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www.maths.ox.ac.uk/chebfun

“An Extension of MATLAB to continuous functions and operators”
Z. Battles & L.N. Trefethen, SIAM J. Sci. Comp. (2004)
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Taming the combinatorial explosion:
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Key point: Finite precision does not require symbolic accuracy.

Instead,

Represent functions using Chebyshev polynomials

Round to 16 digits (IEEE double precision) at each step

Further tasks follow naturally: integrals, derivatives, rootfinding,
optimisation

With some more work: linear and nonlinear differential equations.

>> f = chebfun(‘exp(-x.^2).*sin(3*cos(4*pi*(1-x).^2)).*(1-x).^3’);
>> length(f)

ans = 646
>> sum(f)

ans = -0.001878416746701
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Why Chebyshev polynomials?

Mathematically, they are close to optimal and well-conditioned
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(a) Monomial basis
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(b) Chebyshev basis

Computationally, they are a good choice because of the one-to-one
relationship between the coefficients ak in the expansion

fn(x) =
n∑

k=0

ak Tk (x)

and the values fn(xk ) taken at Chebyshev points xk = − cos(jπ/n), j = 0 . . . n.

An algorithm based on the FFT enables us to go back and forth between
these data in O(n log n) time.
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Beneath the surface, a lot is happening

Adaptive construction: Decay of Chebyshev coeffcients

Evaluation: Barycentric interpolation

Definite integration: Clenshaw-Curtis quadrature

Rootfinding: Eigenvalues of a colleague matrix

Piecewise representations: Automatic edge detection

Divergent functions: Exponent calculation

Linear DEs: Adaptive spectral collocation

Nonlinear DEs: Newton-Kantorovich iteration & automatic differentiation
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