Why do we care about inequalities in (algebraic) statistics?

Piotr Zwiernik Mittag-Leffler Institute, Stockholm (j.w. Jim Q. Smith)

> WOGAS 3, Warwick, 2 April 2011

Outline of the talk

- Algebraic statistical models and constrained multinomial models.
- How inequalities affect inference for the tripod tree model?
- Extensions to more general models.

Algebraic statistical model

- *X* a random variable with *m* values, $p = (p_1, \ldots, p_m)$
- probability simplex $\Delta = \{p \in \mathbb{R}^m : \sum_i p_i = 1, p_i \ge 0\}$
- ASM: $p: \Theta \to \Delta$, $\mathcal{M} = p(\Theta)$, p polynomial map
- ASM given by polynomial equations and inequalities
- *X*, *Y* binary and $X \perp\!\!\!\perp Y$: $p : [0, 1]^2 \rightarrow \Delta$

$$(\theta_x, \theta_y) \mapsto ((1 - \theta_x)(1 - \theta_y), (1 - \theta_x)\theta_y, \theta_x(1 - \theta_y), \theta_x\theta_y)$$

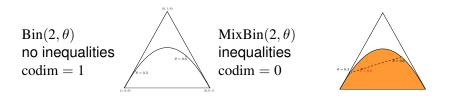
• implicit equation: $p_{00}p_{11} - p_{01}p_{10} = 0$

ASM as a constrained multinomial model

• interpret Δ as a set of parameters for the multinomial model.

• $\mathcal{M} = p(\Theta) \subseteq \Delta$ gives a constrained multinomial model

Example:

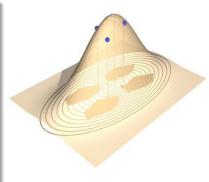


The likelihood function

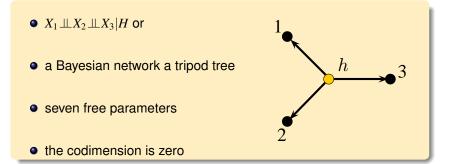
- $X \in \{1, \dots, m\}$, $X^{(1)}, \dots, X^{(N)}$ an *iid* sample from \mathcal{M}
- likelihood: $L(\theta; x) \propto \prod_{i=1}^{m} p_i(\theta)^{x_i}$
- constrained: $L(p; x) \propto \prod_{i=1}^{m} p_i^{x_i}$ such that $p \in \mathcal{M} = p(\Theta)$
- unconstrained: $L(p; x) \propto \prod_{i=1}^{m} p_i^{x_i}$ such that $p \in \Delta$

The constrained likelihood

- typically MLE does not have a closed-form solution
- the MLE will often lie on the boundary of the parameters space
 - no usual asymptotics for the LR statistic, MLE etc.
 - posterior heavily depends on prior specification



The tripod tree model



Alternative parametrization

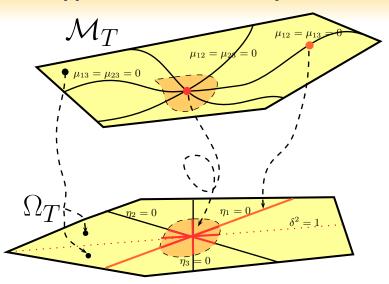
$$\mathcal{M}_{12} = \frac{1}{4} (1 - \delta^2) \eta_1 \eta_2,$$

$$k_{13} = \frac{1}{4} (1 - \delta^2) \eta_1 \eta_3,$$

$$k_{23} = \frac{1}{4} (1 - \delta^2) \eta_2 \eta_3,$$

$$k_{123} = \frac{1}{4} (1 - \delta^2) \delta \eta_1 \eta_2 \eta_3$$

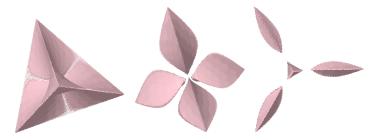
Application: Identifiability



10/17

The model structure

- The model covers 8% of the probability simplex.
- Picture: $\mu_1 = \mu_2 = \mu_3 = \frac{1}{2}$ and $k_{123} = 0, 0.005, 0.02$



11/17

The constrained likelihood for the tripod

Three possible scenarios:

- (i) $\hat{p} \in \mathcal{M}_T$ and then $\ell(p)$ for $p \in \mathcal{M}$ is unimodal and $\ell(\theta)$ bimodal
- (ii) p̂ ∉ M_T and ℓ(p) is multimodal with one global maximum but many local maxima.
- (iii) $\hat{p} \notin \mathcal{M}_T$ and $\ell(p)$ has multiple global maxima.

Implications for inference

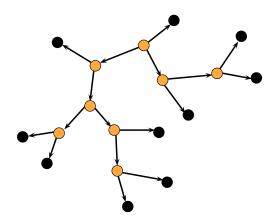
$$\begin{bmatrix} x_{000} & x_{001} & x_{100} & x_{101} \\ x_{010} & x_{011} & x_{110} & x_{111} \end{bmatrix} = \begin{bmatrix} 2069 & 16 & 2242 & 331 \\ 2678 & 863 & 442 & 1359 \end{bmatrix}.$$

• only $k_{12}k_{13}k_{23} \ge 0$ does not hold

• the EM algorithm gives 4 different maxima of $L(\theta)$

	$ heta_1^{(r)}$	1 0	1 1	10	$\theta_{1 1}^{(2)}$	10	1 1
		0.3371					
2	0.5342	0.5524	0.3371	0.0000	1.0000	0.0745	0.4159
		0.0000					
4	0.5229	0.9167	0.0000	0.4216	0.6369	0.3775	0.1468

Does it generalize?



Main theorems

Theorem[Z.,JQ Smith]

- There exist explicit formulae for the MLEs if $\hat{p} \in \mathcal{M}_T$.
- Generically the map is $2^{int(V)} to 1$,
 - for some point the preimage is a manifold with corners, otherwise it is a singular subset of the parameter space.
- All the equations and inequalities defining the model can be listed.

15/17

Models with equality constraints

- Can we determine from p̂ whether the MLE lies on the boundary?
- Can we perform a full Bayesian analysis?
- Can we test these models?

For the Bayesian perspective see the results of the Dutch group

- Utrecht: Herbert Hoijtink, Irene Klugkist, Olav Laudy, Bernet Kato et al.
- Amsterdam: Ruud Wetzels, Raoul P.P.P. Grasman, Eric-Jan Wagenmakers

Thank you!

17/17

The bibliography

DAVIS-STOBER, C., Analysis of multinomial models under inequality constraints: Applications to measurement theory, Journal of Mathematical Psychology, 2009.

P. ZWIERNIK AND J. Q. SMITH, *Tree-cumulants and the geometry of binary tree models*, to appear in *Bernoulli*.

P. ZWIERNIK AND J. Q. SMITH, *The geometry of tree models and some consequences for inference*, on arXiv.