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Introduction

Overview

Overview Information Geometry (IG) in broad sense.

Models: full, curved, extended exponential and
‘universal’ families

Geometries: expected/observed dual affine spaces,
information and entropy, mixture geometry

Methods: higher order asymptotics, tensor calculus,
curvature, dimension reduction and spectral techniques

Notation: [1] refers to References while [S:7] refers to
Wogas Il session number
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Structural
results

e How to connect two probability density or mass
functions f(x) and g(x) in some space of models?
12 pf(x) + (1 = p)g(x)

. f(x)Pgx)'
+1: )

¢ Two different affine structures used simultaneously
-1: Mixture affine geometry on unit measures
+1: Exponential affine geometry on positive measures
¢ Fisher Information’s roles
e measures angles and lengths
e maps between +1 and —1 representations of tangent
vectors, [3], [4], [18]
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Duality

There exists a mixed parameterisation [6] as solution of
differential equation

Mixed parameterisation

00 02 04 06 08 10

—1-geodesics Fisher orthogonal to +1-geodesics

Limit of mixed parameters give extended exponential
family

Key to structural theorem [3] and idea of inferential cuts
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Asymptotic expansions

e Strong links between IG and higher order asymptotic

expansions [7]

Higher order e Can apply Edgeworth, saddlepoint or Laplace

asymptotics

expansions [29]

MLE of mean

Density
00 01 02 03 04 05

mean

o Flexible, tractable given IG,
[3]

MLE of rate

15

Density
1.0

0.5

0.0

rate

invariance properties clear
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Censored survival times in leukaemia patients adapted
from [15]

e Censored exponential model, [18, 24]

asymptotics

exp [MX + A2y — log [; (e&’ - 1) - eA‘“ﬁH
2

this is curved exponential family (A(u), A2(x))
Bias of MLE is given by information geometric formula

_%{ "% + h g

This formula is ‘not difficult’ in the sense only uses
sums and partial derivatives.
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Asymptotic expansions
High dimensional calculus though tensor analysis,
McCullagh [27]

Higher order Many terms need to be computed in high dimensional
asymptotics problems [S:7]

Language issue
Singularity of Fisher information matters

Paul Marriott

Eigenvalues

Eigent
000 001 002 003 004 0.05 0.06

e Fisher information can be singular or infinite [22]
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Dimension

Reduction ; e Curvature(s) key part(s) of

—— differential geometry

e Tangent space gives best
T linear approximation

e Tangent and curvature gives

" best two dimensional
) affine embedding space
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Dimension

Reduction « Different affine geometries give different approximating
spaces
e Low dimensional +1-affine spaces give approximate
sufficient statistics [26]
e Low dimensional —1 approximations give limits to
identification and computation in mixture models [25],
[2], [S:3], [S:6]
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Example: survival times

e Example: censored survival times in leukaemia
patients adapted from [15]

e Use censored exponential distribution

Full exponential family

15
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ool Mo Example: survival times
e Example: censored survival times in leukaemia
patients adapted from [15]
e Use censored exponential distribution
Dimension
Reduction

Distribution of MLE
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e Lindsay [23] embeds problem in finite dimensional
affine space determined by sample size [21]

e Enough structure to compute non-parametric maximum
likelihood, [21].

Mixture
geometries

Dimension 2

Direction Derivative

0.0 0.1 0.2 0.3 0.4

Dimension 1 theta

¢ Directional derivative is key tool to maximise likelihood
over a —1-convex hull [S:3]
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Mixture geometries

Lindsay’s geometry is finite dimensional version of
Amari’s —1 geometry

Need to work in convex hull in —1-dimensional affine
space

Low dimensional —1 approximations give limits to
identification and computation in mixture models, [2]
Information geometry can give efficient approximation
of high dimensional convex hulls by polytopes
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Example: mixture of binomials

¢ Toxicological experiment [20] studied frequencies of
dead implants in rats

e ‘simple one-parameter binomial [...] models generally
provide poor fits to this type of binary data’

Data and Fit Mixing proportions Direction Derivative

data.dis/sum(data.dis)
2

T T T T T T T T T T T T T T e e
001 23 45 6 7 001 23 456 7 0123 456 7

Osize Support points. mu

e |G gives ways to explore convex hull efficiently
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Information and entropy
o Given a set of statistics s;(x) construct model which
maximise entropy with fixed E(s;(S)), [S:1], [S:2]

e Models which are orthogonal to level sets of E(s;(S))
called least informative models

Paul Marriott

Information
and entropy

e Pythagorean results minimising KL divergence by
orthogonal projection, [S:6]

e Links with decision theory [14], non parameteric
methods such as bootstrap and empirical likelihood,
[S:5]
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e High dimensional (curved) exponential family examples
based on network models, [16], [S:1]

e Binary indicator functions Yj; such that we have 1 if an
edge exists from j to j and zero otherwise.

High
dimensional
examples

e Build ‘least informative model’

_exp{n’g(y. X)}
k(1)

Py(Y =)

where sufficient statistics are graph statistics
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High
dimensional
examples

Example: New England
Lawyers

e [19] looks at working relations among 36 partners in a
New England law firm

o Computing x(n) is typically intractable since a sum over
2630 terms

e Approaches include [S:8]

e Pseudo-likelihood [30]
¢ simulated moments [28]
e MCMC [17]
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examples

Graphical models: FEF

e Consider the example from [13] of the cyclic graph of
order 4 with binary values at each node, [S:1], [S:4].

O

S

O

e Models lie in 15-dimensonal simplex, but with
constraints imposed by conditional independence

e Constraints linear in +1-affine parameters

N+ =0k +mn

e So get full exponential family
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Graphical models: CEF

e Give ordered set of discrete random variables X;,
i =1,2,3 be binary random variables, [S:1], [S:4].

e The simplex which describes their distribution is
2% — 1 =7 dimensional

Paul Marriott

o A DAG defines dependences for example the simple

graph
O—~=20—=03
:iir%r;nsional or P(XS‘X27X1) = P(X3|X2)
s « These constraints give non-linear constriants in +1
affine space

(1 - 73)(1 — 73)my

3 2
T ™

noo1 = log(

and curved exponential families [13].
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In multinomials independence is expressible as a finite
set of polynomial equalities, [S:4].

Add hidden variables
®

High
dimensional

examples

Example lies in 7 dimensional simplex- mixes over a 3
dimensional CEF

The model space is not a manifold but a variety- union
of different dimensional manifolds- extended
exponential family
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extensions

Infinite dimensional issues

e There exists geometry of infinite simplex [1]

¢ Different ‘faces’ of the infinite simplex have different
support and different moment structures

¢ Information geometry of infinite dimensional families
[12] and [11] uses Hilbert or Banach space structures

e There still exist +1 geodesics between distributions, but
there are boundaries.
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Infinite
dimensional
extensions

Neighbourhood of Model

e Look +1-geodesic joining standard normal and Cauchy,
[8]
* Given by f(x)?g(x)'~*/C(p)

Connecting Normal and Cauchy

0.94 0.98
I I

Normalising function
0.90
L

0.86
I

e Infinite Fisher information possible [22]
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Infinite
dimensional
extensions

Neighbourhood of Model

e Sensitivity of inference to model assumptions by
understanding ‘neighbourhood of model’, [S:3]
e Links to non and semi-parametrics

e Mixture of normal and Cauchy, —1- geodesic
(1 = p)f(x) + p9(x)
e If p << 1/nmodels very ‘close’ by some measures
e models very different by other measures

e Asymmetry of KL divergence
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Infinite
dimensional
extensions

Summary

Overview Information geometry in broad sense.

Models: full, curved and extended exponential, and
‘universal’ families

Geometries: expected/observed dual flat manifolds,
information theory, mixture geometry

Methods: Higher order asymptotics, tensor calculus,
curvature, dimension reduction and spectral techniques
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