
MCMC, reversibility, proposals
Geometric ergodicity and drift conditions

Robustness of Manifold MALA

Robustness of Manifold MALA algorithms

Krzysztof Latuszynski
(University of Warwick, UK)

joint work with

Gareth O. Roberts Katarzyna Wolny

WOGAS3, 2011

Krzysztof Latuszynski(University of Warwick, UK) joint work with Gareth O. Roberts, Katarzyna WolnyRobustness of Manifold MALA algorithms



MCMC, reversibility, proposals
Geometric ergodicity and drift conditions

Robustness of Manifold MALA

MCMC, reversibility, proposals

Geometric ergodicity and drift conditions

Robustness of Manifold MALA

Krzysztof Latuszynski(University of Warwick, UK) joint work with Gareth O. Roberts, Katarzyna WolnyRobustness of Manifold MALA algorithms



MCMC, reversibility, proposals
Geometric ergodicity and drift conditions

Robustness of Manifold MALA

MCMC: reversibility
I π the target probability distribution on X

(known up to a normalizing constant)
I MCMC algorithms aim at Monte Carlo sampling from π by designing a

Markov chain P s.t.
πP = π

I they use the reversibility condition (aka detailed balance)

π(x)P(x, y) = π(y)P(y, x) for every x, y ∈ X

to design appropriate P .
I Fact: if π and P satisfy the reversibility condition then πP = π
I the Metropolis-Hastings algorithm takes virtually any transition kernel Q and

adjusts it by accepting moves from Q with probability

α(x, y) = min{1, π(y)q(y, x)

π(x)q(x, y)
}

to enforce reversibility wrt π
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MCMC: proposals form Langevin diffusions
I Since any Q is OK, we can take Q(x, ·) ∼ N(x, σ)
I this yields the basic Random Walk Metropolis
I is it optimal?
I HAHAHA!!!
I can we improve the algorithm by using a better Q ?
I Any choice of σ(x) in

dxt =

(
σ2(xt)

2
∇ log(π(xt)) + σ(xt)∇σ(xt)

)
dt + σ(xt)dB(t),

yields a Langevin diffusion with the correct stationary distribution π.
I For any such diffusion we can use its Euler discretization to produce

proposals.
I For fixed σ(x) = σ one obtains the standard MALA algorithm with

Q(x, ·) ∼ N(x +
σ

2
∇ log(π(x)), σ2)
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Link with Manifold MALA

I It is difficult to find a reasonable σ(x) 6= σ in

dxt =

(
σ2(xt)

2
∇ log(π(xt)) + σ(xt)∇σ(xt)

)
dt + σ(xt)dB(t)

I Girolami and Calderhead [GC11] consider Langevin diffusions evolving on a
manifold rather then on a flat surface.

I abuse of notation: in the Bayesian setting the parameter space X := Θ and

π(x) := π(θ) = prior(θ)l(data|θ)

I The geometry of the manifold is defined by a metric tensor G(θ) of users
choice.
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Link with Manifold MALA continued

I One possibility is to take the observed Fisher information matrix plus the
negative Hessian of the log-prior

G(θ) := − ∂2

∂θ2 log{l(data|θ)} − ∂2

∂θ2 log{prior(θ)}

I This is equivalent to letting

σ2(x) :=

∣∣∣∣[ ∂2

∂x2 log(π(x))
]−1
∣∣∣∣

in dxt =

(
σ2(xt)

2
∇ log(π(xt)) + σ(xt)∇σ(xt)

)
dt + σ(xt)dB(t)

I And use its Euler discretization for proposals.
I Our goal is to systematically investigate the performance of this algorithm on

a variety of target distributions.
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Geometric ergodicity

I Under very mild conditions all these algorithms are ergodic, i.e.

‖Pn(x, ·)− π(·)‖TV → 0 as n→∞

I But how to assess performance of an MCMC algorithm?
I We say that an algorithm P is geometrically ergodic if there exists γ < 1 s.t.

‖Pn(x, ·)− π(·)‖TV ≤ M(x)γn

I Thm: If f : X → R is such that
∫

f 2(x)π(x)dx <∞, and the MCMC algorithm
P is geometrically ergodic and reversible then the CLT holds for estimating∫

f (x)π(x)dx.
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Drift conditions
I Geometric ergodicity is implied by the following Drift Conditions

PV(x) ≤ λV(x) for x /∈ C,

PV(x) ≤ K for x ∈ C,

where V : X → [1,∞) , the constants λ < 1 and K <∞
and C is a small set satisfying for some ε > 0 and a some probability
measure ν

P(x, ·) ≥ εν(·).

I To conclude lack of geometric ergodicity define

αx :=

∫
X
α(x, y)q(x, y)dy

I Now if lim‖x‖→∞ αx = 0,
then the algorithm is not geometrically ergodic.
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Results for benchmark targets

I We establish Drift Conditions for the Manifold MALA for a family of benchmark
target distributions

π(x) ∝ exp{−γ‖x‖β}

I The summary of our results for manifold MALA together with the respective
properties of random walk Metropolis and standard MALA:

I

algorithm 0 < β < 1 β = 1 1 < β < 2 β = 2 2 < β
RWM N Y Y Y Y
MALA N Y Y Y N

MMALA Y Y Y Y

Table 1. Geometric Ergodicity of random walk Metropolis (RWM), MALA [RT96, MT96] and
manifold MALA (MMALA). N = geometric ergodicity fails, Y = geometric ergodicity holds.

I It appears that Manifold MALA outperforms the RWM and the standard MALA
in both convergence rates (empirical experience) and robustness (the above
table)

I Extensions towards more general target distributions are work in progress
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Establishing Drift Conditions for Manifold MALA

I Verifying Drift Conditions is technical, we outline main steps.
I For the drift function we choose

V(x) = ‖x‖

(and use the fact that if PV(x) ≤ λV(x) then also P(V(x) + 1) ≤ λ(V(x) + 1).)
I First prove that the drift condition holds conditionally on accepting the

proposal.
I We then prove that since αx 9 0 the drift condition holds unconditionally.
I The argument uses the fact that the expected value of the Manifold MALA is a

contraction in ‖x‖.
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