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Motivation for Algebraic Information Geometry

Differential geometrical objects (e.g. Fisher metric, connections,
embedding curvatures and divegences) can sometimes be
computed by algebraic computations.

Statistical objects (e.g. Estimator, Bias term of estimators and
Risk) can be computated by algebraic computations.

Most of the existing results on asymptotic theory for algebraic models
are focusing on the singularity.

Key point

We can do something completely new even for the non-singular
classical asymptotic theory.
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Exponential Family

Full and Curved Exponential Family for Sufficient Statistics

dP(x |θ) = exp(xiθ
i − ψ(θ))dν

Full exponential family : {dP(x |θ) | θ ∈ Θ} for an open Θ ⊂ Rd .
x ∈ Rd : a variable representing a sufficient statistics
ν : a carrier measure on Rd

Curved exponential family : {dP(x |θ) | θ ∈ VΘ} for a (not
necessarily smooth) VΘ ⊂ Θ.

We call θ a natural parameter and η = η(θ) := E [x |θ] an
expectation parameter.

E = E (Θ) := {η(θ) | θ ∈ Θ} ⊂ Rd

VE := {η(θ) | θ ∈ VΘ} ⊂ E

η(θ) = ∇θψ(θ)
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Algebraic Curved Exponential Family

We say a curved exponential family is algebraic if the following
two conditions are satisfied:

1) Θ or E is represented by a real algebraic variety, i.e. Θ =
VΘ := V(〈f1, . . . , fk〉) = {θ ∈ Rd |f1(θ) = · · · = fk(θ) = 0} or
E = VE := V(〈g1, . . . , gk〉) for
fi ∈ Z[θ1, . . . , θd ] and gi ∈ Z[η1, . . . , ηd ].

2) θ 7→ η(θ) or η 7→ θ(η) is represented by a polynomial ideal,
i.e. 〈h1, . . . , hk〉 ⊂ Z[θ, η] for hi ∈ Z[θ, η].
Here Z[θ, η] means Z[θ1, . . . , θd , η1, . . . , ηd ].

e.g.

Multivariate Gaussian model with a polynomial relation
between the covariances: graphical models, AR(p),. . .

Algebraic Poisson regression model

Algebraic multinomial regression model
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Algebraic Estimator

Assume non-singularity at the true parameter θ∗ ∈ VΘ.

(u, v) ∈ Rp × Rd−p: local coordinate system around θ∗

s.t. {θ(u, 0)|u ∈ ∃U ⊂ Rp} = VΘ around θ∗.

The full exponential model defines a MLE map
(X (1), . . . ,X (N)) 7→ θ(η)|η=X̄ .

A submodel is given by a coordinate projection map θ(u, v) 7→ u
which defines a (local) estimator (X (1), . . . ,X (N)) 7→ u.

We call θ(u, v) an algebraic estimator if θ(u, v) ∈ Q(u, v).
We can define statistical models and estimators by
η(u, v) ∈ Q(u, v) in the same manner.

Note: MLE for an algebraic model is an algebraic estimator.
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Differential Geometrical Objects

Let w := (u, v) and we use indexes {i , j , ...} for θ and η,
{a, b, ...} for u, {κ, λ, ...} for v and {α, β, ...} for w and Einstein
summation notation. We assume

3) w 7→ η(w) or w 7→ θ(w) is represented by a polynomial ideal.

If conditions 1), 2) and 3) hold then the following quantities are
all algebraic (i.e. represented by a polynomial ideal).

ηi (θ) = ∂
∂θi ψ(θ),

Fisher metric G = (gij ) w.r.t. θ: gij (θ) = ∂2ψ(θ)
∂θi∂θj ,

Fisher metric Ḡ = (g ij ) w.r.t. η: Ḡ = G−1,

Jacobian: Biα(θ) := ∂ηi (w)
∂wα ,

e-connection: Γ
(e)
αβ,γ = ( ∂2

∂wα∂wβ θ
i (w))( ∂

∂wγ ηi (w)),

m-connection: Γ
(m)
αβ,γ = ( ∂2

∂wα∂wβ ηi (w))( ∂
∂wγ θ

i (w)),

Furthermore, if ψ(θ) ∈ Q(θ) ∪ logQ(θ) and
θ(w) ∈ Q(w) ∪ logQ(w), then the quantities are all rational.
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Asymptotic Statistical Inference Theory

Under some regularity conditions on the carrier measure, function
ψ and the manifolds, the following statistical theory holds (See
[Amari(1985)] and [Amari and Nagaoka (2000)]):

Eu[(ûa − ua)(ûb − ub)] = N−1[gab − gaκgκλgbλ]−1 + O(N−2).
Thus, an estimator is 1-st order efficient iff gaκ = 0.
The bias term becomes Eu[ûa − ua] = (2N)−1ba(u) + O(N2)
where ba(u) := Γ(m)a

cd (u)g cd (u). Then, the bias corrected
estimator ǔa := ûa − ba(û) satisfies Eu[ǔa − ua] = O(N−2).
Assume gaκ = 0, then

Γ(m)
κλ,a(w) = (

∂2

∂vκ∂vλ
ηi (w))(

∂

∂ua
θi (w)) = 0 (1)

implies second order efficiency after a bias correction, i.e. it
becomes optimal among the first-order efficient estimators
up to O(N−2).

=⇒ All algebraic!
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Algebraic Second-Order Efficient
Estimators (Vector Eq. Form)

Consider an algebraic estimator η(u, v) ∈ Z[u, v ].

Fact 1

If the degree of η w.r.t. v is 1, then (1) gives the MLE.

In general, (1) implies the following vector equation:

Vector eq. form of the second-order efficient algebraic estimator

X = η(u, 0) +
d∑

i=p+1

vi−pei (u) + c ·
p∑

j=1

fj (u, v)ej (u) (2)

where, for each u,
{ej (u); j = 1, . . . , p} ∪ {ei (u); i = p + 1, . . . , d} is a complete
basis of Rd s.t. ej (u) ∈ (5uη)⊥Ḡ and fj (u, v) ∈ Z[u][v ]≥3, a
polynomial whose degree of v is at least 3, for j = 1, . . . , p.

In (2), a constant c ∈ Q is to understand the perturbation.
11 / 51



Image of the Estimators
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Algebraic Second-Order Efficient
Estimators (Algebraic Eq. Form)

Algebraic eq. form of the second-order efficient algebraic
estimator

(X − η(u, 0))>ẽ1(u) + h1(X , u,X − η(u, 0)) = 0

... (3)

(X − η(u, 0))>ẽp(u) + hp(X , u,X − η(u, 0)) = 0

where
{ẽj (u); j = 1, . . . , p} span ((∇uη(u, 0))⊥Ḡ )⊥E for every u and
hj (X , u, t) ∈ Z[X , u][t]3 for j = 1, . . . , p.

Remark 2

(X − η(u, 0))>ẽj (u) = 0 for j = 1, . . . , p are a set of the
estimating equations of MLE.
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Algebraic Second-Order Efficient
Estimators (Algebraic Eq. Form)

If a model is defined by an ideal, IM := 〈m1, . . . ,md−p〉,
consisting of all functions vanising on M, then the vector
eq. form (3) of the second-order efficient estimators can be
represented without u or v :
(X − η)>ẽj (η) + hj (X , η,X − η) = 0 for j = 1, . . . , p and IM
where hj ∈ Z[X , η][t]3.

As noted below, a unique estimate always exists locally.

Denote it ˆ̂
θ,ˆ̂η or ˆ̂u.
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Theorem 3

The solution of a vector eq. form (2) of the second-order efficient
estimators is given by a set of equations (3).

Proof)

Since fj (u, v) ∈ Z[u][v ]≥3, there is a f̃j (u, v , ṽ) ∈ Z[u, ṽ ][v ]3

with additional p-dim. variables ṽ s.t. f̃j (u, v , v) = fj (u, v).
Let ẽk ∈ {ei | i ∈ {1, . . . , d}\{k}}⊥E . This satisfies the
condition for ẽj for j = 1, . . . , p in the alg. eq. form. Taking
the Euclidean inner product of each ẽj and the both sides of

X = η(u, 0) +
∑d

i=p+1 vi−pei (u) + c ·∑p
j=1 fj (u, v)ej (u),

we get vi = ẽi (u)>(X − η(u, 0)) and
c · fj (u, v) = ẽj (u)>(X − η(u, 0)).
Substituting the former equations, the forms of vi s, to the
later equations, we get an algebraic eq. form (3).
Here we used
hj (X , u, t) := f̃j (u, (ẽi (u)>t)p

i=1, (ẽi (u)>(X − η(u, 0)))p
i=1) for

variables t ∈ Rd satisfies hj (X , u, t) ∈ Z[X , u][t]3.
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Theorem 4

Every algebraic eq. form (3) gives a second-order efficient
estimator.

Proof)

Represent X in (3) by u and v as X = η(u, v), we get
(η(u, v)−η(u, 0))>ẽj (u)+hj (η(u, v), u, η(u, v)−η(u, 0)) = 0.

Partially differentiate this by v twice,(
∂2η(u,v)
∂vλ∂vκ

)>
ẽj (u)

∣∣∣∣
v=0

= 0 since each term of

hj (η(u, v), u, η(u, v)− η(u, 0)) has degree more than 3 of
(ηi (u, v)− ηi (u, 0))d

i=1 and η(u, v)− η(u, 0)|v=0 = 0.

By span{ẽj (u); j = 1, . . . , p} = ((∇uη(u, 0))⊥Ḡ )⊥E =
span{Ḡ∂uaη; a = 1, . . . , p}, we get

Γ
(m)
κλa

∣∣∣
v=0

= ∂2ηi

∂vλ∂vκ
g ij ∂ηj

∂ua

∣∣∣
v=0

= 0

This means the estimator is second-order efficient.
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Properties of the Estimators (Cont.)

Proposition 5 (Existence and uniqueness of the estimate)

Assume that the Fisher matrix is non-degenerate around
η(u∗) ∈ VE . Then the estimate given by (3) locally uniquely
exists for small c, i.e. there is a neighborhood G (u∗) ⊂ Rd of
η(u∗) and δ > 0 such that for every fixed X ∈ G (u∗) and
−δ < c < δ, a unique estimate exists.

Proof) MLE always exists locally. Furthermore, because of the
non-degenerate Fisher matrix, MLE is locally bijective (by the
implicit representation theorem). Thus
(u1, . . . , up) 7→ (g1(x − η(u)), . . . , gp(x − η(u))) in (3) is locally
bijective. Since {gi} and {hi} are continuous, we can select
δ > 0 for (3) to be locally bijective for every −δ < c < δ.
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Flow for the Estimation

Input: ψ ∈ Q(η) ∪ logQ(η), m1, . . . ,md−p ∈ Z[η] s.t.
VE = V (〈m1, . . . ,md−p〉).

Step1 Compute ψ and θ(η), G (η), (Γ(m)(η) for bias correction)

Step2 Compute fai ∈ Z[η][ξ11, . . . , ξpd ]1 s.t.
faj (ξ11, . . . , ξpd ) := ∂uamj for ξbi := ∂ubηi .

Step3 Find ep+1, . . . , ed ∈ (∇uη)⊥Ḡ by eliminating {ξaj} from
〈ei (η), ∂uaη〉Ḡ = eik(η)g kj (η)ξaj = 0 and
faj (ξ11, . . . , ξpd ) = 0.

Step4 Select e1, . . . , ep ∈ Z[η] s.t. e1(η), . . . , ed (η) are linearly
independent over Q.

Step5 Eliminate v1, . . . , vp from

X = η(u, 0) +
∑d

i=p+1 vi−pei (η) + c ·∑p
j=1 fj (u, v)ej (η).

Onput: g ∈ (Z[η][X − η]3)p and h ∈ (Z[η][X − η]3)p for
g(X − η) + c · h(X − η) = 0
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A turning point

From a vector eq. form,

X = η(u, 0) +
d∑

i=p+1

vi−pei (u) + c ·
p∑

j=1

fj (u, v)ej (u),

we have computed a corresponding algebraic eq. form,

(X − η)>ẽ1(η) + h1(X , η,X − η) = 0

...

(X − η)>ẽp(η) + hp(X , η,X − η) = 0.

Let’s start from an algebraic eq. form!

OK. But, how do we select hi s?

We will select hi s in order to decrease the polynomial degree!
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(X − η)>ẽ1(η) + h1(X , η,X − η) = 0

...
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Decrease the degree of the estimator

Let R := Z[X , η] and define

I3 := 〈{(Xi − ηi )(Xj − ηj )(Xk − ηk) | 1 ≤ i , j , k ≤ d}〉
as an ideal of R.
Select a monomial order < and set
η1 > · · · > ηd > X1 > · · · > Xd . Let G< = {g1, . . . , gm} be a
Gröbner basis of I3 w.r.t. <. Then the residue ri of hi by G< is
uniquely determined for each i .

Theorem 6

If the monomial order < is the pure lexicographic,

1 ri for i = 1, . . . , d has degree 2 w.r.t. η, and

2 ri = 0 for i = 1, . . . , d are the estimating equations for a
second-order efficient estimator.
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So what?

OK. We can compute second-order efficient estimators with
degree 2.

So What?

So, the homotopy continuation method works!

Great!

...but, what is the homotopy continuation method?
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Homotopy continuation method

is an algorithm to solve simultaneous polynomial equations
numerically.

Example (2 equations with 2 unknowns)

Input: f , g ∈ Z[x , y ]
Output: The solution of f (x , y) = g(x , y) = 0

Step 1 Select arbitrary polynomials of the form:

f0(x , y) := f0(x) := a1xd1 − b1 = 0,

g0(x , y) := g0(y) := a2y d2 − b2 = 0

where d1 = deg(f ) and d2 = deg(g). These are easy to solve.
Step 2 Take the convex combinations:

ft(x , y) := tf (x , y) + (1− t)f0(x , y),

gt(x , y) := tg(x , y) + (1− t)g0(x , y)

then our target becomes the solution for t = 1.
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Homotopy continuation method (2)

ft(x , y) := tf (x , y) + (1− t)f0(x , y),

gt(x , y) := tg(x , y) + (1− t)g0(x , y)

Step 3 Compute the solution for t = δ for small δ by the solution
for t = 0 numerically.

Step 4 Repeat this until we get the solution for t = 1.
This algorithm is called the (linear) homotopy continuation
method and justified only if the path connects t = 0 and t = 1
continuously without an intersection. That can be proved for
almost all a and b. [Li(1997)]
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Homotopy continuation method (3)

The number of the paths is the number of the solutions of

f0(x , y) := f0(x) := a1xd1 − b1 = 0,

g0(x , y) := g0(y) := a2y d2 − b2 = 0.

In this case: d1 ∗ d2.
In general case with m unknowns :

∏m
i=1 di .

This causes a serious problem on the computational costs!

In order to solve this problem, Huber and Sturmfels (1995)
proposed the nonlinear homotopy continuation methods (or the
polyhedral continuation methods). But the degree of the
polynomials still affects the computational costs essentially.

So, decreasing the degree of 2nd order efficient estimators plays
an important role for the homotopy continuation method.
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Example: Log Marginal Model

pij ∈ (0, 1) for i = 1, 2, 3 and j = 1, 2
Poisson regression: Xij ∼ Po(Npij ) i.i.d.
Model constraints:
p11 + p12 + p13 = p21 + p22 + p23,
p11 + p12 + p13 + p21 + p22 + p23 = 1,
p11p13p2

22 = p2
12p21p23.

d = 6, p = 3[
η1 η2 η3

η4 η5 η6

]
:= N ·

[
p11 p12 p13

p21 p22 p23

]
,

[
X1 X2 X3

X4 X5 X6

]
:=

[
X11 X12 X13

X21 X22 X23

]

θi = log(ηi )

ψ(θ) =
∑6

i=1 exp(θi )

gij = ∂2ψ
∂θi∂θj = δijηi

[u1, u2, u3] := [η1, η3, η5]
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e0 :=




η2
2(η4 − η6)
−η2

2(η4 − η6)
0

−η3η
2
5 − 2η2η4η6

0
η3η

2
5 + 2η2η4η6



∈ (∇uη)

[e1, e2, e3] :=





η1

η2

η3

0
0
0



,




η1(−η1η
2
5 + η3η

2
5)

η2(−η1η
2
5 − 2η2η4η6)

0
η4(η2

2η4 − η2
2η6)

η5(η2
2η4 + 2η1η3η5)

0



,




η1(η1η
2
5 − η3η

2
5)

η2(η1η
2
5 + 2η2η4η6)

0
η4(2η1η3η5 + η2

2η6)
0

η6(η2
2η4 + 2η1η3η5)







e1, e2, e3 ∈ (∇uη)⊥Ḡ

An estimating equation for the second order efficient is

X − η + v1 · e1 + v2 · e2 + v3 · e3 + c · v 3
1 · e0 = 0
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MLE is a root of
{ x1η2

2η4
2η6 − x1η2

2η4η6
2 − x2η1η2η4

2η6 + x2η1η2η4η6
2 −

2 x4η1η2η4η6
2 − x4η1η3η5

2η6 + 2 x6η1η2η4
2η6 + x6η1η3η4η5

2 ,
−x2η2η3η4

2η6 + x2η2η3η4η6
2 + x3η2

2η4
2η6 − x3η2

2η4η6
2 −

x4η1η3η5
2η6 − 2 x4η2η3η4η6

2 + x6η1η3η4η5
2 + 2 x6η2η3η4

2η6,
−2 x4η1η3η5

2η6 − x4η2
2η4η5η6 + x5η2

2η4
2η6 − x5η2

2η4η6
2 +

2 x6η1η3η4η5
2 + x6η2

2η4η5η6 ,
η1η3η5

2 − η2
2η4η6, η1 + η2 + η3 − η4 − η5 − η6 ,

−η1 − η2 − η3 − η4 − η5 − η6 + 1}
degree = 5*5*5*4*1*1= 500
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A 2nd-order-efficient estimator with degree 2:
{−3 x1x2x4

2x6η2 + 6 x1x2x4
2x6η6 + x1x2x4

2η2η6 − 2 x1x2x4
2η6

2 +
3 x1x2x4x6

2η2 − 6 x1x2x4x6
2η4 + 2 x1x2x4x6η2η4 − 2 x1x2x4x6η2η6 −

x1x2x6
2η2η4 + 2 x1x2x6

2η4
2 + 3 x1x3x4x5

2η6 − 2 x1x3x4x5η5η6 − 3 x1x3x5
2x6η4 +

2 x1x3x5x6η4η5 + x1x4
2x6η2

2 − 2 x1x4
2x6p2η6 − x1x4x5

2η3η6 − x1x4x6
2η2

2 +
2 x1x4x6

2η2η4 + x1x5
2x6η3η4 + 3 x2

2x4
2x6η1 − x2

2x4
2η1η6 − 3 x2

2x4x6
2η1 −

2 x2
2x4x6η1η4 + 2 x2

2x4x6η1η6 + x2
2x6

2η1η4 − x2x4
2x6η1η2 − 2 x2x4

2x6η1η6 +
x2x4x6

2η1η2 + 2 x2x4x6
2η1η4 − x3x4x5

2η1η6 + x3x5
2x6η1η4 ,

3 x1x3x4x5
2η6 − 2 x1x3x4x5η5η6 − 3 x1x3x5

2x6η4 + 2 x1x3x5x6η4η5 −
x1x4x5

2η3η6 + x1x5
2x6η3η4 + 3 x2

2x4
2x6η3 − x2

2x4
2η3η6 − 3 x2

2x4x6
2η3 −

2 x2
2x4x6η3η4 + 2 x2

2x4x6η3η6 + x2
2x6

2η3η4 − 3 x2x3x4
2x6η2 + 6 x2x3x4

2x6η6 +
x2x3x4

2η2η6 − 2 x2x3x4
2η6

2 + 3 x2x3x4x6
2η2 − 6 x2x3x4x6

2η4 + 2 x2x3x4x6η2η4 −
2 x2x3x4x6η2η6 − x2x3x6

2η2η4 + 2 x2x3x6
2η4

2 − x2x4
2x6η2η3 − 2 x2x4

2x6η3η6 +
x2x4x6

2η2η3 + 2 x2x4x6
2η3η4 + x3x4

2x6η2
2 − 2 x3x4

2x6η2η6 − x3x4x5
2η1η6 −

x3x4x6
2η2

2 + 2 x3x4x6
2η2η4 + x3x5

2x6η1η4,

6 x1x3x4x5
2η6 − 4 x1x3x4x5η5η6 − 6 x1x3x5

2x6η4 + 4 x1x3x5x6η4η5 −
2 x1x4x5

2η3η6 + 2 x1x5
2x6η3η4 + 3 x2

2x4
2x6η5 − x2

2x4
2η5η6 − 3 x2

2x4x5x6η4 +

3 x2
2x4x5x6η6 + x2

2x4x5η4η6 − x2
2x4x5η6

2 − 3 x2
2x4x6

2η5 − x2
2x4x6η4η5 +

x2
2x4x6η5η6 + x2

2x5x6η4
2 − x2

2x5x6η4η6 + x2
2x6

2η4η5 − 2 x2x4
2x6η2η5 +

2 x2x4x5x6η2η4−2 x2x4x5x6η2η6 +2 x2x4x6
2η2η5−2 x3x4x5

2η1η6 +2 x3x5
2x6η1η4,

η1η3η5
2 − η2

2η4η6, η1 + η2 + η3 − η4 − η5 − η6 ,

−η1 − η2 − η3 − η4 − η5 − η6 + 1} degree = 2*2*2*4*1*1= 32 41 / 51



Computational Results by
the Homotopy Continuation Methods

Software for the homotopy methods: HOM4PS2 by Lee, Li
and Tsuai.

X = (1, 1, 1, 1, 1, 1).

Repeat count: 10.

algorithm estimator #paths running time [s]
(avg. ± std.)

linear MLE 500 1.137 ± 0.073
homotopy 2nd eff. 32 0.150 ± 0.047
polyhedral MLE 64 0.267 ± 0.035
homotopy 2nd eff 24 0.119 ± 0.027
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Summary
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Summary
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Summary
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Summary
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Advantage and Disadvantage of
Algebraic Approach

Plus

Availability of algebraic algorithms

Exactness of the solutions

“Differentiability” of the results

Classifiability of models and estimators.

Minus (Future Works)

Redundancy of the solutions

Reality of the varieties

Singularity of the models

Globality of the theory
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Future works

More Future Works

Asymptotics based on divergence (Bayesian prediction,
model selection etc.).
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Explicit form of the estimation ˆ̂u

Explicit form by radicals does not exist in general. However, we
can use algebraic approximations e.g.

Taylor approximation

Newton-Raphson Methods

continued fraction

Laguerre’s methods (may contain square roots)
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Bias Correction

Fact 7 (Bias term)

The bias correction term b(ˆ̂u) of ˆ̂u has the same form b(û) of the
MLE û.

Remark 8

We can select hi such as the estimating equation becomes
unbiased,
i.e. Eη∗[gi (X − η) + c · hi (X , η,X − η)] = 0.
The bias of the estimator may be decreased by this.
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Example: Periodic Gaussian Model

X ∼ N(µ,Σ(a)) with µ =




0
0
0
0


 and Σ(a) =




1 a a2 a
a 1 a a2

a2 a 1 a
a a2 a 1




and 0 ≤ a < 1.

d = 3, p = 1

log p(x |θ) =
2 (x1x2 + x2x3 + x3x4 + x4x1) θ2 + 2 (x3x1 + x4x2) θ3 − ψ(θ),

ψ(θ) = −1/2 log(θ1
4 − 4 θ1

2θ2
2 + 8 θ1θ2

2θ3 − 2 θ1
2θ3

2

−4 θ2
2θ3

2 + θ3
4) + 2 log(2 π),

θ(a) = [ 1
1−2a2+4a4 ,− a

1−2a2+4a4 ,
a2

1−2a2+4a4 ]>,

η(a) = [−2,−4a,−2a2]>,

(g ij ) =

[
2 a4 + 4 a2 + 2 8 a

(
1 + a2

)
8 a2

8 a
(
1 + a2

)
4 + 24 a2 + 4 a4 8 a

(
1 + a2

)
8 a2 8 a

(
1 + a2

)
2 a4 + 4 a2 + 2

]
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Example: Periodic Gaussian Model (Cont.)

e0(a) := [0,−1, a]> ∈ ∂aη(a).
e1(a) := [3a2 + 1, 4a, 0], e2(a) := [−a2 − 1, 0, 2] ∈ (∂aη(a))⊥Ḡ .

An estimating equation for the second order efficient is

x − η + v1 · e1 + v2 · e2 + c · v 3
1 · e0 = 0

By eliminating v1 and v2, we get

g(a) + c · h(a) = 0

where g(a) := 8 (a − 1)2 (a + 1)2 (1 + 2 a2)
2 ·

(4 a5 − 8 a3 + 2 a3x3 − 3 x2 a2 + 4 a + 4 ax1 + 2 ax3 − x2 )
and
h(a) := (2 a4 + a3x2 − a2x3 + 2 a2 + ax2 − 2 x1 − x3 − 4)

3
.

MLE is a root of
4 a5 − 8 a3 + 2 a3x3 − 3 x2 a2 + 4 a + 4 ax1 + 2 ax3 − x2 .

(Bias correction term of ˆ̂a) =
ˆ̂a
(

ˆ̂a
8−4 ˆ̂a

6
+6 ˆ̂a

4−4 ˆ̂a
2
+1
)

(
1+2 ˆ̂a

2
)2 .
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