Geometry of hierarchical discrete loglinear models for Bayes factors

Hélène Massam

York University
with G. Letac, Université Paul Sabatier

The problem

- The data is given by a $|V|$-dimensional contingency table classifying N individuals according to V criteria.
- We consider the class of hierarchical loglinear models.
- The cell counts follow a multinomial distribution with density $f(t ; \theta)=e^{\langle\theta, t\rangle-N k(\theta)}$.
- The conjugate prior for θ is of the form $\pi(\theta)=\frac{e^{\alpha(\theta, m)-\alpha k(\theta)}}{I(m, \alpha)}$.
- The Bayes factor between model 1 and model 2 is

$$
B_{1,2}=\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \frac{I\left(\frac{\alpha m_{1}+t_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{\alpha m_{2}+t_{2}}{\alpha+N}, \alpha+N\right)} .
$$

- We study the behaviour of $B_{1,2}$ as $\alpha \rightarrow 0$.

Objects of interest

- the generating measure μ for the multinomial distribution
- the convex hull C of the support of μ
- The characteristic function \mathbb{J}_{C} of the convex polytope C
- The polar set of C
- the face of \bar{C} containing the data and its dimension k.

The result

$$
B_{1,2} \sim \alpha^{k_{1}-k_{2}} .
$$

The data in a contingency table

- N objects are classified according to $|V|$ criteria.
- We observe the value of $X=\left(X_{\gamma} \mid \gamma \in V\right)$ which takes its values (or levels) in the finite set I_{γ}.
- The data is gathered in a $|V|$-dimensional contingency table with

$$
|I|=x_{\gamma \in V}\left|I_{\gamma}\right| \text { cells } i .
$$

- The cell counts $\quad(n)=(n(i), i \in \mathcal{I}) \quad$ follow a multinomial $\mathcal{M}(N, p(i), i \in \mathcal{I})$ distribution.
- We denote $i_{E}=\left(i_{\gamma}, \gamma \in E\right)$ and $n\left(i_{E}\right)$ respectively the marginal- E cell and cell count.

The hierarchical loglinear model

- We choose a special cell $0=(0, \ldots, 0)$.
- The generating set is $\mathcal{D}=\left\{D \subseteq V: D_{1} \subset D \Rightarrow D_{1} \in \mathcal{D}\right\}$.
- We write $S(i)=\left\{\gamma \in V: i_{\gamma} \neq 0\right\}$ and

$$
j \triangleleft i \text { if } S(j) \subseteq S(i) \text { and } j_{S(j)}=i_{S(j)}
$$

- The parametrization: $p(i) \mapsto \theta_{i}=\sum_{j \triangleleft i}(-1)^{|S(i) \backslash S(j)|} \log p(j)$.
- Define

$$
\begin{aligned}
J & =\{j \in I: S(j) \in \mathcal{D}\} \\
J_{i} & =\{j \in J, j \triangleleft i\}
\end{aligned}
$$

- Then the hierarchical loglinear model can be written as

$$
\log p(i)=\theta_{\emptyset}+\sum \theta_{j} \quad \text { with } \quad \log p(0)=\theta_{0}
$$

The multinomial hierarchical model

$p(0)=e^{\theta_{0}}=\left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)^{-1}=L(\theta)^{-1}$ and

$$
\prod_{i \in I} p(i)^{n(i)}=\frac{1}{L(\theta)^{N}} \exp \left\{\sum_{j \in J} n\left(j_{S(j)}\right) \theta_{j}\right\}=\exp \left\{\sum_{j \in J} n\left(j_{S(j)}\right) \theta_{j}+N \theta_{0}\right\} .
$$

Then $\prod_{i \in I} p(i)^{n(i)}$ becomes

$$
\begin{aligned}
f\left(t_{J} \mid \theta_{J}\right) & =\exp \left\{\sum_{j \in J} n\left(j_{S(j)}\right) \theta_{j}-N \log \left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)\right\} \\
& =\frac{\exp \left\langle\theta_{J}, t_{J}\right\rangle}{L\left(\theta_{J}\right)^{N}}=e^{\left\langle\theta_{J}, t_{J}\right\rangle-N k\left(\theta_{J}\right)}
\end{aligned}
$$

with $\theta_{J}=\left(\theta_{j}, j \in J\right), \quad t_{J}=\left(n\left(j_{S(j)}\right), j \in J\right)$ and $L\left(\theta_{J}\right)=\left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)$.

The measure generating the multinomial

Let $\left(e_{j}, j \in J\right)$ be the canonical basis of R^{J} and let
$f_{i}=\sum_{j \in J, j \triangleleft i} e_{j}, \quad i \in I$. For $G=a----b----c$

\mathcal{D}	f_{0}	f_{a}	f_{b}	f_{c}	$f_{a b}$	$f_{a c}$	$f_{b c}$	$f_{a b c}$
e_{a}	0	1	0	0	1	1	0	1
e_{b}	0	0	1	0	1	0	1	1
e_{c}	0	0	0	1	0	1	1	1
$e_{a b}$	0	0	0	0	1	0	0	1
$e_{b c}$	0	0	0	0	0	0	1	1

Here $R^{I}=R^{8}$ while $R^{J}=R^{5}$.
The Laplace transform of $\mu_{J}=\sum_{i \in \mathcal{I}} \delta_{f_{i}}$ is, for $\theta \in R^{J}$,
$\int_{R^{J}} e^{\langle\theta, x\rangle} \mu_{J}(d x)=1+\sum_{i \in \mathcal{I} \backslash\{0\}} e^{\left\langle\theta, f_{i}\right\rangle}=1+\sum_{i \in \mathcal{I} \backslash\{0\}} e^{\sum_{j \triangleleft i} \theta_{j}}=L(\theta)$.

The DY conjugate prior

Therefore the multinomial $f\left(t_{J} \mid \theta_{J}\right)=\frac{\exp \left(\theta_{J}, t_{J}\right\rangle}{L\left(\theta_{J}\right)^{N}}$ is the NEF generated by $\mu_{J}^{* N}$.
C_{J} is the open convex hull of the support of μ : $f_{i}, i \in I$ are the extreme points
The Diaconis and Ylvisaker (1974) conjugate prior for θ

$$
\pi\left(\theta_{J} \mid m_{J}, \alpha\right)=\frac{1}{I\left(m_{J}, \alpha\right)} e^{\left\{\alpha\left\langle\theta_{J}, m_{J}\right\rangle-\alpha \log L\left(\theta_{J}\right)\right\}}
$$

is proper when the hyperparameters $m_{J} \in C_{J}$ and $\alpha>0$. Interpretation of the hyper parameter $\left(\alpha m_{J}, \alpha\right)$:

- α is the fictive total sample size
- $\alpha\left(m_{j}, j \in J\right)$ represent the fictive marginal counts .

The Bayes factor between two models

The posterior density of J given t_{J} is

$$
h\left(J \mid t_{J}\right) \propto \frac{I\left(\frac{t_{J}+\alpha m_{J}}{\alpha+N}, \alpha+N\right)}{I\left(m_{J}, \alpha\right)}
$$

Consider two hierarchical models defined by J_{1} and J_{2}. The Bayes factor is

$$
B_{1,2}=\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \times \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} .
$$

We will consider two cases depending on whether $\frac{t_{k}}{N} \in C_{k}, k=1,2$ or not.

The Bayes factor between two models

When $\alpha \rightarrow 0$,

- if $\frac{t_{k}}{N} \in C_{k}, k=1,2$, then

$$
\frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} \rightarrow \frac{I\left(\frac{t_{1}}{N}, N\right)}{I\left(\frac{t_{2}}{N}, N\right)}
$$

which is finite. Therefore we only need to worry about $\lim \frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)}$.

- if $\frac{t_{k}}{N} \in \bar{C}_{k} \backslash C_{k}, k=1,2$, then, we have to worry about $\lim \frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)}$ and $\lim \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)}$.

The characteristic function of C

Definitions. Assume C is an open nonempty convex set in R^{n}.

- The support function of C is $h_{C}(\theta)=\sup \{\langle\theta, x\rangle: x \in C\}$
- The characteristic function of C :
$J_{C}(m)=\int_{R^{n}} e^{\langle\theta, m\rangle-h_{C}(\theta)} d \theta$
Examples of $J_{C}(m)$
- $C=(0,1)$. Then $h_{C}(\theta)=\theta$ if $\theta>0$ and $h_{C}(\theta)=0$ if $\theta \leq 0$.

Therefore $h_{C}(\theta)=\max (0, \theta)$ and

$$
J_{C}(m)=\int_{-\infty}^{0} e^{\theta m} d \theta+\int_{0}^{+\infty} e^{\theta m-\theta} d \theta=\frac{1}{m(1-m)} .
$$

Examples of $J_{C}(m)$

Examples of $J_{C}(m)$

- C is the simplex spanned by the origin and the canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in R^{n} and $m=\sum_{i=1}^{n} m_{i} e_{i} \in C$. Then

$$
J_{C}(m)=\frac{n!\operatorname{Vol}(C)}{\prod_{j=0}^{n} m_{i}}=\frac{1}{\prod_{j=1}^{n} m_{i}\left(1-\sum_{j=1}^{n} m_{i}\right)}
$$

- $J=\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)\}$ with C spanned by $f_{j}, j \in J$ and $m=\sum_{j \in J} m_{j} f_{j}$. Then

$$
\begin{aligned}
J_{C}(m) & =\frac{m_{(0,1,0)}\left(1-m_{(0,1,0)}\right)}{D_{a b} D_{b c}} \\
D_{a b} & =m_{(1,1,0)}\left(m_{(1,0,0)}-m_{(1,1,0)}\right)\left(m_{(0,1,0)}-m_{(1,1,0)}\right)\left(1-m_{(1,0,0)}-m_{(0,1,0)}+m_{(1,1,0)}\right) \\
D_{b c} & =m_{(0,1,1)}\left(m_{(0,0,1)}-m_{(0,1,1)}\right)\left(m_{(0,1,0)}-m_{(0,1,1)}\right)\left(1-m_{(0,0,1)}-m_{(0,1,0)}+m_{(0,1,1)}\right)
\end{aligned}
$$

Limiting behaviour of $I(m, \alpha)$

Theorem

Let μ be a measure on $R^{n}, n=|J|$, such that C the interior of the convex hull of the support of μ is nonempty and bounded. Let $m \in C$ and for $\alpha>0$, let

$$
I(m, \alpha)=\int_{R^{n}} \frac{e^{\alpha\langle\theta, m\rangle}}{L(\theta)^{\alpha}} d \theta
$$

Then

$$
\lim _{\alpha \rightarrow 0} \alpha^{n} I(m, \alpha)=J_{C}(m)
$$

Furthermore $J_{C}(m)$ is finite if $m \in C$.

Outline of the proof

$$
\begin{aligned}
I(m, \alpha) & =\int_{R^{n}} \frac{e^{\langle\theta, m\rangle}}{L(\theta)^{\alpha}} d \theta \\
\alpha^{n} I(m, \alpha) & =\int_{R^{n}} \frac{e^{\alpha\langle y, m\rangle}}{L\left(\frac{y}{\alpha}\right)^{\alpha}} d y \text { by chg. var. } y=\alpha \theta \\
L\left(\frac{y}{\alpha}\right)^{\alpha} & =\left[\int_{S} e^{\frac{1}{\alpha}\langle y, x\rangle} \mu(d x)\right]^{\alpha} \\
& \left.=\int_{S}\left[e^{\langle y, x\rangle}\right]^{p} \mu(d x)\right)^{1 / p} \text { for } \alpha=1 / p, S=\operatorname{supp}(\mu) \\
& =\left\|e^{\langle y, \bullet\rangle}\right\|_{p} \rightarrow\left\|e^{\langle y, \bullet\rangle}\right\|_{\infty} \text { as } \alpha \rightarrow 0 \\
& =\sup _{x \in S} e^{\langle y, x\rangle}=\sup _{x \in C} e^{\langle y, x\rangle}=e^{\sup p_{x \in C}\langle y, x\rangle}, C=\operatorname{c.hull}(S) \\
\alpha^{n} I(m, \alpha) & \rightarrow \int_{R^{n}} e^{\langle y, m\rangle-h_{C}(y)} d y=J_{C}(m)
\end{aligned}
$$

Limit of the Bayes factor

Let models J_{1} and J_{2} be such that $\left|J_{1}\right|>\left|J_{2}\right|$ and the data are in $C_{i}, B=1,2$. Then the Bayes factor

$$
\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} \sim \alpha^{\left|J_{1}\right|-\left|J_{2}\right| \frac{I\left(\frac{t_{1}}{N}, N\right)}{I\left(\frac{t_{2}}{N}, N\right)}}
$$

Therefore the Bayes factor tends towards 0 , which indicates that the model J_{2} is preferable to model J_{1}.
We proved the heuristically known fact that taking α small favours the sparser model.

We can say that α close to " 0 " regularizes the model.

Important properties

We define the polar convex set C^{o} of C

$$
C^{o}=\left\{\theta \in R^{n} ;\langle\theta, x\rangle \leq 1 \quad \forall x \in C\right\}
$$

then

- $\frac{J_{C}(m)}{n!}=\operatorname{Vol}(C-m)^{0}=\int_{C^{0}} \frac{d \theta}{(1-\langle\theta, m\rangle)^{n+1}}$

For the second equality, make the change of variable $\theta=\theta^{\prime} /\left(1+\left\langle\theta^{\prime}, m\right\rangle\right)$

- If C in R^{n} is defined by its $K(n-1)$-dimensional faces $\left\{x \in R^{n}:\left\langle\theta_{k}, x\right\rangle=c_{k}\right\}$, then for $D(m)=\prod_{k=1}^{K}\left(\left\langle\theta_{k}, x\right\rangle-c_{k}\right)$,

$$
D(m) J_{C}(m)=N(m)
$$

where degree of $N(m)$ is $\leq K$.

Limiting behaviour of $I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)$

We now consider the case when $\frac{t}{N} \in \bar{C} \backslash C$.
We write $\frac{\alpha m+t}{\alpha+N}=\lambda m+(1-\lambda) \frac{t}{N}$ with $\lambda=\frac{\alpha}{\alpha+N}$.
First step: Prove that when $\alpha \rightarrow 0$ i.e. $\lambda \rightarrow 0$ and $\frac{t}{N}$ belongs to a face of C of dimension k, then

$$
\lim \lambda^{|J|-k} J_{C}\left(\lambda m+(1-\lambda) \frac{t}{N}\right)
$$

exist and is positive.
Second step: Show that $\lim \lambda^{|J|-k} D(\lambda)$ exist and is positive with
$D(\lambda)=\mathbb{J}_{C}(\lambda m+(1-\lambda) y)-\left(\frac{N}{1-\lambda}\right)^{n} I\left(\lambda m+(1-\lambda) y, \frac{N}{1-\lambda}\right)$

Limiting behaviour of $I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)$

This will prove that

$$
\lim _{\alpha \rightarrow 0} \alpha^{(|J|-k)} I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)
$$

exists and is positive and therefore

$$
\begin{aligned}
B_{1,2} & =\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \times \frac{I\left(\frac{\alpha m_{1}+t_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{\alpha m_{2}+t_{2}}{\alpha+N}, \alpha+N\right)} \\
& \sim \alpha^{\left|J_{1}\right|-\left|J_{2}\right|} \times \alpha^{\left(k_{1}-\left|J_{1}\right|\right)-\left(k_{2}-\left|J_{2}\right|\right)}=\alpha^{k_{1}-k_{2}}
\end{aligned}
$$

Outline of the proof of

$$
\lim _{\lambda \rightarrow 0} \lambda^{|J|-k} J_{C}\left(\lambda m+(1-\lambda) \frac{t}{N}\right)
$$

where we note $m=0$ and $\frac{t}{N}=y$

$$
\frac{J_{C}((1-\lambda) y)}{n!}=\operatorname{Vol}(C-(1-\lambda) y)^{0}=\int_{C^{o}} \frac{d \theta}{(1-(1-\lambda)\langle\theta, y\rangle)^{n+1}}
$$

- Parametrize C^{o} : consider the face F of C containing y. The dual face \widehat{F} of C^{o} is

$$
\widehat{F}=\left\{\theta \in \overline{C^{o}} \mid\langle\theta, f\rangle=1 \forall f \in \mathcal{I}\right\}=\left\{\theta \in C^{o} \mid\langle\theta, y\rangle=1\right\} .
$$

- Cut $\overline{C^{o}}$ into "slices" $\widehat{F}_{\epsilon}=\left\{\theta \in \overline{C^{o}} ;\langle\theta, y\rangle=1-\epsilon\right\}$ and show $\operatorname{vol}_{n-1} \widehat{F}_{\epsilon} \sim c \epsilon^{k}$

$$
\int_{\bar{C}^{o}} \frac{d \theta}{(1-(1-\lambda)\langle\theta, y\rangle)^{n+1}}=\int_{0}^{\infty} \frac{\operatorname{vol}_{n-1} \widehat{F}_{\epsilon} d \epsilon}{(1-(1-\lambda)(1-\epsilon))^{n+1}}=\int_{0}^{\infty} \frac{f(\epsilon) d \epsilon}{(1-(1-\lambda)(1-\epsilon))^{n+1}}
$$

- Using $f(\epsilon) \sim c \epsilon^{k}$ we will now show that $\lim _{\lambda \rightarrow 0} \lambda^{n-k} \int_{0}^{\infty} \frac{f(\epsilon) d \epsilon}{(1-(1-\lambda)(1-\epsilon))^{n+1}}=c B(k+1, n-k)$, and this concludes the proof.

Some facets of C

Let \mathcal{D} be the generating set of the hierarchical model.
For each $D \in \mathcal{D}$ and each $j_{0} \in J$ such that $S\left(j_{0}\right) \subset D$ define

$$
\begin{aligned}
g_{0, D} & =\sum_{j ; S(j) \subset D}(-1)^{|S(j)|} e_{j} \\
g_{j_{0}, D} & =\sum_{j ; S(j) \subset D, j_{0} \triangleleft j}(-1)^{|S(j)|-\left|S\left(j_{0}\right)\right|} e_{j}
\end{aligned}
$$

and the affine forms

$$
\begin{aligned}
g_{0, D}(t) & =1+\left\langle g_{0, D}, t\right\rangle \\
g_{j_{0}, D}(t) & =\left\langle g_{j_{0}, D}, t\right\rangle .
\end{aligned}
$$

Some facets of C

All subsets of the form

$$
F(j, D)=H(j, D) \cap \bar{C}
$$

with $H(j, D)=\left\{t \in \mathrm{R}^{J} ; g_{j, D}(t)=0\right\}, D \in \mathcal{C}, S(j) \subset D$
$\mathcal{C}=\{$ maximal elements of $\mathcal{D}\}$, are facets of C.
Example $a---b---c$. The facets are

$$
t_{a b}=0, t_{a}-t_{a b}=0, t_{b}-t_{a b}=0,1-t_{a}-t_{b}+t_{a b}=0
$$

and

$$
t_{b c}=0, t_{b}-t_{b c}=0, t_{c}-t_{b c}=0,1-t_{b}-t_{c}+t_{b c}=0
$$

The facets of C when G is decomposable

For decomposable models,

$$
H(j, D)=\left\{m \in \mathbf{R}^{J} ; g_{j, D}(m)=0\right\}, D \in \mathcal{C}, S(j) \subset D
$$

are the only faces of C.
Example $a---b---c$. The facets are

$$
\begin{aligned}
t_{a b} & =0, j & =(1,1,0) ; & t_{a}-t_{a b}=0, j=(1,0,0) \\
t_{b}-t_{a b} & =0, j & =(0,1,0) ; & 1-t_{a}-t_{b}+t_{a b}=0, S(j)=\emptyset \\
t_{b c} & =0, j & =(0,1,1) ; & t_{b}-t_{b c}=0, j=(0,1,0) \\
t_{c}-t_{b c} & =0, j & =(0,0,1) ; & 1-t_{b}-t_{c}+t_{b c}=0, S(j)=\emptyset .
\end{aligned}
$$

The facets: traditional notation

Example $a---b---c$. For binary data, the facets are

$$
\begin{aligned}
& N t_{a b}=0=n_{11+} \\
& N\left(t_{a}-t_{a b}\right)=0=n_{1++}-n_{11+}=n_{10+} \\
& N\left(t_{b}-t_{a b}\right)=0=n_{+1+}-n_{11+}=n_{01+} \\
& N\left(1-t_{a}-t_{b}+t_{a b}\right)=0=N-n_{1++}-n_{+1+}+n_{11+}=n_{00+} \\
& N t_{b c}=0=n_{+11} \\
& N\left(t_{b}-t_{b c}\right)=0=n_{+10} \\
& N\left(t_{c}-t_{b c}\right)=0=n_{+01} \\
& N\left(1-t_{b}-t_{c}+t_{b c}\right)=0=n_{+00}
\end{aligned}
$$

The facets: traditional notation

Example: The complete model. Then $\mathcal{C}=\{a b c\}$ and the facets are

$$
\begin{aligned}
N t_{a b c}=0 & =n_{111} \\
N\left(t_{a b}-t_{a b c}\right)=0 & =n_{110} \\
N\left(t_{b c}-t_{a b c}\right)=0 & =n_{011} \\
N\left(t_{a c}-t_{a b c}=0\right. & =n_{101} \\
N\left(t_{a}-t_{a b}-t_{a c}+t_{a b c}\right)=0 & =n_{100} \\
N\left(t_{b}-t_{a b}-t_{b c}+t_{a b c}\right)=0 & =n_{010} \\
N\left(t_{c}-t_{a c}-t_{b c}+t_{a b c}\right)=0 & =n_{001} \\
N\left(1-t_{a}-t_{b}-t_{c}+t_{a b}+t_{b c}+t_{a c}-t_{a b c}=0\right. & =n_{000}
\end{aligned}
$$

Steck and Jaakola (2002)

Steck and Jaakola (2002) considered the problem of the limit of the Bayes factor when $\alpha \rightarrow 0$ for Bayesian networks. Bayesian networks are not hierarchical models but in some cases, they are Markov equivalent to undirected graphical models which are hierarchical models.
Problem: compare two models which differ by one directed edge only.
Equivalent problem: with three variables binary X_{a}, X_{b}, X_{c} each taking values in $\{0,1\}$, compare Model $\mathcal{M}_{1}: a----b----c:\left|J_{1}\right|=5$.
Model \mathcal{M}_{2} : the complete model i.e. with $\mathcal{A}=\{(a, b, c)\}$. $\left|J_{2}\right|=7$

Generalization of S\&J (2002)

They define

$$
d_{E D F}=\sum_{i \in \mathcal{I}} \delta(n(i))-\sum_{i_{a b} \in \mathcal{I}_{a b}} \delta\left(n\left(i_{a b}\right)\right)-\sum_{i_{b c} \in \mathcal{I}_{b c}} \delta\left(n_{i_{b c}}\right)+\sum_{i_{b} \in \mathcal{I}_{b}} \delta\left(n\left(i_{b}\right)\right)
$$

where $\delta(x)=0$ if $x=0$ and $\delta(x)=1$ otherwise. They show

$$
\lim _{\alpha \rightarrow 0} B_{1,2}=\left\{\begin{array}{cc}
0 & \text { if } d_{E D F}>0 \\
+\infty & \text { if } d_{E D F}<0
\end{array}\right.
$$

We show that $d_{E D F}=k_{1}-k_{2}$ and more generally if \mathcal{C}_{i} and \mathcal{S}_{i} the set of cliques and separators of the decomposable model $J_{i}, i=1,2$. We define
$d_{E D F}=\sum_{C \in \mathcal{C}_{1}} \sum_{i_{C} \in \mathcal{I}_{C}} \delta\left(n\left(i_{C}\right)\right)-\sum_{S \in \mathcal{S}_{1}} \sum_{i_{S} \in \mathcal{I}_{S}} \delta\left(n\left(i_{S}\right)\right)-\left(\sum_{C \in \mathcal{C}_{2}} \sum_{i_{C} \in \mathcal{I}_{C}} \delta\left(n\left(i_{C}\right)\right)-\sum_{S \in \mathcal{S}_{2}} \sum_{i_{S} \in \mathcal{I}_{S}} \delta\left(n\left(i_{S}\right)\right)\right)$
Then if the data belongs to faces F_{i} of dimension k_{i} for the two arbitrary decomposable graphical models $J_{i}, i=1,2$ respectively, then, $d_{E D F}=k_{1}-k_{2}$. We do not need facets for decomposable models. We just look at the cell counts.

