 0,
∑

wi = 1.

Theo. There exists w such that A(w,L) is minimised by an algebraic
model.

Proof. Use LP arguments for the lower boundary of S(I).

• Generic designs minimise A(w,L) over Cd,n and all vectors w.

• For generic designs, algebraic models are corner cut models [??]

Corner cut model {1, x1, x2, x1x2} is not corner cut
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Linear aberration and algebraic models

• The state polytope summarises information about linear aberration,
i.e. its vertexes correspond to models that minimise A(w,L) over the
set of identifiable hierarchical models S.

• The vertexes of S(I) correspond to algebraic models A.

• The (minimum) aberration of designs can be compared through their
state polytopes.

• However, there may be non-algebraic models on the lower boundary
(and thus minimising A(w,L) for some w) or in the interior of S(I).
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Example aberration 1

Central composite design (CCD, Box, 1957) with d = 2, n = 9 and axial
distance =

√
2

CCD

x1

x2

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

b

b

S(I)

S(I) for generic design

(13, 5)

Algebraic ={1, x1, x21, x31, x41, x2, x1x2, x21x2, x22} and its conjugate
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Example aberration 2

Consider D = {(0, 0), (1, 1), (2, 2)(3, 4), (5, 7), (11, 13), (α, β)}, with
(α, β) ≈ (1.82997, 1.82448) (Onn, 1999)

D
x1

x2

b

b

b

b

b

b

b

b

b

b

bc

bc

S(I)

Generic design

⇒ The set of algebraic models can be larger in size than the set of
corner cut models. However, corner cut models are always of lowest
possible degree over all vectors c 6= 0.
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Minimal aberration (Bernstein et al. (2010) [??,??])

L a model support, w > 0 vector of weights,
∑

wi = 1

Compute the aberration: A(w,L) = 1
n

∑
wiᾱLi
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Minimal aberration II (Bernstein et al. (2010) [??,??])

For fixed w, define
A∗ = min

L∈L
A(w,L).

This value is achieved for algebraic models in a generic design.
Theorem. In a generic design, minimal aberration A∗ obbeys the
following bounds:

A+ − 1 ≤ A∗ ≤ A+ + 1

with A+ = (nd!)
1
d d
d+1g(w) and g(w) = n

√
w1 · · ·wd

BB
Proof.
Define equivalent simplex S(w) (

∫
S = n) and lower and upper cells Q

and Q̄.
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1 2

1

2

3

0

w

S(w)
v1

v2

Aberration over S is E(wTX) with X ∼ U(S). The bounds follow
from the following inequalities:

A(w, S(w)) ≤ A(w,Q) ≤ A(w, S(w)) ≤ A(w,Q),

and noting that A(w, S(w)) = A(w, S(w))− 1. We denote A+ for
A(w, S(w)).
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Example: minimal aberration d = 2
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n = 4 n = 20 n = 100

The graphs include A∗, A+ and A+ ± 1 of Theorem; also approximate
Ã is shown.
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4. The border of the model

For a polynomial ideal I, the ideal of leading terms LT (I) is the
monomial ideal generated by the leading terms of polynomials in I. In
what remains of the talk, I denotes a monomial ideal.

The Hilbert function HR/I counts the number of monomials not in I,

for each degree. E.g. for I =< x3, y2 > we have HR/I = 1, 2, 2, 1.

The generating function for those terms is the multigraded Hilbert series

HSR/I . In the current example HSR/I = 1 + x + y + x2 + xy + x2y.

We can however compute the Hilbert function and the Hilbert series for
terms in I, and we have the following equality for HS:

∑

α≥0

xα =
∑

α∈I
xα +

∑

α/∈I
xα

1
∏d

i=1(1− xi)
= HSI +HSR/I
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The table of Betti numbers describes the composition of (numerators
of) sums, i.e. entry (i, j) contains number of terms of degree i + j.
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1
(1−x)(1−y)

= y2+x3−x3y2

(1−x)(1−y)
+ (1 + x + y + x2 + xy + x2y)

0

----------

0: 1

----------

Tot: 1

0 1

---------------

2: 1 -

3: 1 -

4: - 1

---------------

Tot: 2 1

0 1 2

--------------------

0: 1 - -

1: - 1 -

2: - 1 -

3: - - 1

--------------------

Tot: 1 2 1
1

(1−s)2
= s2+s3−s5

(1−s)2
+ (1 + 2s + 2s2 + s3)
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CoCoA code for computing Hilbert function H , Hilbert series HS and
Betti table.

Use T::=Q[x,y];

I:=Ideal(x^3,y^2);

I;

Hilbert(T/I);

HilbertSeries(T/I);

BettiDiagram(I);

BettiDiagram(T/I);
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---------------

2: 1 -
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4: 1 1
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Tot: 3 2

b

b

b

b

b

b

0 1

---------------

3: 4 3

---------------

Tot: 4 3
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We can only compare tables of Betti numbers for ideals that have the
same Hilbert function. In such case, the following theorem guarantees
existence of an ideal (called lex segment ideal) that attains maximal
Betti numbers.

Theorem[Bigatti-Hulett] Let I ⊆ R and L be the lex ideal such that
HR/I = HR/L. Then βi,j(R/L) ≥ βi,j(R/I) for all i, j.

We want to describe the (borders of) models in the algebraic fan of a
design, and we first study generic designs. For generic designs, the
models in the algebraic fan are corner cuts.

In two dimensions, the relation between ideals generated by corner cuts
staircases and lex-segment ideals is one-to-one. In other words, the
models in the algebraic fan are precisely those that maximise Betti
numbers (Maruri et al., 2011).

For more than two dimensions, the relationship between lex-segment
ideals and ideals which are the complement of corner cut staircases and
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is not necessarily one-to-one. For some cases, the ideal of a corner cut
model may attain maximal Betti number despite not being a lex-segment
ideal, while in other cases it may not attain maximal Betti numbers.

Example. Generic design n = 7, d = 3. Fan with 36 models, of which 3
are not lex segment, yet they still attain maximal Betti numbers.

bc

bc
bc

b
b
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b
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b

b

b

b

b

b

b

b

b

b

b

b

b

State polytope Fan (dual of SP)
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We give some (neccesary) conditions for identification of corner cut
models whose ideals are lex segment ideals. The construction builds a
trajectory w = (C − γd−1, C − γd−2, . . . , C − 1) in the dual of the
state polytope. The initial and final points of the trajectory are
lex-segment ideals.

b

b

b

Trajectory (γ = 4) and the normal fan of the corner cut polytope,
d = 3, n = 12.
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5. Betti numbers, the squarefree case

Design whose points are fractions of factorial design with two levels 2d

have important role in experimentation.

Fractions can be selected to satisfy orthogonality conditions and thus
not only economy of runs is achieved, but also independent estimation.

Models are (hierarchical) squarefreemodels and thus they can be seen as
simplicial complexes.

For a simplicial complex (model) ∆, we construct the Stanley Reisner

ideal I∆, which will be used to analyze the complexity of the border of
∆. Those ideals will be compared against (square free) lex segment
ideals.
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5. Betti numbers: An example with Plackett-Burman designs

• Small fractions of 2d with d factors and n = d + 1 runs.

• Designs constructed by circular shifts of a generator, available for
d = 7, 11, 15, 19, 23, . . .

• PB designs possess a complicated aliasing table, but they have an
orthogonal design-model matrix for the linear model with all factors

E(y) = β0 +
d∑

i=1

βixi (2)

• PB designs are a popular choice for screening in a first stage of
experimentation.

We study their algebraic fan and describe the structure of models with
the aid of Betti numbers.
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PB8

Consider a Plackett-Burman (PB8) design with eight runs, seven factors
a, b, c, d, e, f, g and generator +−−+− + +.

a b c d e f g
1 -1 -1 1 -1 1 1
1 1 -1 -1 1 -1 1
1 1 1 -1 -1 1 -1
-1 1 1 1 -1 -1 1
1 -1 1 1 1 -1 -1
-1 1 -1 1 1 1 -1
-1 -1 1 -1 1 1 1
-1 -1 -1 -1 -1 -1 -1
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PB8 (cont.)

The design PB8 has 218 models in its fan, which are summarized in
Table 2, where representatives of six equivalence classes (up to
permutation of factors) are shown.

≺2 (DegRevLex) ≺3 (Lex)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

1 + 5s+ 2s2 (84) 1 + 7s (1) 1 + 3s+ 3s2 + s3 (28)

≺1 (Block)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1 + 6s + s2 (21) (56) 1 + 4s+ 3s2 (28)

Table 2: Equivalence classes of models ∆ and corresponding Hilbert Series for PB8.
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PB8: Comparing models

Betti table Model

0 1 2 3 4 5 6 7

---------------------------------------------

0: 1 3 3 1 - - - -

1: - 7 29 48 40 17 3 -

2: - - 6 26 45 39 17 3

---------------------------------------------

Tot: 1 10 38 75 85 56 20 3

-------------------------------

b

b

b

b

0 1 2 3 4 5 6 7

---------------------------------------------

0: 1 3 3 1 - - - -

1: - 7 30 52 47 24 7 1

2: - 1 10 33 52 43 18 3

---------------------------------------------

Tot: 1 11 43 86 99 67 25 4

-------------------------------

b

b

b

b

Disconnected model ≺2 DegRevLex:

0 1 2 3 4 5 6

----------------------------------------

0: 1 - - - - - -

1: - 21 70 105 84 35 6

----------------------------------------

Tot: 1 21 70 105 84 35 6

-------------------------------

b

b

b

b

b

b

b
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PB12

This design has 12 runs in 11 factors and generator
+ +− + + +−−− +−.

The algebraic fan of PB12 is very complex, showing a rich variety of
simplicial models.

Despite its enormous size (around 3× 105), models have been classified
in nineteen classes (up to permutations of variables), which in turn share
only ten distinct Hilbert Series.
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PB12 (cont.)
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6. Final comments

Betti numbers provide a description of the model border. Maximal Betti
numbers are related to models of low degree (low aberration). However,
differently to aberration, we can only compare models (ideals) that have
the same Hilbert function.

For generic designs, we found that corner cut models fall into three
cases:

a) when they are lex segment and thus they have maximal Betti
numbers,

b) they are not lex segment yet they still have maximal Betti,

c) they are not lex segment nor with maximal Betti.

For fractions of 2d, we have only found classes a) and c). Work in
progress...
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