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Motivation for Algebraic Information Geometry

m Differential geometrical objects (e.g. Fisher metric, connections,
embedding curvatures and divegences) can sometimes be
computed by algebraic computations.

m Statistical objects (e.g. Estimator, Bias term of estimators and
Risk) can be computated by algebraic computations.

Most of the existing results on asymptotic theory for algebraic models
are focusing on the singularity.
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Motivation for Algebraic Information Geometry

m Differential geometrical objects (e.g. Fisher metric, connections,
embedding curvatures and divegences) can sometimes be
computed by algebraic computations.

m Statistical objects (e.g. Estimator, Bias term of estimators and
Risk) can be computated by algebraic computations.

Most of the existing results on asymptotic theory for algebraic models
are focusing on the singularity.

Key point

We can do something completely new even for the non-singular
classical asymptotic theory.



Exponential Family

Full and Curved Exponential Family for Sufficient Statistics

dP(x|0) = exp(x;0" — (0))dv

Full exponential family : {dP(x|0) | 6 € @} for an open © C R“.
x € R? : a variable representing a sufficient statistics

v : a carrier measure on R

Curved exponential family : {dP(x|0) | 8 € Ve } for a (not
necessarily smooth) Vg C ©.

m We call 6 a natural parameter and n = () := E[x|6] an
expectation parameter.

m E=E®):={n0)|0c0}CR?
mVe={n)|0ecVo} CE
= 7(0) = Vo (0)




Algebraic Curved Exponential Family

We say a curved exponential family is algebraic if the following
two conditions are satisfied:

1) © or E is represented by a real algebraic variety, i.e. © =
Vo :=V((,..., ) = {0 € RIA(0) = --- = fi(¢) = 0} or
E=Ve:=V((g,-..,8«)) for
f, € Z[#*,...,69 and g € Z[m, . .., n4].

2) 6 — n(0) or n+— 6(n) is represented by a polynomial ideal,
i.e. <h17 vo0g hk> C Z[G, 77] for h,‘ € Z[G, 7’]]

Here Z[0,n] means Z[0Y, ... 0% n1, ..., n4].

e.g.
m Multivariate Gaussian model with a polynomial relation
between the covariances: graphical models, AR(p),. ..

m Algebraic Poisson regression model
m Algebraic multinomial regression model
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Algebraic Estimator

Assume non-singularity at the true parameter 6* € Vo.

(u,v) € RP x R"P: local coordinate system around *
s.t. {0(u,0)|u € 3U C RP} = Vg around 0*.

The full exponential model defines a MLE map
(X®, .. XM = 0(n)l,—x-

A submodel is given by a coordinate projection map 0(u, v) — u
which defines a (local) estimator (X, ... X(M)) - u.

We call 6(u, v) an algebraic estimator if 6(u,v) € Q(u, v).
We can define statistical models and estimators by

n(u,v) € Q(u, v) in the same manner.

Note: MLE for an algebraic model is an algebraic estimator.
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Differential Geometrical Objects

Let w := (u, v) and we use indexes {i,J,...} for § and 7,
{a,b,...} for u, {k, A,...} for v and {«, 3, ...} for w and Einstein
summation notation. We assume

3) w — n(w) or w — 0(w) is represented by a polynomial ideal.



Differential Geometrical Objects

Let w := (u, v) and we use indexes {i,J,...} for § and 7,
{a,b,...} for u, {k, A,...} for v and {«, 3, ...} for w and Einstein
summation notation. We assume

3) w — n(w) or w — 0(w) is represented by a polynomial ideal.

If conditions 1), 2) and 3) hold then the following quantities are
all algebraic (i.e. represented by a polynomial ideal).
= i(0) = 5 (0),
m Fisher metric G = (
m Fisher metric G = (g
m Jacobian: B, () :=

m e-connection: F((fg7 = (gm0 (W) (525 mi(w)),

m m-connection: Fgg)ﬂY = (ﬁni(w))(aiﬂ (w)),

Furthermore, if ¥(0) € Q(#) U log Q(f) and
f(w) € Q(w) U log Q(w), then the quantities are all rational.

U) wrt. 0: g;(0) = (0)
Nwrt. n G=G1,

8
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Asymptotic Statistical Inference Theory

Under some regularity conditions on the carrier measure, function
1) and the manifolds, the following statistical theory holds (See
[Amari(1985)] and [Amari and Nagaoka (2000)]):

m E,[(07 — u?) (0P — uP)] = N7 gap — an8" 8br] 1 + O(N72).
Thus, an estimator is 1-st order efficient iff g, = 0.

m The bias term becomes E, [0° — uv] = (2N)71b?(u) + O(N?)
where b?(u) := ™2 (4)g(u). Then, the bias corrected
estimator 4% := &% — b?() satisfies E,[t? — uv?] = O(N~2).

m Assume g, = 0, then

0? g .
M a(W) = (o) (550 (W) =0 (1)
implies second order efficiency after a bias correction, i.e. it

becomes optimal among the first-order efficient estimators
up to O(N—2).
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Asymptotic Statistical Inference Theory

Under some regularity conditions on the carrier measure, function
1) and the manifolds, the following statistical theory holds (See
[Amari(1985)] and [Amari and Nagaoka (2000)]):

m E,[(07 — u?) (0P — uP)] = N7 gap — an8" 8br] 1 + O(N72).
Thus, an estimator is 1-st order efficient iff g, = 0.

m The bias term becomes E, [0° — uv] = (2N)71b?(u) + O(N?)
where b?(u) := ™2 (4)g(u). Then, the bias corrected
estimator 4% := &% — b?() satisfies E,[t? — uv?] = O(N~2).

m Assume g, = 0, then

0? g .

M o) = (i) (550 (W) =0 (1)
implies second order efficiency after a bias correction, i.e. it
becomes optimal among the first-order efficient estimators
up to O(N—2).

— All algebraic!
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Algebraic Second-Order Efficient

Estimators (Vector Eq. Form)

Consider an algebraic estimator n(u, v) € Z[u, v].

Fact 1
If the degree of n w.r.t. v is 1, then (1) gives the MLE.

In general, (1) implies the following vector equation:

Vector eq. form of the second-order efficient algebraic estimator

p
X =n(u,0)+ Zv,pe, —|—CZ u,v)ej(u (2)
j=1

i=p+1
where, for each u,

{ej(v);j=1,...,ptU{e(u);i=p+1,...,d} is a complete
basis of RY s.t. e;(u) € (Vun)*¢ and fi(u, v) € Z[u][v]>3, a
polynomial whose degree of v is at least 3, for j =1,...,p.

In (2), a constant ¢ € Q is to understand the perturbation.
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Image of the Estimators
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Algebraic Second-Order Efficient
Estimators (Algebraic Eq. Form)

Algebraic eq. form of the second-order efficient algebraic
estimator

(X = n(u,0)) "&(u) + m(X, u, X = n(u,0)) =0

(X —n(u,0)) " &,(u) + hy(X,u, X —n(u,0)) =0

where

{&(u);j=1,...,p} span ((Vun(u,0))*e)*e for every u and
hi(X,u,t) € Z[X, u][t]s for j=1,....p.

Remark 2

(X —n(u,0))"&(u) =0 forj=1,...,p are a set of the
estimating equations of MLE.
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Algebraic Second-Order Efficient

Estimators (Algebraic Eq. Form)

m If a model is defined by an ideal, Iy := (my,..., my_p),
consisting of all functions vanising on M, then the vector
eq. form (3) of the second-order efficient estimators can be
represented without v or v:

(X —=n)"&(n)+h(X,n,X—n)=0forj=1,...,pand |y
where h; € Z[X, n][t]s-
m As noted bAelow, a unique estimate always exists locally.

Denote it éﬁ or .
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Theorem 3

The solution of a vector eq. form (2) of the second-order efficient
estimators is given by a set of equations (3).

Proof)

m Since fi(u, v) € Z[u][v]>3, there is a fi(u, v, V) € Z[u, ¥][v]s
with additional p-dim. variables ¥ s.t. f;(u, v, v) = f(u, v).

mlet & € {e |ie{l,...,d}\{k}}E. This satisfies the
condition for & for j = 1,..., p in the alg. eq. form. Taking
the Euclidean inner product of each & and the both sides of

X = n(u,0) + 374y vipei() + ¢ 207 fi(u, v)e(u),

we get v; = &(u)"(X — n(u,0)) and
c - fi(u, v) = &(u) (X = n(u, 0)).

m Substituting the former equations, the forms of v;s, to the
later equations, we get an algebraic eq. form (3).

m Here we used _
(X 0, 1) = F(u, (&(0) 07y, (E(0)T (X = (s, 0))7,) for
variables t € RY satisfies h;(X, u, t) € Z[X, u][t]s. O
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Theorem 4

Every algebraic eq. form (3) gives a second-order efficient
estimator.

Proof)
m Represent X in (3) by v and v as X = n(u, v), we get
(n(u, v)—n(u, 0)) " &(u)+h;(n(u, v), u,n(u, v)—n(u,0)) = 0.
m Partially differentiate this by v twice,

.
(62”(”"/)) &(u) = 0 since each term of
OvAvr J

hi(n(u, v), u,n(u,v) —n(u,0)) has degree more than 3 of
(i, v) = ni(u, 0))y and n(u, v) = n(u,0)[,_o = 0.

m By span{g(u);j = 1,...,p} = ((Vun(u,0)) e)'e =
span{GO,,n;a=1,...,p}, we get

(m) _ O _ijOn _
rn)\a P v ove8 au 6 0
v= v=0
m This means the estimator is second-order efficient. ]
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Properties of the Estimators (Cont.)

Proposition 5 (Existence and uniqueness of the estimate)

Assume that the Fisher matrix is non-degenerate around
n(u*) € Ve. Then the estimate given by (3) locally uniquely
exists for small c, i.e. there is a neighborhood G(u*) C R of
n(u*) and 6 > 0 such that for every fixed X € G(u*) and

—0 < ¢ < 4, a unique estimate exists.

Proof) MLE always exists locally. Furthermore, because of the
non-degenerate Fisher matrix, MLE is locally bijective (by the
implicit representation theorem). Thus

(ur, ..., up) = (ga(x —n(w)), ..., g(x —n(u))) in (3) is locally
bijective. Since {g;} and {h;} are continuous, we can select

d > 0 for (3) to be locally bijective for every —0 < ¢ < §.
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Flow for the Estimation

Input: ¢ € Q(n) Ulog Q(n), my,...,my_p € Z[n] s.t.
Ve = V((m,...,mg_p)).

Stepl Compute ¢ and 6(n), G(n), (T™(n) for bias correction)
Step2 Compute f,; € Z[n][€11, - - -, Epal1 St
faj(&a1, - -, €pa) 1= Oyamyj for Epi 1= 01
Step3 Find epy1,...,eq4 € (V,n)*¢ by eliminating {&,;} from
(ei(n), Own) = ew(n)g"(n)¢s = 0 and
fai (&1, - -+ &pa) = 0.
Step4 Select ey, ..., e, € Z[n] s.t. e(n),...,eq(n) are linearly
independent over Q.

Stepb Eliminate vq,. .., v, from
X = 77(Ua O) + 27:p+1 Vi—pei(n) +c- j'):l 75'(U, V)ej(n)'

Onput: g € (Z[n][X — nls)? and h € (Z[n][X — n]3)* for
g(X =n)+c-h(X—n)=0
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A turning point

From a vector eq. form,

d p
X =n(u,0)+ > vipe(u)+c- Y fi(uv)eg(u),
i=p+1 j=1

we have computed a corresponding algebraic eq. form,

(X —n)T&(n) +m(X,n, X —n) =0

(X = n)"&(n) + hp(X,n, X —n) = 0.
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A turning point

From a vector eq. form,

d p
X =n(u,0)+ > vipe(u)+c- Y fi(uv)eg(u),
i=p+1 j=1

we have computed a corresponding algebraic eq. form,

(X —n)T&(n) +m(X,n, X —n) =0

(X = n)"&(n) + hp(X,n, X —n) = 0.

Let's start from an algebraic eq. form!
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A turning point

From a vector eq. form,

d p
X =n(u,0)+ > vipe(u)+c- Y fi(uv)eg(u),
i=p+1 j=1

we have computed a corresponding algebraic eq. form,

(X —n)T&(n) +m(X,n, X —n) =0

(X - W)Tép(n) + hP(X> UB X — 77) = 0.
Let's start from an algebraic eq. form!

OK. But, how do we select h;s?
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A turning point

From a vector eq. form,

d p
X =n(u,0)+ > vipe(u)+c- Y fi(uv)eg(u),
i=p+1 j=1

we have computed a corresponding algebraic eq. form,

(X —n)T&(n) +m(X,n, X —n) =0

(X - W)Tép(n) + hP(X> UB X — 77) = 0.
Let's start from an algebraic eq. form!
OK. But, how do we select h;s?

We will select h;s in order to decrease the polynomial degree!
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Decrease the degree of the estimator

Let R := Z[X,n] and define

Tz = ({(Xi =n)(X = m) (X — i) | L < iy j k < d})

as an ideal of R.

Select a monomial order < and set

m>c>ng > Xy > > Xy Let Go ={g1,...,8m} be a
Grobner basis of Z3 w.r.t. <. Then the residue r; of h; by G_ is
uniquely determined for each .

Theorem 6

If the monomial order < is the pure lexicographic,
ri fori =1,..., d has degree 2 w.r.t. n, and

ri=0fori=1,...,d are the estimating equations for a
second-order efficient estimator.
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OK. We can compute second-order efficient estimators with
degree 2.

So What?
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OK. We can compute second-order efficient estimators with
degree 2.

So What?

So, the homotopy continuation method works!
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OK. We can compute second-order efficient estimators with
degree 2.

So What?
So, the homotopy continuation method works!
Great!

...but, what is the homotopy continuation method?
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Homotopy continuation method

is an algorithm to solve simultaneous polynomial equations
numerically.

Example (2 equations with 2 unknowns)

Input: f,g € Z[x, y]
Output: The solution of f(x,y) = g(x,y) =0
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Homotopy continuation method

is an algorithm to solve simultaneous polynomial equations
numerically.

Example (2 equations with 2 unknowns)

Input: f,g € Z[x, y]
Output: The solution of f(x,y) = g(x,y) =0

Step 1 Select arbitrary polynomials of the form:
fo(x.y) = fo(x) := ax® — by = 0,

go(x,y) = goy) == ay® — b, =0
where d; = deg(f) and d, = deg(g). These are easy to solve.
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Homotopy continuation method

is an algorithm to solve simultaneous polynomial equations
numerically.

Example (2 equations with 2 unknowns)

Input: f,g € Z[x, y]
Output: The solution of f(x,y) = g(x,y) =0

Step 1 Select arbitrary polynomials of the form:
fo(x,y) = fo(x) :== anx® — by = 0,
go(x.y) = go(y) := a2y® — by =0

where d; = deg(f) and d, = deg(g). These are easy to solve.
Step 2 Take the convex combinations:

filx,y) = tF(x,y) + (1 = t)fo(x, y),
gi(xy) = tg(x,y) + (1 — t)go(x,y)

then our target becomes the solution for t = 1.
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Homotopy continuation method (2)

f(x,y) = tf(x, y) + (1 = t)fo(x, y),

gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution
for t = 0 numerically.
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Homotopy continuation method (2)

f(x,y) = tf(x,y) + (1 — t)fo(x, y),
gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution

for t = 0 numerically.
Step 4 Repeat this until we get the solution for t = 1.
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Homotopy continuation method (2)

ft(X7.y) = tf(X7y) + (1 - t)ﬂ)(X,y),

gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution
for t = 0 numerically.
Step 4 Repeat this until we get the solution for t = 1.
This algorithm is called the (linear) homotopy continuation
method and justified only if the path connects t =0and t =1

continuously without an intersection. That can be proved for
almost all a and b. [Li(1997)]
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Homotopy continuation method (2)

ft(X7.y) = tf(X7y) + (1 - t)ﬂ)(X,y),

gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution
for t = 0 numerically.
Step 4 Repeat this until we get the solution for t = 1.
This algorithm is called the (linear) homotopy continuation
method and justified only if the path connects t =0and t =1

continuously without an intersection. That is proved for almost
all a and b. [Li(1997)]
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Homotopy continuation method (2)

ft(X7.y) = tf(X7y) + (1 - t)ﬂ)(X,y),

gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution
for t = 0 numerically.
Step 4 Repeat this until we get the solution for t = 1.
This algorithm is called the (linear) homotopy continuation
method and justified only if the path connects t =0and t =1

continuously without an intersection. That is proved for almost
all a and b. [Li(1997)]
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Homotopy continuation method (2)

ft(X7.y) = tf(X7y) + (1 - t)ﬂ)(X,y),

gi(x,y) = tg(x,y) + (1 — t)go(x, y)
Step 3 Compute the solution for t = § for small § by the solution
for t = 0 numerically.
Step 4 Repeat this until we get the solution for t = 1.
This algorithm is called the (linear) homotopy continuation
method and justified only if the path connects t =0and t =1

continuously without an intersection. That is proved for almost
all a and b. [Li(1997)]
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Homotopy continuation method (3)

The number of the paths is the number of the solutions of

fo(x,y) == fo(x) == ayx™ — b = 0,
go(x.y) = go(y) := a2y® — by = 0.
In this case: d; * d>.
In general case with m unknowns : []7; d;.
This causes a serious problem on the computational costs!

In order to solve this problem, Huber and Sturmfels (1995)
proposed the nonlinear homotopy continuation methods (or the
polyhedral continuation methods). But the degree of the
polynomials still affects the computational costs essentially.
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Homotopy continuation method (3)

The number of the paths is the number of the solutions of

fo(x,y) == fo(x) == ayx™ — b = 0,
go(x.y) = go(y) := a2y® — by = 0.
In this case: d; * d>.
In general case with m unknowns : []7; d;.
This causes a serious problem on the computational costs!

In order to solve this problem, Huber and Sturmfels (1995)
proposed the nonlinear homotopy continuation methods (or the
polyhedral continuation methods). But the degree of the
polynomials still affects the computational costs essentially.

So, decreasing the degree of 2nd order efficient estimators plays
an important role for the homotopy continuation method.

37/51



Example: Log Marginal Model

pij € (0,1) fori=1,2,3and j =1,2
Poisson regression: X ~ Po(Np;) i.i.d.
Model constraints:

P11 + P12 + P13 = P21 + P22 + pos,

pi1 + p12 + p13 + po1 + pa2 + paz = 1,
P11P13P§2 = P%2P21P23-

md=6p=3

- {771 T2 ?73} — N [Pn P12 P13]
U P21 P22 P23
{X1 Xo X3} L {Xn X12 X13}
Xo X5 Xo| & | Xox X2 Xz

m 0" = log(n;)

m 9(6) = D27 exp(6)
m g = 005 = Ol

m w1, up, us] == [11, 73,75
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775974 - 776)
—15("a — 76)
0
€ = € (Vy
0 —77377§ — 212MaMe ( 77)
0
L 7313 + 21217476
[el7 e27 e3] =
(] T m(—mzn% +mame) 1T 771(7712?7?, —mnz) 17
72 n2(—=mn5 — 212147%) m2(mmns + 2121476
UK 0 0
0| ma(msna—m5me) | [na(2mnsns + 1576)
0 ns5(13m4 + 2117375) 0
L0 L 0 1 Lne(msna + 2mnsns) ]

€1,62,63 € (VUT/)LC
m An estimating equation for the second order efficient is

X—n+wvi-e1+v-ea+vi-e+c-vi-e=0
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m MLE is a root of

{ X177227742776 - X177227747762 - X27717727742776 + X27717727747762 -
2 X47717727747762 - X47717737752776 +2 X67717727742776 + X67717737747752 '
—X27727737742?76 + X27727737747762 + X377227742776 - X377227747762 -
XaTh 13756 — 2 XaT)21)3MaTl6” + XeT17)371a7)5> + 2 Xe7)21)371a> e,
—2 X4 M375° N6 — XaT2°NaTlsTe + Xs712°1a>Tl — X570 TaTle” +
2 X611 137aT)5> + Xe112°1aN)516
M1ans> — 12°Nane, T+ 12 + 13 — Na — 15 — 76
—NL =2 — 13— — 15 — N6 + 1}

degree = 5*5*5*4*1*1= 500
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m A 2nd-order-efficient estimator with degree 2:
{ =3 x1x0xa°X6M2 + 6 X1X0Xa° X616 + X1X2Xa 1216 — 2 X1 X2Xa> 16> +
3x1x0xaX6 12 — 6 X1X2XaX6 T4 + 2 X1X2XaX6T2T)4 — 2 X1 X2 X4 X6T)27)6 —
X1X0X6 11214 + 2 X1XX6 14> + 3 X1X3Xa X516 — 2 X1X3XaX5T)576 — 3 X1X3X5° X674 +
2 Xx1X3X5X6TaT]s 4 X1Xa2X6T2° — 2 X1.Xa X6 P21)s — X1XaXs5°1)37)6 — X1 XaX6-1]2> +
2X1X4X62772774 + X1X52X67]37]4 + 3X22X42X67]1 — X22X42771776 — 3X22X4X62771 —
250 xax6M1Ma + 2 X" XaX6T1M6 + X2° X6 M17a — XoXa X6M17)2 — 2 X2 X4~ X617 +
X2X4X62771772 + 2X2X4X62771774 — X3X4X52"71776 + X3X52X6771774 ,
3 XXX X516 — 2 X1X3XaX5M57)6 — 3 X1X3X5° X674 + 2 X1X3X5X6T4]5 —
x1xaXs 13M6 + x1.5°X67314 + 3x2°Xa X6M3 — X2 X4 13m6 — 3 %27 XaX6 T3 —
230°xa X631 + 2 X2° XaXeM3M6 + X2* X6 1314 — 3 XoX3Xa" X6T2 + 6 x2X3Xa” X6 +
X2X3Xa>T2Me — 2 XoX3Xa>T6> + 3 XaXaXaX6°T2 — 6 XaX3Xa X6 Tla + 2 XaX3Xa X672 —
2 X0X3Xa X626 — XoX3X6 MM + 2 X2X3X6 Ma” — XX X6T2T]3 — 2 XaXa” X67)3M6 +
XeXaX6 1213 + 2 XoXa X6 374 + X3Xa"X612° — 2 X3Xa” X6T2Tle — X3XaXs M17)6 —
X3X4X627722 + 2X3X4X62772774 + X3X5 X6117)a,
6 x1X3X4X5°1)5 — & X1X3XaX57)57)s — 6 X1X3X5° X6T)a + 4 X1 X3X5X67]4T)5 —
2 x1x4X5° 1376 + 2 X1.X5°X6T37a + 3 Xo2 X4 X675 — X2°Xa> 1575 — 3 Xo> XaXs X6T)a +
3 x22Xax5X676 + X202 Xax57aT)6 — X2 XaXsT)6> — 3 Xo> X4 X615 — X0 XaXoTaT)5 +
X2* Xa X656 + X" X5X6Ma” — X2 X5 X6MaTle + X2° X6 Nal)s — 2 XaX4" XeM21)5 +
2 XX X5 X6 1274 — 2 X2 Xa X5 X621 + 2 XaXa X6~ 1215 — 2 X3Xa X5 1176 + 2 X3 X5 X6T)17]4,

mnans® — mnane, M+ M2+ 13 — N4 — N5 — 16
—M =M —13—na—15— N+ 1}  degree = 2¥2¥2¥4*1*1= 32 41/51




Computational Results by

the Homotopy Continuation Methods

m Software for the homotopy methods: HOM4PS2 by Lee, Li
and Tsuai.

s X=(1,1,1,1,1,1).
m Repeat count: 10.

algorithm | estimator | #paths | running time [s]
(avg. =+ std.)
linear MLE 500 | 1.137 4+ 0.073
homotopy | 2nd eff. 32| 0.150 + 0.047
polyhedral | MLE 64 | 0.267 + 0.035
homotopy | 2nd eff 24 | 0.119 + 0.027

42 /51



| Degree of Estimating Equation | | Order of Asymptotic Efficiency |

43 /51



| Degree of Estimating Equation | | Order of Asymptotic Efficiency |

1. How to make and compute 2nd-order efficient
estimators algebraically.

44 /51



| Degree of Estimating Equation | | Order of Asymptotic Efficiency |

1. How to make and compute 2nd-order efficient
estimators algebraically.
2. Existence of a 2nd order efficient estimator with degree 2.

45 /51



| Degree of Estimating Equation | | Order of Asymptotic Efficiency |

1. How to make and compute 2nd-order efficient

estimators algebraically.
2. Existence of a 2nd order efficient estimator with degree 2.
3. How to computeit from the likelihood equations.
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Advantage and Disadvantage of
Algebraic Approach

m Availability of algebraic algorithms

m Exactness of the solutions

m “Differentiability” of the results

m Classifiability of models and estimators.

Minus (Future Works)

m Redundancy of the solutions
m Reality of the varieties

m Singularity of the models

m Globality of the theory
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Future works

More Future Works

m Asymptotics based on divergence (Bayesian prediction,
model selection etc.).
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Explicit form of the estimation b

Explicit form by radicals does not exist in general. However, we
can use algebraic approximations e.g.

m Taylor approximation
m Newton-Raphson Methods
m continued fraction

m Laguerre's methods (may contain square roots)
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Bias Correction

Fact 7 (Bias term)

The bias correction term b(il) of i has the same form b(i1) of the
MLE .

Remark 8

We can select h; such as the estimating equation becomes
unbiased,

i.e. Eplgi(X —n)+c-hi(X,n,X —n)]=0.

The bias of the estimator may be decreased by this.
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Example: Periodic Gaussian Model

2

0 1 a a a
X ~ N(p, () with = |°] and T(2)= |2 1 2 >
’ 0 a a 1 a
0 a a° a 1
and 0 < a < 1.
md=3p=1
m log p(x|0) =

2 (x1x2 + xoX3 + x3xa + Xax1) 02 + 2 (x3x1 + Xax2) 03 — 1(6),
| w(ﬁ) = —1/2 |og(914 — 4012022 + 80192293 -2 012032
—4 922932 + 934) + 2 |Og(2 7T),

_ 1 2T
u 9(3) - [1—2a2+4a4’ - 1—2ag+4a4’ 1—2:2+4a4] !
m n(a) = [-2, —4a, 237",

) 2a"+42°+2  8a(l1+a?) 84>
m(gl)=| 8a(l1+a) 4+242°+4a" 8a(l+2)
8 22 8a(l+a?) 2a*+422+2
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Example: Periodic Gaussian Model (Cont.)

eo(a) :=[0,—-1,a]" € 9.n(a).
e1(a) :=[3a% + 1,4a,0],ex(a) :=[-a> —1,0,2] € (9.n(a)) .
m An estimating equation for the second order efficient is
x—7]+v1~el+vz-e2—|—c-v13~e0:0
m By eliminating v; and v, we get
g(a)+c-h(a)=0
where g(a) :=8 (a—1)*(a+1)* (1 +2a2)*-

(42° —8a%+2a%x3 —3x,a* +4a+4dax; +2ax3 — x2)
and

h(a) == (2 a* 4+ a%x0 —a’x3+2a% +axo —2x; — X3 — 4)3_

m MLE is a root of
43° —8a%+2a%3 —3x:a°+4a+4dax; +2axs — xo.
5(38—4§6+6§4—4§2+1)

(1+2 52)2

m (Bias correction term of 3) =
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