Exploiting Geometry to Design MCMC Methods for Nonlinear Dynamic Systems

Julien Cornebise, Mark Girolami Department of Statistics University College London

Workshop on Geometric and Algebraic Statistics 3 Apr 5-7 2011 CRiSM, Warwick, UK

Outline

Nonlinear Dynamic Systems: Why We Need Manifold MCMC

- Specificities of Nonlinear Dynamic Systems
- Expected FIM and Sensitivities
- Toy Example: Exponential Decay
- Systems Biology: JAK-STAT Signaling Pathway

2 Manifold MCMC: a Unifying Framework

- Adaptive Metropolis Hastings
- Limitations and Link with Manifold MCMC
- Conclusion and Future Work

Nonlinear Dynamic Systems: Why We Need Manifold MCMC

- Specificities of Nonlinear Dynamic Systems
- Expected FIM and Sensitivities
- Toy Example: Exponential Decay
- Systems Biology: JAK-STAT Signaling Pathway

2 Manifold MCMC: a Unifying Framework

- Adaptive Metropolis Hastings
- Limitations and Link with Manifold MCMC
- Conclusion and Future Work

Components: for parameters $\theta = (u, v, \operatorname{vec}(\Sigma))$

- **9** Dynamic system, hidden: x(u,t), solution of ODE system $\dot{x}(u,t) = f(x(u,t,),u,t)$
- **2** Response Function: r(x) e.g. partial measurement
- **Observation Model:** m(r, v) e.g. unknown scaling constants (cytography)
- **Q** Error Model: noise \mathbf{z} and h(m) transformation, e.g. log-scale

Observations $h(y_j) \sim h(m(r(x(u,t)), v) + \sqrt{\Sigma}\mathbf{z})$

Typical problems:

- Nonlinearity
- High number of parameters
- Lack of identifiability or Weak identifiability
- Partial observation / Heteroscedastic variance

Expected FIM

$$\mathbf{G}(\theta) = -\mathbb{E}\left[H_{\theta}\log p(y,\theta)\right] = \sum_{i=1}^{n} \mathbf{j}_{i}^{T}(\theta)\Sigma^{-1}\mathbf{j}_{i}(\theta) + H_{\theta}\log p(\theta)$$
$$= \mathbf{j}^{T}(\theta)\left(I_{n}\otimes\Sigma^{-1}\right)\mathbf{j}(\theta) + H_{\theta}\log p(\theta)$$

$$\begin{aligned} \mathbf{j}(\theta) &= [\mathbf{j}_1(\theta) \dots \mathbf{j}_n(\theta)] \\ \mathbf{j}_i(\theta) &= J_{\theta} h \circ m \circ r \circ x|_{t_i, u, v} \\ &= \begin{bmatrix} J_u h \circ m \circ r \circ x|_{t_i, u, v} & J_v h \circ m|_{r \circ x(u, t_i), v} & I_d \end{bmatrix} \end{aligned}$$

Basic chain rule: $J_u h \circ m \circ r \circ x = J_m h \cdot J_r m \cdot J_x r \cdot J_u x$.

Sensitivities of Dynamic Systems

Sensitivities $J_u x$ simply computed by extending the ODE

$$\begin{cases} \dot{x}(u,t) = f(x(u,t), u, t) \\ J_{u}\dot{x}\Big|_{u,t} = J_{x}f|_{x(u,t), u,t} \cdot J_{u}x|_{u,t} + J_{u}f|_{x(u,t), u,t} \end{cases}$$

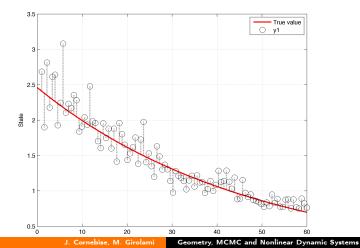
Same holds for $H_u x$ appearing in $\partial \mathbf{G} / \partial \theta_k$ for connexions and Christoffel symbols.

Toy Example: Exponential Decay – Observations

Even simplest model illustrates those problems:

$$\begin{cases} \dot{x}(t) = -k_1 x(t) \\ \log y_j = \log x(t_j) + \sigma \epsilon_j \end{cases}$$

unknown initial condition $x(0) = x_{\text{init}}$

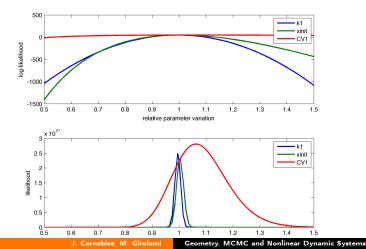


Toy Example: Exponential Decay – Marginal variations

Even simplest model illustrates those problems:

$$\begin{cases} \dot{x}(t) = -k_1 x(t) \\ \log y_j = \log x(t_j) + \sigma \epsilon_j \end{cases}$$

unknown initial condition $x(0) = x_{init}$

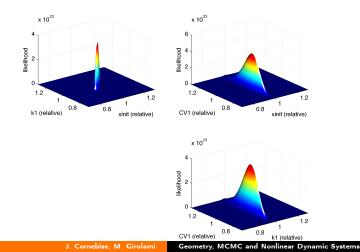


Toy Example: Exponential Decay - Joint variations

Even simplest model illustrates those problems:

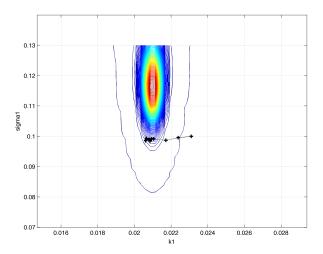
$$\begin{cases} \dot{x}(t) = -k_1 x(t) \\ \log y_j = \log x(t_j) + \sigma \epsilon_j \end{cases}$$

unknown initial condition $x(0) = x_{\text{init}}$

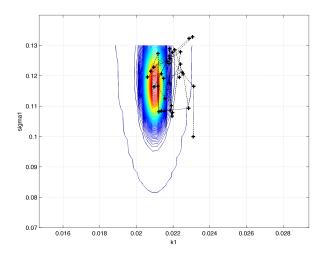


Extremely narrow ridges: impossible for run-off-the-mill MCMC

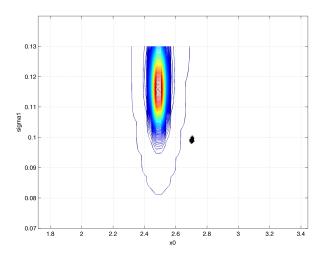




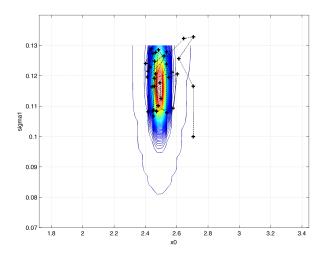
Extremely narrow ridges: impossible for run-off-the-mill MCMC inv(FIM) as Proposal



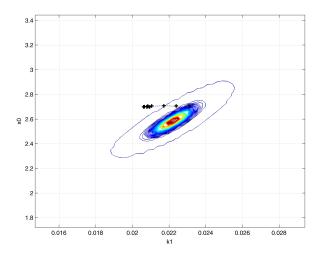
Extremely narrow ridges: impossible for run-off-the-mill MCMC
Tuned Spherical Proposal



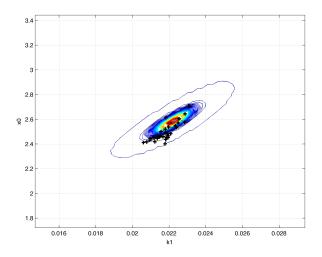
Extremely narrow ridges: impossible for run-off-the-mill MCMC inv(FIM) as Proposal



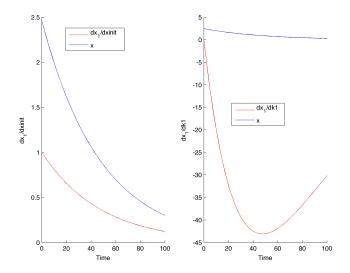
Extremely narrow ridges: impossible for run-off-the-mill MCMC
Tuned Spherical Proposal



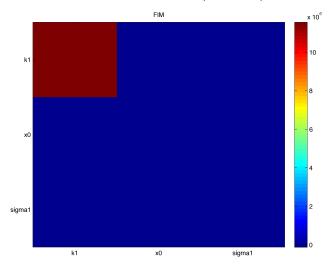
Extremely narrow ridges: impossible for run-off-the-mill MCMC inv(FIM) as Proposal



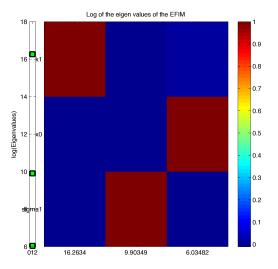
Sensitivities



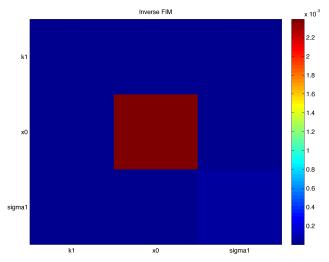
Expected FIM at Generative (Parameter) Value



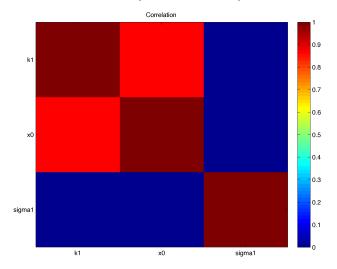
Eigenvalues and Eigenvectors of Expected FIM at Generative Value



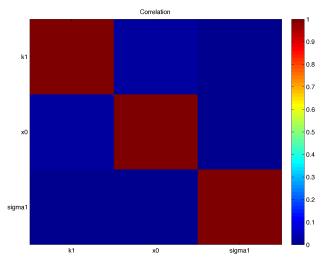
Inverse of FIM at Generative Value



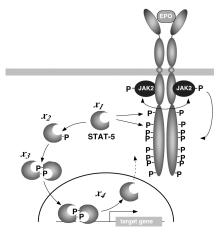
Normalised Inverse of FIM (Correlation Matrix) at Generative Value



Normalised Inverse of FIM Far from Generative Value



JAK-STAT Signaling Pathway



Courtesy of Swameye et al. (2003, PNAS)

Observation:

Hidden process:

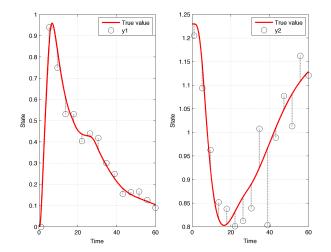
4

$$\begin{cases} \dot{x}_1(t) = -k_1 x_1(t) \mathsf{EpoR}_{\mathsf{A}}(t) + k_5 x_5(t) \\ \dot{x}_2(t) = -x_2^2(t) + k_1 x_1(t) \mathsf{EpoR}_{\mathsf{A}}(t) \\ \dot{x}_3(t) = -k_3 x_3(t) + \frac{1}{2} x_2^2(t) \\ \dot{x}_4(t) = -k_4 x_4(t) + k_3 x_3(t) \\ \dot{x}_5(t) = -k_5 x_5(t) + 2k_4 x_4(t) \end{cases}$$

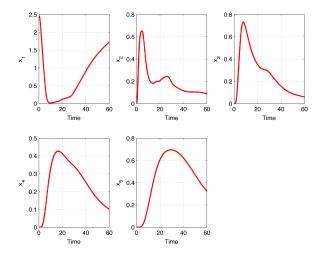
Initial condition: $x(0) = (x_{init}, 0, 0, 0).$

$$\log y_{j,1} = \log \left[v_1(x_2(t_j) + 2x_3(t_j)) \right] + \sigma_1 \epsilon_{j,1}$$

$$\log y_{j,2} = \log \left[v_2(x_1(t_j) + x_2(t_j) + 2x_3(t_j)) \right] + \sigma_2 \epsilon_{j,2}$$

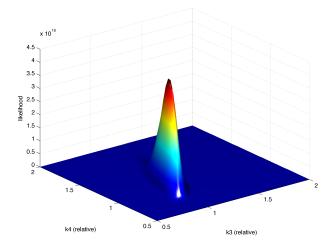


Data

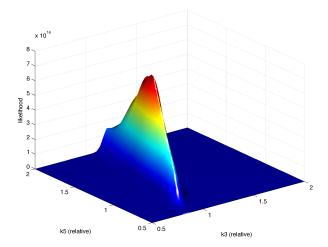


Typical Evolution of States

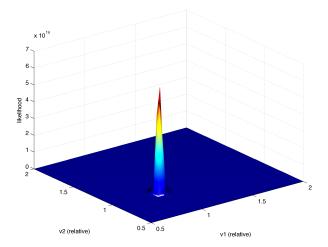
Joint k_3 and k_4

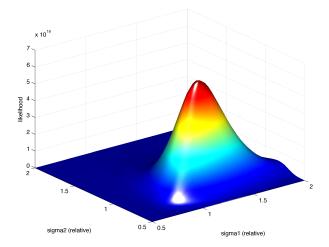


Joint k_3 and k_5



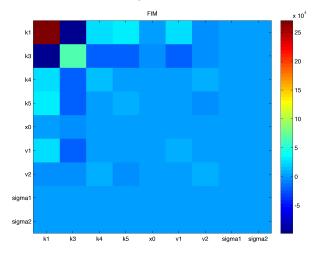
Joint v_1 and v_2



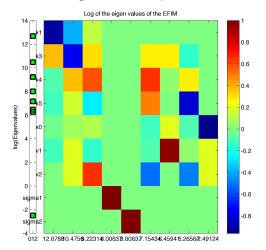


50 dx₁/dk5 0xp/¹xp dx₁/dk1 dx₁/dk3 dx,/dk4 2 0 2 2 -50 0 0 0 0 50 50 í٥ 50 ٥ ٥ 50 í0 o. 50 Time Time Time Time Time 10 dx₂/dk5 $dx_2/dk1$ 2/dk3 dx₂/dx0 1x2/dk4 0.5 0.5 0.5 0.5 0 -10 _____0 0 0 0 0 0 50 50 50 ٥ 50 ĺΟ. Ő. 50 Time Time Time Time Time 20 5 dx₃/dk3 dx₃/dk1 3/dk5 0xp/[£] 0 0.5 0.5 0 0.5 -20 └─ 0 -5 0 0 0 'o 50 ٥ 50 ٥ 50 50 0 50 Time Time Time Time Time 5 0.5 dx₄/dk5 dx4/dx0 dx₄/dk1 dx₄/dk3 dx₄/dk4 0 0.5 0 -5 -5 -5 0 0 50 50 50 ົດ ٥ 50 ٥ ٥ í0 50 Time Time Time Time Time 5 5 5 5 dx₅/dk1 dx₅/dk3 dx₅/dk4 dx₅/dk5 dx₅/dx0 0 0.5 0 ¹ 0 -5 · 0 -5 \ 0 -5 0 50 50 50 50 50 ٥ ٥ Time Time Time Time Time

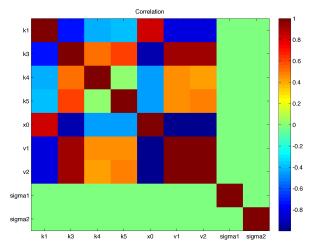
Sensitivities



Expected FIM

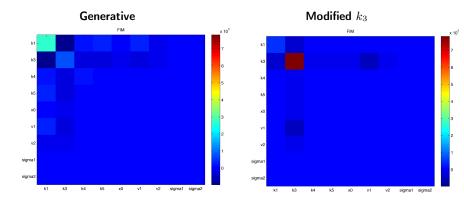


Eigenvalues of Expected FIM

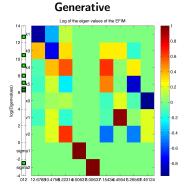


Normalised Inverse of FIM

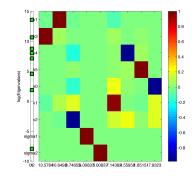
Expected FIM



Eigenvalues of Expected FIM

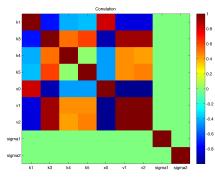


Modified k_3

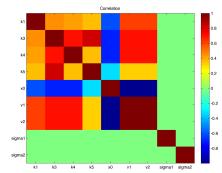


Normalised Inverse of FIM

Generative



Modified k_3



Nonlinear Dynamic Systems: Why We Need Manifold MCMC

- Specificities of Nonlinear Dynamic Systems
- Expected FIM and Sensitivities
- Toy Example: Exponential Decay
- Systems Biology: JAK-STAT Signaling Pathway

2 Manifold MCMC: a Unifying Framework

- Adaptive Metropolis Hastings
- Limitations and Link with Manifold MCMC
- Conclusion and Future Work

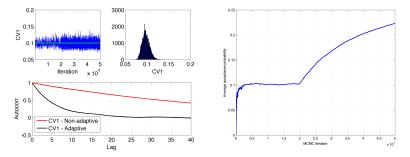
Adaptive Metropolis Hastings

Most important practical innovation in MCMC in 2000s: Adaptive MCMC

Optimality result for Gaussian target distribution

In Random-Walk Metropolis Hastings

- Optimal proposal covariance = covariance of the target
- Use ergodic estimate of covariance, based on past trajectory, as proposal
- Used as guideline for all cases



And it can work great:

To the Next Step: Link with Manifold

From

$$\theta^* = \theta^{k-1} + \varepsilon \sqrt{\mathbf{M}} z^*$$

to

$$\theta^* = \theta^{k-1} + \varepsilon \sqrt{\widehat{\mathsf{Cov}}(\theta^{0:k-1})} z^*$$

Adaptive MH works great when

- Started near the main mode ...
- ... or long annealing before estimating covariance
- Moderate variation in the curvature

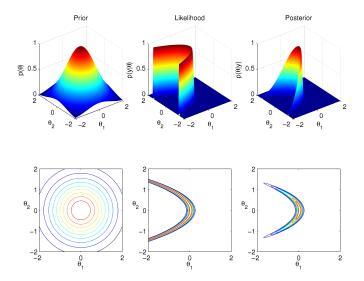
Adaptive MH is Crudely Approximating the Metric

- Constant over the whole space
- or ad-hoc partition of space (RAMA)
- Based on local starting point

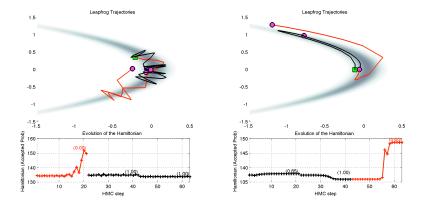
Manifold MCMC gives a geometric rationale, and a sound generalization.

$$\theta^* = \theta^{k-1} + \varepsilon \sqrt{\mathbf{G}^{-1}(\theta^{k-1})} z^*$$

Typical Varying Metric Case



Global (Left, HMC) vs Local (Right, RMHMC)



Take-Home Message

- **O** Challenging new ODE problems have intricate geometry
- 2 Information Geometry now used in practical algorithms...
- **9** which unify, justify, and extend cutting-edge developments

Future work / Question to the audience:

- Intrinsic geometry of ODEs: chaos, bifurcation how to exploit/deal with?
- Observed FIM vs Expected FIM (especially in MMALA/Natural Gradient)?
- Proxy to Observed FIM (when no sufficient statistic)
- Combine adaptation (stochastic approximation) to fit said proxy
- Adaptation of discretization stepsize
- Extension to Sequential Monte Carlo proposal kernel
- Use for Approximate Bayesian Computation Summary Statistics

Thank you for your attention!

julien@stats.ucl.ac.uk