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Complex Dynamic Model

Components: for parameters θ = (u, v, vec(Σ))

1 Dynamic system, hidden: x(u, t), solution of ODE system
ẋ(u, t) = f(x(u, t, ), u, t)

2 Response Function: r(x) – e.g. partial measurement
3 Observation Model: m(r, v) – e.g. unknown scaling constants

(cytography)
4 Error Model: noise z and h(m) – transformation, e.g. log-scale

Observations h(yj) ∼ h(m(r(x(u, t)), v) +
√

Σz)

Typical problems:
Nonlinearity

High number of parameters

Lack of identifiability or Weak identifiability

Partial observation / Heteroscedastic variance
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Expected FIM

G(θ) = −E [Hθ log p(y, θ)] =
n∑
i=1

jTi (θ)Σ−1ji(θ) +Hθ log p(θ)

= jT (θ)
(
In ⊗ Σ−1) j(θ) +Hθ log p(θ)

j(θ) = [j1(θ) . . . jn(θ)]

ji(θ) = Jθh ◦m ◦ r ◦ x|ti,u,v

=
[
Juh ◦m ◦ r ◦ x|ti,u,v Jvh ◦m|r◦x(u,ti),v Id

]

Basic chain rule: Juh ◦m ◦ r ◦ x = Jmh · Jrm · Jxr · Jux.

Sensitivities of Dynamic Systems
Sensitivities Jux simply computed by extending the ODE

ẋ(u, t) = f(x(u, t), u, t)

˙Jux
∣∣∣
u,t

= Jxf |x(u,t),u,t · Jux|u,t + Juf |x(u,t),u,t

Same holds for Hux appearing in ∂G/∂θk for connexions and Christoffel
symbols.
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Toy Example: Exponential Decay – Observations

Even simplest model illustrates those problems:{
ẋ(t) = −k1x(t)

log yj = log x(tj) + σεj

unknown initial condition x(0) = xinit
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Toy Example: Exponential Decay – Marginal variations

Even simplest model illustrates those problems:{
ẋ(t) = −k1x(t)

log yj = log x(tj) + σεj

unknown initial condition x(0) = xinit
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Toy Example: Exponential Decay – Joint variations

Even simplest model illustrates those problems:{
ẋ(t) = −k1x(t)

log yj = log x(tj) + σεj

unknown initial condition x(0) = xinit
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Exponential Decay - What is the Challenge ?

Extremely narrow ridges: impossible for run-off-the-mill MCMC

Tuned Spherical Proposal
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Exponential Decay - Sensitivities, Expected FIM

Sensitivities
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Exponential Decay - Sensitivities, Expected FIM

Expected FIM at Generative (Parameter) Value
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Exponential Decay - Sensitivities, Expected FIM

Eigenvalues and Eigenvectors of Expected FIM at Generative Value
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Exponential Decay - Sensitivities, Expected FIM

Inverse of FIM at Generative Value
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Exponential Decay - Sensitivities, Expected FIM

Normalised Inverse of FIM (Correlation Matrix) at Generative Value
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Exponential Decay - Sensitivities, Expected FIM

Normalised Inverse of FIM Far from Generative Value
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JAK-STAT Signaling Pathway

Courtesy of Swameye et al. (2003, PNAS)

Hidden process:

ẋ1(t) = −k1x1(t)EpoRA(t) + k5x5(t)

ẋ2(t) = −x22(t) + k1x1(t)EpoRA(t)

ẋ3(t) = −k3x3(t) +
1

2
x22(t)

ẋ4(t) = −k4x4(t) + k3x3(t)

ẋ5(t) = −k5x5(t) + 2k4x4(t)

Initial condition:
x(0) = (xinit, 0, 0, 0).

Observation:

log yj,1 = log [v1(x2(tj) + 2x3(tj))] + σ1εj,1

log yj,2 = log [v2(x1(tj) + x2(tj) + 2x3(tj))] + σ2εj,2
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Metric at the Generative Value

Data
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Metric at the Generative Value

Typical Evolution of States
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Metric at the Generative Value

Joint k3 and k4

J. Cornebise, M. Girolami Geometry, MCMC and Nonlinear Dynamic Systems 8/13



Metric at the Generative Value

Joint k3 and k5
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Metric at the Generative Value

Joint v1 and v2
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Metric at the Generative Value

Joint σ1 and σ2
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Metric at the Generative Value

Sensitivities
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Metric at the Generative Value

Expected FIM
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Metric at the Generative Value

Eigenvalues of Expected FIM
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Metric at the Generative Value

Normalised Inverse of FIM
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Moving in the Space: Changing k3

Expected FIM

Generative Modified k3
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Moving in the Space: Changing k3

Eigenvalues of Expected FIM

Generative Modified k3
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Moving in the Space: Changing k3

Normalised Inverse of FIM

Generative Modified k3
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Adaptive Metropolis Hastings

Most important practical innovation in MCMC in 2000s: Adaptive MCMC

Optimality result for Gaussian target distribution
In Random-Walk Metropolis Hastings

Optimal proposal covariance = covariance of the target

Use ergodic estimate of covariance, based on past trajectory, as proposal

Used as guideline for all cases

And it can work great:
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To the Next Step: Link with Manifold

From
θ∗ = θk−1 + ε

√
Mz∗

to
θ∗ = θk−1 + ε

√
Ĉov(θ0:k−1)z∗

Adaptive MH works great when
Started near the main mode . . .
. . . or long annealing before estimating covariance
Moderate variation in the curvature

Adaptive MH is Crudely Approximating the Metric
Constant over the whole space

or ad-hoc partition of space (RAMA)

Based on local starting point

Manifold MCMC gives a geometric rationale, and a sound generalization.

θ∗ = θk−1 + ε
√

G−1(θk−1)z∗
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Typical Varying Metric Case
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Global (Left, HMC) vs Local (Right, RMHMC)
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Conclusion

Take-Home Message
1 Challenging new ODE problems have intricate geometry
2 Information Geometry now used in practical algorithms. . .
3 which unify, justify, and extend cutting-edge developments

Future work / Question to the audience:
Intrinsic geometry of ODEs: chaos, bifurcation – how to exploit/deal with?
Observed FIM vs Expected FIM (especially in MMALA/Natural Gradient)?
Proxy to Observed FIM (when no sufficient statistic)
Combine adaptation (stochastic approximation) to fit said proxy
Adaptation of discretization stepsize
Extension to Sequential Monte Carlo proposal kernel
Use for Approximate Bayesian Computation Summary Statistics

Thank you for your attention!
julien@stats.ucl.ac.uk
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