Geometry of Local Mixture Models

Vahed Maroufy _{joint work with} Marriott, P and Small, C. G

Department of Statistics and Actuarial Science University of Waterloo

April 6th, 2011 Warwick University

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline

Introduction

- ② Geometry and properties
- Local mixtures of exponential family
- Inference on Local mixture models
- Summary

A 10

Definition Examples Modeling Small Mixing

Definition

• A continuous mixture models

$$f_M(x) = \int f(x;\theta) \, dQ(\theta)$$

is called local mixture model if Q is a mixing distribution with "small" variation.

• For instance, $f(x; \theta) = \phi(x; \theta, 1)$ and $\theta \sim N(\theta_0, \epsilon)$

Definition Examples Modeling Small Mixing

Measurement Error Model

Consider a simple linear regression of Y against ρ

$$Y = \alpha + \beta \rho + \epsilon, \quad X = \rho + \eta$$

1- $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ 2- $\eta \sim Q$ is independent of ho and ϵ

$$f_{\mathcal{M}}(x,y) = \int f(y|\rho,\eta,x,\sigma^2) f_1(x|\eta) \, dQ(\eta)$$
$$= \int \tilde{f}(x,y|\eta) \, dQ(\eta)$$

Introduction to Local Mixture Models

Geometry and Properties Local Mixtures of Exponential Family Inference on Local Mixture Models Definition Examples Modeling Small Mixing

Small Mixing

How hard is to model small mixing?

- $\mathcal{N}(0,1)$
- 5 components, $\mu = 0$, $\sigma_1^2 = 1.116$
- 4 components, $\mu = 0$, $\sigma_2^2 = 1.106$
- 3 components, $\mu = 0$, $\sigma_3^2 = 1.150$

Image: A math a math

э

Laplace Expansion Identifiability and Parameter Interpretation True Local Mixture Models

(日) (同) (日) (日)

Laplace expansion

Under the assumption required for Laplace expansion

(Marriott (2002) and Anaya-Izquierdo & Marriott (2007)),

$$f_M(x; Q) = f(x; \theta_0) + \sum_{j=1}^k \lambda_j f^{(j)}(x; \theta_0) + R(x; \theta_0, \epsilon)$$

where

- *f*^(j) = ∂^j f/∂θ^j
 and Q is postulated to be a dispersion model with shape and
 dispersion parameters (θ₀, ε).
- $\lambda_j := \lambda_j(\theta_0, \epsilon)$, and $R = O(\epsilon^{\lfloor \frac{k+1}{2} \rfloor})$.
- if $f(x; \theta)$ and $f^{(j)}(x; \theta)$ are bounded, the approximation is uniform in x.

Laplace Expansion Identifiability and Parameter Interpretation True Local Mixture Models

Image: A image: A

Recap: Affine Space and Convex Hull

• Space $\langle \mathcal{X}, \mathcal{V}, + \rangle$ is called affine space if

$$\mathcal{X} = \left\{ f(x) | f \in L^2(\nu), \int f(x) \, d\nu = 1 \right\}$$

and

$$\mathcal{V} = \left\{ f(x) | f \in L^2(\nu), \int f(x) \, d\nu = 0 \right\}$$

• **Convex hull** of a set of points is the smallest convex set containing all the points.

Laplace Expansion Identifiability and Parameter Interpretation True Local Mixture Models

Affine Property and Identifiability

• Family of local mixture models is an **affine space** (under some regularity conditions)

$$g_1(x;\theta_0,\lambda) = f(x;\theta_0) + \sum_{j=1}^k \lambda_j f^{(j)}(x;\theta_0), \quad \lambda \in \Lambda(\theta_0)$$
(1)

(locally non-identifiable)

$$g_2(x;\theta_0,\lambda) = f(x;\theta_0) + \sum_{j=2}^k \lambda_j f^{(j)}(x;\theta_0), \quad \lambda \in \Lambda(\theta_0)$$
(2)

(identifiable)

- the boundary of $\Lambda(\theta_0)$, called hard boundary, guaranties positivity.
- this models may not behave similar to genuine mixture models.

Laplace Expansion Identifiability and Parameter Interpretation True Local Mixture Models

True LMM

local mixture $g(x; \theta_0, \lambda)$, of order k, is called "**true**" local mixture models if it can locally mimic the behavior of an actual mixture model.

That is; iff there is a Q such that, $g(x; \theta_0, \lambda)$ and

$$\int f(x;\theta)\,dQ(\theta)$$

share the same k first moments.

Properties Frailty Models

Anaya and Marriott (2007)

Let $g(x; \mu, \lambda)$, be an order k LMM of natural exponential family with $\mu = E(X)$

- g is identifiable in all parameters and the parametrization (μ, λ) is orthogonal at λ = 0
- g is "true" LMM if $(\mu_g^1, \cdots, \mu_g^k) \in Co(\{(\mu_f^1, \cdots, \mu_f^k), \mu \in M\})$
- The log likelihood function of g is a concave function of λ at a fixed μ_0

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶

• $\Lambda(\mu)$, the hard boundary, is convex or empty.

Properties Frailty Models

Example (frailty models)

• In survival analyses for some cancer clinical trials **mixture cure models** are used rather than traditional survival models.

 $S_{
m pop}(t)=(1-\pi)+\pi\,S_0(t),$ Berkson and Gage (1952)

- π is an uncured rate and $S_0(t)$ is a survival function of the latency distribution.
- This model with a frailty term in latency components

 $S_{
m pop}(t)=(1-\pi)+\pi\,L_
u(H_0(t)),$ Price and Manatunga (2001)

イロト 人間ト イヨト イヨト

where, $L_{\nu}(s) = \int e^{s\nu} dF(\nu)$, $V \sim F(\nu)$ is frailty, and $H_0(t)$ is the baseline cumulative hazard function

Properties Frailty Models

LMM2 and LMM4

Suppose $f(x; \mu)$ is the density of $N(\mu, 1)$ then

$$g_3(x;\mu,\lambda_2) = f(x;\mu) + \lambda_2 f^{(2)}(x;\mu), \quad 0 \le \lambda_2 \le 1$$
 (3)

$$g_4(x;\mu,\lambda_2) = f(x;\mu) + \lambda_2 f^{(2)}(x;\mu) + \lambda_3 f^{(3)}(x;\mu) + \lambda_4 f^{(4)}(x;\mu)$$
(4)

where the hard boundary conditions for g_4 are equivalent with the positivity conditions of a **quartic** polynomial.

The central moments of LMM4 and λ are related through

$$\begin{cases}
\mu_{g_4}^{(2)} = 1 + 2\lambda_2 \\
\mu_{g_4}^{(3)} = 6\lambda_3 \\
\mu_{g_4}^{(4)} = 3 + 12\lambda_2 + 24\lambda_4
\end{cases}$$
(5)

< ロ > < 同 > < 三 > < 三 >

MLE for μ of LMM4 Summary

MLE for μ of LMM4

 $g_4(x;\mu,\lambda_2) = \phi(x;\mu,1) + \lambda_2 \phi^{(2)}(x;\mu,1) + \lambda_3 \phi^{(3)}(x;\mu,1) + \lambda_4 \phi^{(4)}(x;\mu,1)$

$$\begin{cases} a = \lambda_4, b = \frac{\lambda_3}{4} \\ d = -\frac{3\lambda_3}{4}, c = \frac{\lambda_2}{6} - \lambda_4 \\ e = 3\lambda_4 - \lambda_2 + 1 \end{cases}$$

$$\begin{cases} H = ac - b^2 \\ I = ae - 4bd + 3c^2 \\ J = ace + 2bcd - ad^2 - c^3 - eb^2 \end{cases}$$

$$\begin{cases} I > 0 \\ I\sqrt{I} + 3\sqrt{3}J > 0 \\ H + a\sqrt{\frac{I}{12}} > 0 \\ e > 0, a > 0 \end{cases}$$
(6)

(1日) (1日) (1日)

(Barnard, S. and Child, J. M. (1936))

MLE for μ of LMM4 Summary

- 4 同 6 4 日 6 4 日 6

For LMM4 of normal family

The goal is to find some constrained optimization algorithms which exploits the **concavity** of log likelihood function, as a function of $\lambda = (\lambda_2, \lambda_3, \lambda_4)$, and **convexity** of $\Lambda(\mu_0)$.

MLE for μ of LMM4 Summary

17 ▶

MLE for μ of LMM4 Summary

- *t_j*'s are the planes constructing the hard boundaries
- d_j is projected on t_j , which is $P_{t_j}d_j$
- $\lambda^{(k+1)} = \lambda^{(k)} + H_k^{-1} P_t d_k$
- $||P_{t_b^*}d_b^*|| = 0$ is the optimality condition

< 同 → < 目

MLE for μ of LMM4 Summary

・ 同・ ・ ヨ・

Summary

- Introduced local mixture models
- Remarked the nice geometry and fruitful properties
- Taking advantage of the remarkable properties, a gradient based algorithm was introduced for constrained optimization of log likelihood function of LMM4.

MLE for μ of LMM4 Summary

< ロ > < 同 > < 三 > < 三 >

Thank You!