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The problem

• The data is given by a |V |-dimensional contingency table
classifying N individuals according to V criteria.

• We consider the class of hierarchical loglinear models.

• The cell counts follow a multinomial distribution with
density f(t; θ) = e〈θ,t〉−Nk(θ).

• The conjugate prior for θ is of the form π(θ) = eα〈θ,m〉−αk(θ)

I(m,α) .

• The Bayes factor between model 1 and model 2 is

B1,2 =
I(m2, α)

I(m1, α)

I(αm1+t1
α+N , α +N)

I(αm2+t2
α+N , α +N)

.

• We study the behaviour of B1,2 as α → 0.
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Objects of interest

the generating measure µ for the multinomial
distribution

the convex hull C of the support of µ

The characteristic function JC of the convex polytope C

The polar set of C

the face of C containing the data and its dimension k.

The result
B1,2 ∼ αk1−k2 .
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The data in a contingency table

• N objects are classified according to |V |criteria.

• We observe the value of X = (Xγ | γ ∈ V ) which takes its
values (or levels) in the finite set Iγ.

• The data is gathered in a |V |-dimensional contingency
table with

|I| = ×γ∈V |Iγ | cells i.

• The cell counts (n) = (n(i), i ∈ I) follow a
multinomial M(N, p(i), i ∈ I)distribution.

• We denote iE = (iγ , γ ∈ E) and n(iE) respectively the
marginal-E cell and cell count.
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The hierarchical loglinear model
• We choose a special cell 0 = (0, . . . , 0).
• The generating set is D = {D ⊆ V : D1 ⊂ D ⇒ D1 ∈ D} .
• We write S(i) = {γ ∈ V : iγ 6= 0} and

j ⊳ i if S(j) ⊆ S(i) and jS(j) = iS(j).

• The parametrization: p(i) 7→ θi =
∑

j⊳i(−1)|S(i)\S(j)| log p(j).

• Define

J = {j ∈ I : S(j) ∈ D}

Ji = {j ∈ J, j ⊳ i}

• Then the hierarchical loglinear model can be written as

log p(i) = θ∅ +
∑

j∈Ji

θj with log p(0) = θ0.
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The multinomial hierarchical model

p(0) = eθ0 = (1 +
∑

i∈I\{0} exp
∑

j∈Ji
θj)

−1 = L(θ)−1 and

∏

i∈I

p(i)n(i) =
1

L(θ)N
exp{

∑

j∈J

n(jS(j))θj} = exp{
∑

j∈J

n(jS(j))θj +Nθ0}.

Then
∏

i∈I p(i)
n(i) becomes

f(tJ |θJ) = exp







∑

j∈J

n(jS(j))θj −N log(1 +
∑

i∈I\{0}

exp
∑

j∈Ji

θj)







=
exp〈θJ , tJ〉

L(θJ)N
= e〈θJ ,tJ〉−Nk(θJ)

with θJ = (θj , j ∈ J), tJ = (n(jS(j)), j ∈ J) and
L(θJ) = (1 +

∑

i∈I\{0} exp
∑

j∈Ji
θj).
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The measure generating the multinomial

Let (ej , j ∈ J) be the canonical basis of RJ and let
fi =

∑

j∈J,j⊳i ej , i ∈ I. For G = a−−−−b−−−−c

D f0 fa fb fc fab fac fbc fabc

ea 0 1 0 0 1 1 0 1

eb 0 0 1 0 1 0 1 1

ec 0 0 0 1 0 1 1 1

eab 0 0 0 0 1 0 0 1

ebc 0 0 0 0 0 0 1 1

Here RI = R8 while RJ = R5.

The Laplace transform of µJ =
∑

i∈I δfi is, for θ ∈ RJ ,
∫

RJ

e〈θ,x〉µJ(dx) = 1+
∑

i∈I\{0}

e〈θ,fi〉 = 1+
∑

i∈I\{0}

e
∑

j⊳i θj = L(θ).
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The DY conjugate prior

Therefore the multinomial f(tJ |θJ) =
exp〈θJ ,tJ〉
L(θJ)N

is the NEF

generated by µ∗NJ .
CJ is the open convex hull of the support of µ:

fi, i ∈ I are the extreme points

The Diaconis and Ylvisaker (1974) conjugate prior for θ

π(θJ |mJ , α) =
1

I(mJ , α)
e{α〈θJ ,mJ〉−α logL(θJ)}

is proper when the hyperparameters mJ ∈ CJ and α > 0.
Interpretation of the hyper parameter (αmJ , α):

α is the fictive total sample size

α(mj , j ∈ J) represent the fictive marginal counts .
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The Bayes factor between two models

The posterior density of J given tJ is

h(J |tJ) ∝
I( tJ+αmJ

α+N , α +N)

I(mJ , α)
.

Consider two hierarchical models defined by J1 and J2. The
Bayes factor is

B1,2 =
I(m2, α)

I(m1, α)
×

I( t1+αm1

α+N , α +N)

I( t2+αm2

α+N , α +N)
.

We will consider two cases depending on whether
tk
N ∈ Ck, k = 1, 2 or not.

Warwick April 2011 – p. 9



The Bayes factor between two models

When α → 0,

• if tk
N ∈ Ck, k = 1, 2, then

I( t1+αm1

α+N , α +N)

I( t2+αm2

α+N , α +N)
→

I( t1N , N)

I( t2N , N)

which is finite. Therefore we only need to worry about
lim I(m2,α)

I(m1,α)
.

• if tk
N ∈ C̄k \ Ck, k = 1, 2, then, we have to worry about

lim I(m2,α)
I(m1,α)

and lim
I(

t1+αm1
α+N

,α+N)

I(
t2+αm2
α+N

,α+N)
.
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The characteristic function of C

Definitions. Assume C is an open nonempty convex set in
Rn.

• The support function of C is hC(θ) = sup{〈θ, x〉 : x ∈ C}

• The characteristic function of C:
JC(m) =

∫

Rn e
〈θ,m〉−hC(θ)dθ

Examples of JC(m)

• C = (0, 1). Then hC(θ) = θ if θ > 0 and hC(θ) = 0 if θ ≤ 0.
Therefore hC(θ) = max(0, θ) and

JC(m) =

∫ 0

−∞
eθmdθ +

∫ +∞

0

eθm−θdθ =
1

m(1−m)
.
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Examples of JC(m)

Examples of JC(m)

• C is the simplex spanned by the origin and the canonical
basis {e1, . . . , en} in Rn and m =

∑n
i=1miei ∈ C. Then

JC(m) =
n!Vol(C)
∏n

j=0 mi

=
1

∏n
j=1 mi(1−

∑n
j=1 mi)

.

• J = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)} with C
spanned by fj , j ∈ J and m =

∑

j∈J mjfj. Then

JC(m) =
m(0,1,0)(1−m(0,1,0))

DabDbc

Dab = m(1,1,0)(m(1,0,0) −m(1,1,0))(m(0,1,0) −m(1,1,0))(1−m(1,0,0) −m(0,1,0) +m(1,1,0))

Dbc = m(0,1,1)(m(0,0,1) −m(0,1,1))(m(0,1,0) −m(0,1,1))(1−m(0,0,1) −m(0,1,0) +m(0,1,1))
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Limiting behaviour of I(m,α)

Theorem

Let µ be a measure on Rn,n = |J |, such that C the interior
of the convex hull of the support of µ is nonempty and
bounded. Let m ∈ C and for α > 0, let

I(m,α) =

∫

Rn

eα〈θ,m〉

L(θ)α
dθ.

Then
limα→0α

nI(m,α) = JC(m).

Furthermore JC(m) is finite if m ∈ C.
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Outline of the proof

I(m,α) =

∫

Rn

e〈θ,m〉

L(θ)α
dθ

αnI(m,α) =

∫

Rn

eα〈y,m〉

L( yα)
α
dy by chg. var. y = αθ

L(
y

α
)α = [

∫

S

e
1
α
〈y,x〉µ(dx)]α

=

∫

S

[e〈y,x〉]pµ(dx)
)1/p

for α = 1/p, S = supp(µ)

= ||e〈y,•〉||p → ||e〈y,•〉||∞ as α → 0

= sup
x∈S

e〈y,x〉 = sup
x∈C

e〈y,x〉 = esupx∈C〈y,x〉, C = c.hull(S)

αnI(m,α) →

∫

Rn

e〈y,m〉−hC(y)dy = JC(m)
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Limit of the Bayes factor

Let models J1 and J2 be such that |J1| > |J2| and the data
are in Ci, ß = 1, 2. Then the Bayes factor

I(m2, α)

I(m1, α)

I( t1+αm1

α+N , α +N)

I( t2+αm2

α+N , α +N)
∼ α|J1|−|J2|

I( t1N , N)

I( t2N , N)

Therefore the Bayes factor tends towards 0, which indicates
that the model J2 is preferable to model J1.

We proved the heuristically known fact that taking α small
favours the sparser model.

We can say that α close to "0 " regularizes the model.
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Important properties

We define the polar convex set Co of C

Co = {θ ∈ Rn ; 〈θ, x〉 ≤ 1 ∀x ∈ C}

then

• JC(m)
n! = Vol(C −m)0 =

∫

Co
dθ

(1−〈θ,m〉)n+1

For the second equality, make the change of variable
θ = θ′/(1 + 〈θ′,m〉)

• If C in Rn is defined by its K (n− 1)-dimensional faces
{x ∈ Rn : 〈θk, x〉 = ck}, then for D(m) =

∏K
k=1(〈θk, x〉 − ck),

D(m)JC(m) = N(m)

where degree of N(m) is ≤ K.
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Limiting behaviour of I(αm+t
α+N , α +N)

We now consider the case when t
N ∈ C \ C.

We write αm+t
α+N = λm+ (1− λ) t

N with λ = α
α+N .

First step: Prove that when α → 0 i.e. λ → 0 and t
N belongs

to a face of C of dimension k, then

limλ|J |−kJC(λm+ (1− λ)
t

N
)

exist and is positive.

Second step: Show that limλ|J |−kD(λ) exist and is positive
with

D(λ) = JC(λm+ (1− λ)y)− (
N

1− λ
)nI(λm+ (1− λ)y,

N

1− λ
)

Warwick April 2011 – p. 17



Limiting behaviour of I(αm+t
α+N , α +N)

This will prove that

lim
α→0

α(|J |−k)I(
αm+ t

α +N
,α +N)

exists and is positive and therefore

B1,2 =
I(m2, α)

I(m1, α)
×

I(αm1+t1
α+N , α +N)

I(αm2+t2
α+N , α +N)

∼ α|J1|−|J2| × α(k1−|J1|)−(k2−|J2|) = αk1−k2 .
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Outline of the proof of

lim
λ→0

λ|J|−kJC(λm+ (1− λ)
t

N
)

where we note m = 0 and t
N

= y

JC((1− λ)y)

n!
= Vol(C − (1− λ)y)0 =

∫

Co

dθ

(1− (1− λ)〈θ, y〉)n+1

Parametrize Co: consider the face F of C containing y. The dual face F̂ of Co is

F̂ = {θ ∈ Co |〈θ, f〉 = 1 ∀f ∈ I} = {θ ∈ Co |〈θ, y〉 = 1}.

Cut Co into "slices" F̂ǫ = {θ ∈ Co ; 〈θ, y〉 = 1− ǫ} and show voln−1F̂ǫ ∼ cǫk

∫

Co

dθ

(1− (1− λ)〈θ, y〉)n+1
=

∫ ∞

0

voln−1F̂ǫdǫ

(1− (1− λ)(1− ǫ))n+1
=

∫ ∞

0

f(ǫ)dǫ

(1− (1− λ)(1− ǫ))n+1

Using f(ǫ) ∼ c ǫk we will now show that

limλ→0 λ
n−k

∫∞
0

f(ǫ)dǫ

(1−(1−λ)(1−ǫ))n+1 = c B(k + 1, n− k), and this concludes the

proof.
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Some facets of C

Let D be the generating set of the hierarchical model.

For each D ∈ D and each j0 ∈ J such that S(j0) ⊂ D define

g0,D =
∑

j;S(j)⊂D

(−1)|S(j)|ej

gj0,D =
∑

j;S(j)⊂D, j0⊳j

(−1)|S(j)|−|S(j0)|ej

and the affine forms

g0,D(t) = 1 + 〈g0,D, t〉

gj0,D(t) = 〈gj0,D, t〉.
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Some facets of C

All subsets of the form

F (j,D) = H(j,D) ∩ C

with H(j,D) = {t ∈ RJ ; gj,D(t) = 0}, D ∈ C, S(j) ⊂ D

C = {maximal elements of D}, are facets of C.

Example a−−− b−−− c. The facets are

tab = 0, ta − tab = 0, tb − tab = 0, 1− ta − tb + tab = 0

and

tbc = 0, tb − tbc = 0, tc − tbc = 0, 1− tb − tc + tbc = 0.
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The facets of C when G is decomposable

For decomposable models,

H(j,D) = {m ∈ RJ ; gj,D(m) = 0}, D ∈ C, S(j) ⊂ D

are the only faces of C.
Example a−−− b−−− c. The facets are

tab = 0, j = (1, 1, 0); ta − tab = 0, j = (1, 0, 0)

tb − tab = 0, j = (0, 1, 0); 1− ta − tb + tab = 0, S(j) = ∅

tbc = 0, j = (0, 1, 1); tb − tbc = 0, j = (0, 1, 0)

tc − tbc = 0, j = (0, 0, 1); 1− tb − tc + tbc = 0, S(j) = ∅.
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The facets: traditional notation

Example a−−− b−−− c. For binary data, the facets are

Ntab = 0 = n11+

N(ta − tab) = 0 = n1++ − n11+ = n10+

N(tb − tab) = 0 = n+1+ − n11+ = n01+

N(1− ta − tb + tab) = 0 = N − n1++ − n+1+ + n11+ = n00+

Ntbc = 0 = n+11

N(tb − tbc) = 0 = n+10

N(tc − tbc) = 0 = n+01

N(1− tb − tc + tbc) = 0 = n+00
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The facets: traditional notation

Example: The complete model. Then C = {abc} and the
facets are

Ntabc = 0 = n111

N(tab − tabc) = 0 = n110

N(tbc − tabc) = 0 = n011

N(tac − tabc = 0 = n101

N(ta − tab − tac + tabc) = 0 = n100

N(tb − tab − tbc + tabc) = 0 = n010

N(tc − tac − tbc + tabc) = 0 = n001

N(1− ta − tb − tc + tab + tbc + tac − tabc = 0 = n000
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Steck and Jaakola (2002)

Steck and Jaakola (2002) considered the problem of the
limit of the Bayes factor when α → 0 for Bayesian networks.

Bayesian networks are not hierarchical models but in some
cases, they are Markov equivalent to undirected graphical
models which are hierarchical models.

Problem: compare two models which differ by one directed
edge only.

Equivalent problem: with three variables binary Xa, Xb, Xc

each taking values in {0, 1}, compare
Model M1: a−−−−b−−−−c: |J1| = 5.
Model M2: the complete model i.e. with A = {(a, b, c)}.
|J2| = 7
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Generalization of S&J (2002)

They define

dEDF =
∑

i∈I

δ(n(i))−
∑

iab∈Iab

δ(n(iab))−
∑

ibc∈Ibc

δ(nibc ) +
∑

ib∈Ib

δ(n(ib))

where δ(x) = 0 if x = 0 and δ(x) = 1 otherwise. They show

limα→0B1,2 =





0 if dEDF > 0

+∞ if dEDF < 0

We show that dEDF = k1 − k2 and more generally if Ci and Si the set of cliques and
separators of the decomposable model Ji, i = 1, 2. We define

dEDF =
∑

C∈C1

∑

iC∈IC

δ(n(iC))−
∑

S∈S1

∑

iS∈IS

δ(n(iS))−
( ∑

C∈C2

∑

iC∈IC

δ(n(iC))−
∑

S∈S2

∑

iS∈IS

δ(n(iS))
)
.

Then if the data belongs to faces Fi of dimension ki for the two arbitrary decomposable
graphical models Ji, i = 1, 2 respectively, then, dEDF = k1 − k2. We do not need facets for
decomposable models. We just look at the cell counts.
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