
The geometry of model space

An underlying objective for many of us working with information geometry is under-
standing what geometric space is most appropriate for embedding statistical models in
and, in particular, to think what the ‘local neighbourhood’ of a model is. One important
motivation for this question include building a framework in which sensitivity analysis of
modelling assumptions can be undertaken and finding the limits to knowledge of the sta-
tistical method. For example a important set of ideas on the geometry of model sensitivity
which raises important questions on the way that inference is done in practice is found in
[6], [5], [16], and [7].

While the information geometric properties of regular parametric families of distribu-
tions are well understood it has been surprisingly difficult to extend this concept to the
‘space of all distributions’, see for example [1], [21], [11], [20], [2], [4], [10], [13], [14] and
[12]. Key assumptions in all these approaches are that all distributions have a common
support and that a manifold structure is appropriate.

One very general proposal for finding this general space proposes that simplicial struc-
tures are, by their nature, more appropriate than manifold based ones. Specifically, they
are considerably more tractable while automatically accommodating distributions with dif-
ferent supports. The hierarchical structure of a simplicial complex [15] is determined by
the support and moment structure of the set of distributions. Furthermore, they arise
naturally under suitable discretisation of the sample space. While this is clearly not the
most general case (an obvious equivalence relation being thereby induced), it does provide
an excellent foundation on which to construct a theory of computational information ge-
ometry. Indeed, in many practical applications, it can be argued (see, for example, [22] )
that, since continuous data can only be measured to finite accuracy, this discretisation is
sufficient for a complete analysis.

Another approach to looking at models which are close to, say exponential families and
the related exponential dispersion models, is through mixing and in particular local mixing,
see [17], [18] and [3]. The resulting highly interpretable and flexible models have enough
structure to retain the attractive inferential properties of exponential families. In particular
results on identification, parameter orthogonality and log-concavity of the likelihood can
be proved. Of interest are the differences between mixing with small exponential dispersion
families and more general mixtures. There are strong links with Amari’s −1-fibre bundles
and their associated geometry.
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It will be of interest to explore a related theme on model selection through ideas of
sparsity, [23], [19], [8] and [9]. A good deal of the foundation of the power of the idea
of sparsity has an underlying geometric basis, where the geometry is typically based on
l1-norms and on ideas of convexity rather than the typically l2 Riemannian geometry of
information geometry. One aim of this session is to explore the relationships between the
geometry of sparsity, convex geometry of mixtures and information geometry.
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