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Overview

1. Graphical Gaussian Models with Symmetries  

2. Need for Model Selection Methods Motivates Five Questions 

3. Examples
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Graphical Gaussian Models

• Concerned with the distribution of a multivariate Gaussian random vector

• Encode the independence structure in terms of edges in an undirected graph

G=(V,E): vertices V = model variables, edges E defined by relation:
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Graphical Gaussian Models

• Concerned with the distribution of a multivariate Gaussian random vector

• Encode the independence structure in terms of edges in an undirected graph

G=(V,E): vertices V = model variables, edges E defined by relation:

• If |V|=p, then there are up to |V|+|E| = p(p+1)/2 parameters in the model 
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• If |V|=p, then there are up to |V|+|E| = p(p+1)/2 parameters in the model 

(for mean = 0)

• Parsimony in number of parameters can be achieved through

o ... sparsity in graph 

o ... symmetry constraints on model parameters



Graphical Gaussian Models with Symmetries

• Højsgaard and Lauritzen (2008):

o RCON models: equality constraints on concentrations

o RCOR models: equality constraints on partial correlations
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Graphical Gaussian Models with Symmetries

• Højsgaard and Lauritzen (2008):

o RCON models: equality constraints on concentrations

o RCOR models: equality constraints on partial correlations
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• Højsgaard and Lauritzen (2008):

o RCON models: equality constraints on concentrations

o RCOR models: equality constraints on partial correlations

Graphical Gaussian Models with Symmetries
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• Højsgaard and Lauritzen (2008):

o RCON models: equality constraints on concentrations

� Place linear constraints on natural parameter K of exponential family

� Linear exponential families            MLE unique whenever it exists  

o RCOR models: equality constraints on partial correlations

Graphical Gaussian Models with Symmetries

⇒
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o RCOR models: equality constraints on partial correlations

� Constrains not necessarily linear in natural parameter K

� Curved exponential families            MLE not necessarily unique

� Scale-invariance within vertex colour classes

o MLE computation algorithms described in Højsgaard and Lauritzen (2008).

⇒



In order to make RCON and RCOR models widely applicable, model selection

methods are required:

Q1: What is the structure of the set of RCON and RCOR models for a given V?

Q2: Can we design efficient model selection algorithms for RCON/RCOR models?

Q3: Are there statistically interesting model sub-classes?

Graphical Gaussian Models with Symmetries
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Q3: Are there statistically interesting model sub-classes?

Q4: If so, what is their structure? 

Q5: Are they (better) suited for model selection?

RCON: symmetries in concentrations RCOR: symmetries in partial correlations



Q1: What is the structure of the set of RCON and RCOR models for a given V?

• Graphical representation: coloured graph = uncoloured graph + colouring

o Obtain larger model through ...

� ... larger uncoloured graph (fewer 0’s in K)

� ... finer colouring (fewer symmetries) 

o Can go from any model to any model:

Q1: Structure of RCON and RCOR Models
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o Can go from any model to any model:

� Moving up: add edge colour classes + split colour classes

� Moving down: drop edge colour classes + merge colour classes

RCON: symmetries in concentrations RCOR: symmetries in partial correlations
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o Can go from any model to any model:

� Moving up: add edge colour classes + split colour classes

� Moving down: drop edge colour classes + merge colour classes

o Examining the graphical representation a bit closer: complete lattices!

� Any two models have a unique supremum and infimum.

� Smallest model = empty graph, all vertices same colour

� Largest model = complete uncoloured graph

RCON: symmetries in concentrations RCOR: symmetries in partial correlations



Q2: Can we design efficient model selection algorithms for RCON/RCOR models?

• Stepwise search theoretically possible however very large search space: 

2|V| uncoloured models on V, colouring enlarges model space considerably!

• Edwards-Havránek model selection procedure for lattices:

o Whenever a model is accepted, all supermodels accepted.

o Whenever a model is rejected, all submodels rejected.

Q2: Model Selection in RCON and RCOR Models

Helene Gehrmann, 05 April 2011

o Whenever a model is rejected, all submodels rejected.

o Returns minimally accepted models.

• Possible .... but: 

o Model space still large.

o Models not always intuitively interpretable: properties of found model(s)?

RCON: symmetries in concentrations RCOR: symmetries in partial correlations



Q3: Are there Statistically interesting model sub-classes?

Q3: Interesting Model Sub-Classes
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RCON: symmetries in concentrations RCOR: symmetries in partial correlations



Q3: Are there Statistically interesting model sub-classes? YES!

They can be

identified by

their colouring:
PS

RVR ER

Coloured graphs with vertex set V

Q3: Interesting Model Sub-Classes
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(H&L, 2008;

G&L, 2011)

RCON: symmetries in concentrations RCOR: symmetries in partial correlations

Vertex regularity: 

estimability of mean

Regularity: vertex & 

edge regularity

Permutation symmetry: 

simplified MLE 

computation

Edge regularity: linear 

exponential families, 

scale-invariant 

(RCON = RCOR)



Q4: If so, what is their structure? 

Q4 & Q5: Structure of Model Sub-Classes
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Q4: If so, what is their structure? 

• Each of ER, PG, VR and R is a complete lattice.

o Any two models which lie in ER/PG/VR/R, they have unique infimum & 

supremum in the same model class. (non-trivial!)

o Gehrmann (2011)

Q4 & Q5: Structure of Model Sub-Classes
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Q4: If so, what is their structure? 

• Each of ER, PG, VR and R is a complete lattice.

o Any two models which lie in ER/PG/VR/R, they have unique infimum & 

supremum in the same model class. (non-trivial!)

o Gehrmann (2011)

Q5: Are they (better) suited for model selection? YES!

Q4 & Q5: Structure of Model Sub-Classes
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Q5: Are they (better) suited for model selection? YES!

• Each model class qualifies for an Edwards-Havránek model search.

o Faster than search in RCON/RCOR models.

o Found model(s) guaranteed to have desirable properties.

o Optionally: subsequent local search within RCON/RCOR models.

RCON: symmetries in concentrations RCOR: symmetries in partial correlations



• Data: Examination marks of 88 students in 5 mathematical subjects (Mardia

et al. 1979)

• Whittaker (1990) and Edwards (2000) :

Example: Edge Regular Search

Algebra

Mechanics Statistics

AnalysisVectors
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• Højsgaard and Lauritzen (2008),

RCON model:

RCON: symmetries in concentrations RCOR: symmetries in partial correlations
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• Højsgaard and Lauritzen (2008) :

• Edwards-Havránek search, starting at saturated model, after 232 models:

Example: Edge Regular Search
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BIC 2587.404
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• Data: Head dimensions of 25 pairs of 1st and 2nd sons, Frets (1921)

• Whittaker (1990):

Example: Permutation Generated Search

L2

B2B1

L1
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• Højsgaard and Lauritzen (2008), 

RCOP model (permutation of sons): 
L2
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• Højsgaard and Lauritzen (2008) :

• Edward-Havránek search, starting at saturated model, after 57 models:

Example: Permutation Generated Search

L2
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Summary

• Model selection in RCON and RCOR models can be performed by reducing 

search to lattices of models represented by regular colourings.

• These are first model selection procedures for GGMs with symmetries.

• Examples suggest that search may be feasible in general.

• Next step: full implementation and performance analysis.
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• Next step: full implementation and performance analysis.



Thank you!
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Thank you!
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