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Definition

A continuous mixture models

fM(x) =

∫
f (x ; θ) dQ(θ)

is called local mixture model if Q is a mixing distribution with
”small” variation.

For instance, f (x ; θ) = φ(x ; θ, 1) and θ ∼ N(θ0, ε)
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Measurement Error Model

Consider a simple linear regression of Y against ρ

Y = α + βρ+ ε, X = ρ+ η

1- ε ∼ N (0, σ2)
2- η ∼ Q is independent of ρ and ε

fM(x , y) =

∫
f (y |ρ, η, x , σ2) f1(x |η) dQ(η)

=

∫
f̃ (x , y |η) dQ(η)
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Small Mixing

How hard is to model small
mixing?
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Laplace expansion

Under the assumption required for Laplace expansion
(Marriott (2002) and Anaya-Izquierdo & Marriott (2007)),

fM(x ;Q) = f (x ; θ0) +
k∑

j=1

λj f
(j)(x ; θ0) + R(x ; θ0, ε)

where

f (j) = ∂j f
∂θj

and Q is postulated to be a dispersion model with shape and
dispersion parameters (θ0, ε).

λj := λj(θ0, ε), and R = O(εb
k+1

2
c).

if f (x ; θ) and f (j)(x ; θ) are bounded, the approximation is uniform in x .
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Recap: Affine Space and Convex Hull

Space 〈X ,V,+〉 is called affine space if

X =

{
f (x)|f ∈ L2(ν),

∫
f (x) dν = 1

}
and

V =

{
f (x)|f ∈ L2(ν),

∫
f (x) dν = 0

}
Convex hull of a set of points is the smallest convex set containing all
the points.
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Affine Property and Identifiability

Family of local mixture models is an affine space (under some regularity
conditions)

g1(x ; θ0, λ) = f (x ; θ0) +
k∑

j=1

λj f
(j)(x ; θ0), λ ∈ Λ(θ0) (1)

(locally non-identifiable)

g2(x ; θ0, λ) = f (x ; θ0) +
k∑

j=2

λj f
(j)(x ; θ0), λ ∈ Λ(θ0) (2)

(identifiable)

the boundary of Λ(θ0), called hard boundary, guaranties positivity.

this models may not behave similar to genuine mixture models.
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True LMM

local mixture g(x ; θ0, λ), of order k, is called ”true” local mixture
models if it can locally mimic the behavior of an actual mixture
model.

That is; iff there is a Q such that, g(x ; θ0, λ) and∫
f (x ; θ) dQ(θ)

share the same k first moments.
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Anaya and Marriott (2007)

Let g(x ;µ, λ), be an order k LMM of natural exponential family
with µ = E (X )

g is identifiable in all parameters and the parametrization (µ, λ) is
orthogonal at λ = 0

g is ”true” LMM if (µ1
g , · · · , µk

g ) ∈ Co (
{

(µ1
f , · · · , µk

f ), µ ∈ M
}

)

The log likelihood function of g is a concave function of λ at a fixed µ0

Λ(µ), the hard boundary, is convex or empty.
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Example (frailty models)

In survival analyses for some cancer clinical trials mixture cure models
are used rather than traditional survival models.

Spop(t) = (1− π) + π S0(t), Berkson and Gage (1952)

π is an uncured rate and S0(t) is a survival function of the latency
distribution.

This model with a frailty term in latency components

Spop(t) = (1− π) + π Lν(H0(t)), Price and Manatunga (2001)

where, Lν(s) =
∫
esν dF (ν), V ∼ F (ν) is frailty, and H0(t) is the

baseline cumulative hazard function
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LMM2 and LMM4

Suppose f (x ;µ) is the density of N(µ, 1) then

g3(x ;µ, λ2) = f (x ;µ) + λ2 f
(2)(x ;µ), 0 ≤ λ2 ≤ 1 (3)

g4(x ;µ, λ2) = f (x ;µ) + λ2 f
(2)(x ;µ) + λ3 f

(3)(x ;µ) + λ4 f
(4)(x ;µ) (4)

where the hard boundary conditions for g4 are equivalent with the positivity
conditions of a quartic polynomial.

The central moments of LMM4 and λ are related through
µ

(2)
g4 = 1 + 2λ2

µ
(3)
g4 = 6λ3

µ
(4)
g4 = 3 + 12λ2 + 24λ4

(5)
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MLE for µ of LMM4

g4(x ;µ, λ2) = φ(x ;µ, 1) + λ2 φ
(2)(x ;µ, 1) + λ3 φ

(3)(x ;µ, 1) + λ4 φ
(4)(x ;µ, 1)


a = λ4, b = λ3

4

d = − 3λ3
4
, c = λ2

6
− λ4

e = 3λ4 − λ2 + 1


H = ac − b2

I = ae − 4bd + 3c2

J = ace + 2bcd − ad2 − c3 − eb2


I > 0

I
√
I + 3

√
3J > 0

H + a
√

I
12
> 0

e > 0, a > 0

(6)

(Barnard, S. and Child, J. M. (1936))
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For LMM4 of normal family

The goal is to find some constrained optimization algorithms which exploits the
concavity of log likelihood function, as a function of λ = (λ2, λ3, λ4), and
convexity of Λ(µ0).
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λ∗ ∈ Λ(µ)

An ordinary gradient algorithm
(Newton-Raphson) is applied

Λ(µ0)
λ∗

λ0

λ(k+1) = λ(k) + H−1
k dk

λ∗ /∈ Λ(µ)

λ∗b is maximum on the boundary

Λ(µ0)

λ∗

λ∗b

λ0

λk
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tj ’s are the planes constructing the
hard boundaries

dj is projected on tj , which is Ptj dj

λ(k+1) = λ(k) + H−1
k Pt dk

||Pt∗
b
d∗b || = 0 is the optimality

condition

Λ(µ0)

λ∗

λ∗b
λk

dk

t∗b...tk+2
tk+1
tk
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Summary

Introduced local mixture models

Remarked the nice geometry and fruitful properties

Taking advantage of the remarkable properties, a gradient
based algorithm was introduced for constrained optimization
of log likelihood function of LMM4.
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Thank You!
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