Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Information Geometry:

an overview

Paul Marriott

Department of Statistics and Actuarial Science, University of Waterloo

> WOGAS III 5th April 2011

> > < □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Overview

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Information Geometry

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

- Overview Information Geometry (IG) in broad sense.
- Models: full, curved, extended exponential and 'universal' families
- Geometries: expected/observed dual affine spaces, information and entropy, mixture geometry
- Methods: higher order asymptotics, tensor calculus, curvature, dimension reduction and spectral techniques
- Notation: [1] refers to References while [S:7] refers to Wogas III session number

Paul Marriott

Introduction

Structural results

- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Information Geometry

- How to connect two probability density or mass functions *f*(*x*) and *g*(*x*) in some space of models?
 - -1: $\rho f(x) + (1 \rho)g(x)$ +1: $\frac{f(x)^{\rho}g(x)^{1-\rho}}{G(x)}$
- Two different affine structures used simultaneously
 - -1: Mixture affine geometry on unit measures
 - +1: Exponential affine geometry on positive measures
- Fisher Information's roles
 - measures angles and lengths
 - maps between +1 and -1 representations of tangent vectors, [3], [4], [18]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Visualising IG: extended trinomial example

(a) -1-geodesics in -1-simplex

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Visualising IG: extended trinomial example

(a) -1-geodesics in -1-simplex

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Visualising IG: extended trinomial example

(a) -1-geodesics in -1-simplex

0.0 0.2 0.4 0.6 0.8 1.0

ト ミ のへの

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensional extensions

Visualising IG: extended trinomial example

(b) -1-geodesics in +1-simplex

(c) +1-geodesics in -1-simplex

三 のへの

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensional extensions

Visualising IG: extended trinomial example

(b) -1-geodesics in +1-simplex

(c) +1-geodesics in -1-simplex

0.0 0.2 0.4 0.6 0.8 1.0

三 のへの

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensional extensions

Visualising IG: extended trinomial example

(b) -1-geodesics in +1-simplex

(c) +1-geodesics in -1-simplex

E 990

Paul Marriott

Introduction

Structural results

- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensional examples
- Infinite dimensiona extensions

• There exists a mixed parameterisation [6] as solution of differential equation

- -1-geodesics Fisher orthogonal to +1-geodesics
- Limit of mixed parameters give extended exponential family
- Key to structural theorem [3] and idea of inferential cuts

Duality

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensiona extensions

Asymptotic expansions

- Strong links between IG and higher order asymptotic expansions [7]
- Can apply Edgeworth, saddlepoint or Laplace expansions [29]

Flexible, tractable given IG, invariance properties clear
 [3]

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Example: survival times

- Censored survival times in leukaemia patients adapted from [15]
- Censored exponential model, [18, 24]

$$\exp\left[\lambda_{1}x + \lambda_{2}y - \log\left[\frac{1}{\lambda_{2}}\left(e^{\lambda_{2}t} - 1\right) + e^{\lambda_{1} + \lambda_{2}t}\right]\right]$$

this is curved exponential family $(\lambda_1(\mu), \lambda_2(\mu))$

• Bias of MLE is given by information geometric formula

$$-\frac{1}{2n}\left\{ \Gamma_{cd}^{(-1)\,a}g^{cd}+h_{\kappa\lambda}^{(-1)\,a}g^{\kappa\lambda}\right\}$$

• This formula is 'not difficult' in the sense only uses sums and partial derivatives.

Paul Marriott

Introduction

Structura results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Asymptotic expansions

- High dimensional calculus though tensor analysis, McCullagh [27]
- Many terms need to be computed in high dimensional problems [S:7]
- Language issue
- Singularity of Fisher information matters

Fisher information can be singular or infinite [22]

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Embedding curvature and affine approximation

- Curvature(s) key part(s) of differential geometry
- Tangent space gives best linear approximation
- Tangent and curvature gives best two dimensional affine embedding space

・ コット (雪) (小田) (コット 日)

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Embedding curvature and affine approximation

- Curvature(s) key part(s) of differential geometry
- Tangent space gives best linear approximation
- Tangent and curvature gives best two dimensional affine embedding space

・ コット (雪) (小田) (コット 日)

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Embedding curvature and affine approximation

- Curvature(s) key part(s) of differential geometry
- Tangent space gives best linear approximation
- Tangent and curvature gives best two dimensional affine embedding space

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensional extensions

Curvature and affine approximation

- Different affine geometries give different approximating spaces
- Low dimensional +1-affine spaces give approximate sufficient statistics [26]
- Low dimensional -1 approximations give limits to identification and computation in mixture models [25], [2], [S:3], [S:6]

Paul Marriott

Introduction

Structura results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Example: survival times

- Example: censored survival times in leukaemia patients adapted from [15]
- Use censored exponential distribution

Paul Marriott

Introduction

Structura results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensional extensions

Example: survival times

- Example: censored survival times in leukaemia patients adapted from [15]
- Use censored exponential distribution

Distribution of MLE

mu

・ロト・「聞・・「問・・「問・・」 しゃくの

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensional extensions

• Lindsay [23] embeds problem in finite dimensional affine space determined by sample size [21]

• Enough structure to compute non-parametric maximum likelihood, [21].

Mixture Geometry

 Directional derivative is key tool to maximise likelihood over a –1-convex hull [S:3]

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction

Mixture geometries

- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Mixture geometries

- Lindsay's geometry is finite dimensional version of Amari's –1 geometry
- Need to work in convex hull in -1-dimensional affine space
- Low dimensional -1 approximations give limits to identification and computation in mixture models, [2]
- Information geometry can give efficient approximation of high dimensional convex hulls by polytopes

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction

Mixture geometries

- Information and entropy
- High dimensional examples
- Infinite dimensional extensions

Example: mixture of binomials

- Toxicological experiment [20] studied frequencies of dead implants in rats
- 'simple one-parameter binomial [...] models generally provide poor fits to this type of binary data'

IG gives ways to explore convex hull efficiently

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensiona extensions

Information and entropy

- Given a set of statistics s_i(x) construct model which maximise entropy with fixed E(s_i(S)), [S:1], [S:2]
- Models which are orthogonal to level sets of *E*(*s_i*(*S*)) called least informative models

- Pythagorean results minimising KL divergence by orthogonal projection, [S:6]
- Links with decision theory [14], non parameteric methods such as bootstrap and empirical likelihood, [S:5]

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensional extensions

Network Models

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- High dimensional (curved) exponential family examples based on network models, [16], [S:1]
- Binary indicator functions *Y_{ij}* such that we have 1 if an edge exists from *i* to *j* and zero otherwise.

• Build 'least informative model'

$$P_{\eta}(Y = y) = \frac{\exp\left\{\eta^{T}g(y, X)\right\}}{\kappa(\eta)}$$

where sufficient statistics are graph statistics

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensional extensions

Example: New England Lawyers

- [19] looks at working relations among 36 partners in a New England law firm
- Computing $\kappa(\eta)$ is typically intractable since a sum over 2^{630} terms
- Approaches include [S:8]
 - Pseudo-likelihood [30]
 - simulated moments [28]
 - MCMC [17]

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy

High dimensional examples

Infinite dimensional extensions

• Consider the example from [13] of the cyclic graph of

order 4 with binary values at each node, [S:1], [S:4].

Graphical models: FEF

- Models lie in 15-dimensional simplex, but with constraints imposed by conditional independence
- Constraints linear in +1-affine parameters

$$\eta_i + \eta_j = \eta_k + \eta_l$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

· So get full exponential family

Paul Marriott

Introduction

Structural results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensional examples

Infinite dimensiona extensions

Graphical models: CEF

- Give *ordered* set of discrete random variables X_i , i = 1, 2, 3 be binary random variables, [S:1], [S:4].
- The simplex which describes their distribution is $2^3 1 = 7$ dimensional
- A DAG defines dependences for example the simple graph

or $P(X_3|X_2, X_1) = P(X_3|X_2)$

 These constraints give non-linear constriants in +1 affine space

$$\eta_{001} = \log(\frac{(1 - \pi_{10}^3)(1 - \pi_{11}^2)\pi_1}{\pi_{11}^3 \pi_{11}^2 \pi_1})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and curved exponential families [13].

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy

High dimensional examples

Infinite dimensional extensions

DAG with hidden variables

- In multinomials independence is expressible as a finite set of polynomial equalities, [S:4].
- Add hidden variables

- Example lies in 7 dimensional simplex- mixes over a 3
 dimensional CEF
- The model space is not a manifold but a variety- union of different dimensional manifolds- extended exponential family

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Infinite dimensional issues

- There exists geometry of infinite simplex [1]
- Different 'faces' of the infinite simplex have different support and different moment structures
- Information geometry of infinite dimensional families
 [12] and [11] uses Hilbert or Banach space structures
- There still exist ± 1 geodesics between distributions, but there are boundaries.

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Neighbourhood of Model

- Look +1-geodesic joining standard normal and Cauchy,
 [8]
- Given by $f(x)^{\rho}g(x)^{1-\rho}/C(\rho)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Connecting Normal and Cauchy

• Infinite Fisher information possible [22]

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Neighbourhood of Model

- Sensitivity of inference to model assumptions by understanding 'neighbourhood of model', [S:3]
- · Links to non and semi-parametrics
- Mixture of normal and Cauchy, -1- geodesic $(1 \rho)f(x) + \rho g(x)$
 - If $\rho << 1/n$ models very 'close' by some measures

- models very different by other measures
- Asymmetry of KL divergence

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

Summary

- Overview Information geometry in broad sense.
- Models: full, curved and extended exponential, and 'universal' families
- Geometries: expected/observed dual flat manifolds, information theory, mixture geometry
- Methods: Higher order asymptotics, tensor calculus, curvature, dimension reduction and spectral techniques

Paul Marriott

Introductio

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

- [1] Anaya-Izquierdo, K., Critchley, F, Marriott P. & Vos P. (2010), Towards information geometry on the space of all distributions, *Preprint*
- [2] Anaya-Izquierdo, K and Marriott, P. (2007) Local mixtures of Exponential families, *Bernoulli* Vol. 13, No. 3, 623-640.
- [3] Amari, S.-I. (1985). *Differential-Geometrical Methods in Statistics*. Lecture Notes in Statistics, No. 28, New York: Springer.
- [4] Amari, S.-I. and Nagaoka, H. (2000). *Methods of Information Geometry*. Providence, Rhode Island: American Mathematical Society.
- [5] Barndorff-Nielsen, O., (1978) *Information and exponential families in statistical theory*, London: John Wiley & Sons
- [6] Barndorff-Nielsen, O. E. and Blaesild, P. (1983). *Exponential models with affine dual foliations*. Annals of Statistics, 11(3):753–769.
- [7] Barndorff-Nielsen, O.E. and Cox, D.R, (1994), *Inference and Asymptotics*, Chapman & Hall:London

References I

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

[8] Brown, L. D. (1986). Fundamentals of statistical exponential families: with applications in statistical decision theory, Institute of Mathematical Statistics

- [9] Csiszar, I. and Matus, F., (2005). Closures of exponential families, *The Annals of Probability*, 33(2):582–600
- [10] Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency), *The Annals of Statistics*, 3(6):1189–1242
- [11] Fukumizu, K. (2005). Infinite dimensional exponential families by reproducing kernel hilbert spaces. *Proceedings of the 2nd International Symposium on Information Geometry and its Applications*,p324-333.
- [12] Gibilisco, P. and Pistone, G. (1998). Connections on non-parametric statistical manifolds by orlicz space geometry. *Infinite Dimensional Analysis, Quantum Probability and Related Topics,* 1(2):325-347.

References II

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

[13] D. Geiger, D.Heckerman, H.King and C. Meek (2001) Stratified Exponential Families: Graphical Models and Model Selection, *Annals of Statistics*, Vol. 29, No. 2, pp 505-529

References III

- [14] Grunwald P.D. and Dawid A.P. (2004) Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory, *Annals of Statistics*, 32, 4 1267-1433
- [15] Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J. and Ostrowski, E. (1994), A handbook of small data sets , Chapman & Hall, London.
- [16] D. Hunter, (2007) Curved exponential family models for social networks, *Social Networks*, 29 216–230.
- [17] Hunter D, Handcock M. (2006) Inference in curved exponential family models for networks *J. of Computational and Graphical Statistics* 15, 565-583
- [18] Kass, R. E. and Vos, P. W. (1997). *Geometrical Foundations of Asymptotic Inference*. New York: Wiley.

Paul Marriott

Introduction

Structura results

Higher order asymptotics

Dimension Reduction

Mixture geometries

Information and entropy

High dimensiona examples

Infinite dimensional extensions

[19] Lazega, E., Pattison, P.E., (1999) Multiplexity, generalized exchange and cooperation in organizations: a case study. Social Networks 21, 67–90

References IV

- [20] L. L. Kupper L.L., and Haseman J.K., (1978), The Use of a Correlated Binomial Model for the Analysis of Certain Toxicological Experiments, *Biometrics*, Vol. 34, No. 1 (Mar., 1978), pp. 69-76
- [21] Mary L. Lesperance and John D. Kalbfleisch (1992) An Algorithm for Computing the Nonparametric MLE of a Mixing Distribution JASA Vol. 87, No. 417 (Mar., 1992), pp. 120-126
- [22] Li P., Chen J., & Marriott P., (2009) Non-finite Fisher information and homogeneity: the EM approach, *Biometrika* 96, 2 pp 411-426.
- [23] Lindsay, B.G. (1995). *Mixture models: Theory, Geometry, and Applications*, Hayward CA: Institute of Mathematical Sciences.
- [24] Marriott P and West S, (2002), On the Geometry of Censored Models, *Calcutta Statistical Association Bulletin* 52, pp 235-250.

Paul Marriott

Introduction

- Structural results
- Higher order asymptotics
- Dimension Reduction
- Mixture geometries
- Information and entropy
- High dimensiona examples
- Infinite dimensional extensions

[25] Marriott, P (2002), On the local geometry of Mixture Models, *Biometrika*, 89, 1, pp 77-89

- [26] Marriott, P., & Vos, P. (2004), On The Global Geometry of Parametric Models and Information Recovery, *Bernoulli*, **10** (2), 1-11
- [27] McCullagh P. (1987) *Tensor Methods in Statistics*, Chapman and Hall, London.
- [28] Snijders, T. A. B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph Models, *Journal of Social Structure*, 3.
- [29] Small, C.G. (2010) *Expansions and asymptotics for statistics*, Chapman and Hall
- [30] Strauss, D., and Ikeda, M. (1990), Pseudolikelihood Estimation for Social Networks, *Journal of the American Statistical Association*, 85, 204–212.

References V