Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Department of Statistics and Actuarial Science University of Waterloo

April 6, 2011

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

2 Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

3 Application

- Mixture models
- Statistical model space

Summary

イロト イヨト イヨト・

Signal representation

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models

Summary

References

Represent f(t) as linear combination of basis elements

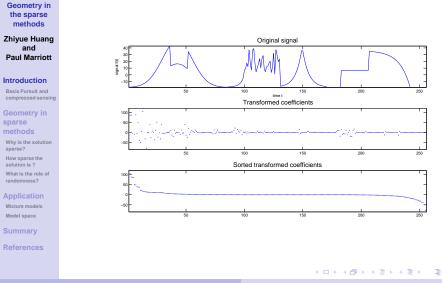
$$f(t) = \sum_{i} \alpha_{i} \psi_{i}(t)$$
 or $f = \Psi \alpha$ (1)

{ψ_i(t)} could be sinusoids, wavelets, curvelets...
 The coefficient sequence α

$$\alpha_i = \langle f, \psi_i \rangle$$
 or $\alpha = \Psi^T f.$ (2)

э

Sparsity



Basis pursuit [Chen et al., 1999]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models

Summary

References

Consider underdetermined linear equation

$$\Psi_{n\times d}\beta_{d\times 1}=y_{n\times 1}, \qquad (3)$$

where Ψ_j , the *j*th column of Ψ , is basis spanning the space of *y* and $d \gg n$.

Basis pursuit

min $\|\beta\|_{\ell_1}$ subject to $\Psi\beta = y$ (4)

3

can provide sparse solution β .

Compressed sensing [Donoho, 2006]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

- x_0 is k-sparse in \mathbb{R}^n , a random matrix **A** obeys **RIP** of order 2k.
- A vector is said to be k-sparse if it has at most k nonzero entries.
 - x_0 can be compressed to $\mathbf{A}x_0$ in \mathbb{R}^d , $d = O(k \log n)$.
 - x₀ can be recovered exactly by

min $||x||_{\ell_1}$ subject to $\mathbf{A}x = y$.

3

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

2 Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

Application

- Mixture models
- Statistical model space

Summary

イロト イヨト イヨト・

ℓ_1 minimization in basis pursuit

Geometry in the sparse methods Zhiyue Huang and

Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

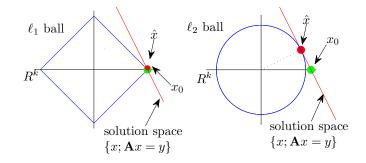
Application

Mixture models Model space

Summarv

References

• min $||x||_{\ell_1}$ subject to $y = \mathbf{A}x$



イロン 不通 とう ヨン・ ヨン・

э

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

2 Geometry in sparse methods

Why is the solution sparse?

- How sparse the solution is ?
- What is the role of randomness?

Application

- Mixture models
- Statistical model space

Summary

イロト イヨト イヨト・

Solid simplex

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

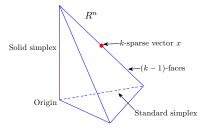
What is the role of randomness?

Application

Mixture models

Summary

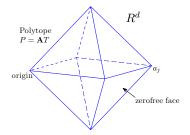
References



- Standard simplex Tⁿ⁻¹: the convex hull of the unit basis vectors.
- Solid simplex T₀ⁿ: the convex hull of Tⁿ⁻¹ and the origin.
 Tⁿ⁻¹ is the outward part of T₀ⁿ.

Polytopes

References



■ $P = \mathbf{A}T_0^n$ is a convex polytope in \mathbb{R}^d , where $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^d$. ■ $P = conv(\{0\} \cup \{a_j\}_{i=1}^n)$, where a_j is the *j*th column of \mathbf{A} .

k-neighborly polytope

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

k-neighborly ploytope:

every set of k vertices spans a (k - 1)-face of P.

outwardly k-neighborly polytope:

every set of k vertices not including the origin spans a (k - 1)-face of P.

3

Neighborliness [Donoho and Tanner, 2005]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

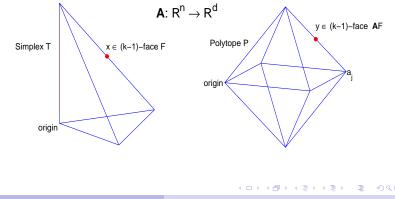
Mixture models

Model space

Summary

References

Suppose the polytope $P = \mathbf{A}T$ has *N* vertices and outwardly *k*-neighborly, if and only if, for all $\ell = 0, \dots, k - 1$, and for all ℓ -dimensional faces *F* of T^{n-1} . **A***F* is a ℓ -dimensional face of *P*.



Unique representation [Donoho and Tanner, 2005]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

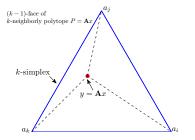
Application

Mixture models

Summary

References

- For *k*-neighborly polytopes, every low-dimensional face is a simplex.
- Each point y on the face has a unique convex combination by the vertices of the simplex.



A (1) > A (2) > A (2) > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Equivalent properties [Donoho and Tanner, 2005]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Let $\mathbf{A} \in \mathbb{R}^{d \times n}$, d < n. The two properties of \mathbf{A} are equivalent

1 The polytope *P* is outwardly *k*-neighborly.

2 Whenever $y = \mathbf{A}x$ has a nonnegative solution x_0 having at most k nonzeros, x_0 is unique nonnegative solution to ℓ_1 minimization problem.

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

2 Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

Application

- Mixture models
- Statistical model space

Summary

イロト イポト イヨト イヨト

Restricted isometry property

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models

Model space

Summary

References

A $\in \mathbb{R}^{d \times n}$ obeys a RIP for sets of size *k* if

$$(1-\delta_k)\frac{d}{n}||\beta||_{\ell_2}^2 \leq ||\mathbf{A}\beta||_{\ell_2}^2 \leq (1+\delta_k)\frac{d}{n}||\beta||_{\ell_2}^2$$

for every *k*-sparse vector β .

■ RIP preserve all k and lower dimensional planes from ℝⁿ to ℝ^d.

3

Randomness and RIP [Baraniuk et al., 2008]

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

A obeys RIP for

$$k \leq Cd/\log(n/d+1),$$

・ロト ・四ト ・ヨト・

with high probability, when

- A is random Gaussian matrix.
- A is random binary matrix.

(5)

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

3 Application

Mixture models

Statistical model space

Summary

イロト イヨト イヨト・

Local mixture model

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

- Given observed data $X : x_1, \dots, x_N$ with t_1, \dots, t_n distinct values.
- According to [Lindsay, 1995], embedding the likelihood of mixture model in Rⁿ with -1-affine geometry.
 - The likelihood of mixture model is

$$f(t;\theta,Q) = f(t;\theta) + \sum_{j=1}^{n} \beta_j s_j(t),$$
(6)

イロト 不得 トイヨト イヨト

э.

where $s_i(t)$ are the basis generated from data.

Robust local mixture model

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry in sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

- *s_j*(*t*) can be chosen to be sparse for robustness of the model.
- For each t_i in observed data,

$$f(t_i; \theta, Q) = f(t_i; \theta) + \sum_{j \in \Omega_i} \beta_j s_j(t_i)$$
(7)

3

- For example, one $x = t_i$ is added to X, it will not affect the inference on β_j , $j \notin \Omega_i$.
- Sparse basis $s_i(t)$ can be obtained by sparse methods.

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models

Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

3 Application

- Mixture models
- Statistical model space

Summary

イロト イポト イヨト イヨト

Statistical model space

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models

Model space

Summary

References

- Consider a family of statistical models, *M_n*, whose likelihood can be embedded in ℝⁿ space.
- The true model locates in \mathbb{R}^k , $k \ll n$.
- By random orthogonal matrix **A** with RIP, *M_n* can be projected into ℝ^{*m*}, where model sufficiency is kept.
- What is the statistical inference property on such \mathbb{R}^m ?

A (1) > A (2) > A (2) > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

Introduction

From basis pursuit to compressed sensing

Geometry in sparse methods

- Why is the solution sparse?
- How sparse the solution is ?
- What is the role of randomness?

Application

- Mixture models
- Statistical model space

Summary

イロト イヨト イヨト・

Summary

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

- $large \ell_1$ minimization.
- Sparse solution in ℓ_1 minimization.
- Outwardly k-neighborly polytope.
- RIP and randomness.
- Application to robust mixture models.
- Future work on statistical model space.

A (1) > A (2) > A (2) > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reference I

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application Mixture models Model space

Summary

References

- R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. *Constructive Approximation*, 28(3):253–263, 2008. ISSN 0176-4276.
- S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. *SIAM journal on scientific computing*, 20(1):33–61, 1999. ISSN 1064-8275.
- D.L. Donoho. Compressed sensing. *Information Theory, IEEE Transactions on*, 52(4):1289–1306, 2006. ISSN 0018-9448.

D.L. Donoho and J. Tanner. Sparse nonnegative solution of underdetermined linear equations by linear programming. *Proceedings of the National Academy of Sciences of the United States of America*, 102(27):9446, 2005.

(日)

Reference II

Geometry in the sparse methods

Zhiyue Huang and Paul Marriott

Introduction

Basis Pursuit and compressed sensing

Geometry i sparse methods

Why is the solution sparse?

How sparse the solution is ?

What is the role of randomness?

Application

Mixture models Model space

Summary

References

B.G. Lindsay. Mixture models: theory, geometry and applications. In *NSF-CBMS Regional Conference Series in Probability and Statistics*, pages 67–163. JSTOR, 1995.

A (1) > A (2) > A (2) > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A