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Signal representation

Represent f(t) as linear combination of basis elements

f(t) =
∑

i

αiψi(t) or f = Ψα (1)

{ψi(t)} could be sinusoids, wavelets, curvelets...

The coefficient sequence α

αi = 〈f , ψi〉 or α = ΨT f . (2)
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Sparsity
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Basis pursuit
[Chen et al., 1999]

Consider underdetermined linear equation

Ψn×dβd×1 = yn×1, (3)

where Ψj, the jth column of Ψ, is basis spanning the space
of y and d ≫ n.

Basis pursuit

min ‖β‖ℓ1 subject to Ψβ = y (4)

can provide sparse solution β.
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Compressed sensing
[Donoho, 2006]

x0 is k -sparse in Rn, a random matrix A obeys RIP of
order 2k .

A vector is said to be k -sparse if it has at most k nonzero
entries.

x0 can be compressed to Ax0 in Rd, d = O(k log n).

x0 can be recovered exactly by

min ‖x‖ℓ1 subject to Ax = y .
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ℓ1 minimization in basis pursuit

min ‖x‖ℓ1 subject to y = Ax

solution space
{x;Ax = y}

x0

x̂
ℓ1 ball

Rk

ℓ2 ball

Rk

solution space
{x;Ax = y}

x0

x̂
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Solid simplex

Standard simplex

Solid simplex

Origin

k-sparse vector x

Rn

(k − 1)-faces

Standard simplex Tn−1: the convex hull of the unit basis
vectors.

Solid simplex Tn
0 : the convex hull of Tn−1 and the origin.

Tn−1 is the outward part of Tn
0 .
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Polytopes

aj

origin

Polytope
P = AT

zerofree face

Rd

P = ATn
0 is a convex polytope in Rd , where A : Rn → Rd .

P = conv({0} ∪ {aj}
n
j=1), where aj is the jth column of A.
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k -neighborly polytope

k -neighborly ploytope:
every set of k vertices spans a (k − 1)-face of P.

outwardly k -neighborly polytope:
every set of k vertices not including the origin spans a
(k − 1)-face of P.
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Neighborliness
[Donoho and Tanner, 2005]

Suppose the polytope P = AT has N vertices and outwardly
k -neighborly, if and only if, for all ℓ = 0, · · · , k − 1, and for all
ℓ-dimensional faces F of Tn−1, AF is a ℓ-dimensional face of P.

a
j

y ∈  (k−1)−face  AF

origin

origin

x ∈  (k−1)−face FSimplex T Polytope P

 A: Rn → Rd
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Unique representation
[Donoho and Tanner, 2005]

For k -neighborly polytopes, every low-dimensional face is
a simplex.

Each point y on the face has a unique convex combination
by the vertices of the simplex.

aj

aiak

k-simplex

y = Ax

(k − 1)-face of
k-neighborly polytope P = Ax
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Equivalent properties
[Donoho and Tanner, 2005]

Let A ∈ Rd×n, d < n. The two properties of A are equivalent

1 The polytope P is outwardly k -neighborly.

2 Whenever y = Ax has a nonnegative solution x0 having at
most k nonzeros, x0 is unique nonnegative solution to ℓ1

minimization problem.
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Restricted isometry property

A ∈ Rd×n obeys a RIP for sets of size k if

(1 − δk )
d
n
‖β‖2ℓ2

≤ ‖Aβ‖2ℓ2
≤ (1 + δk )

d
n
‖β‖2ℓ2

for every k -sparse vector β.

RIP preserve all k and lower dimensional planes from Rn

to Rd.
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Randomness and RIP
[Baraniuk et al., 2008]

A obeys RIP for

k ≤ Cd/ log(n/d + 1), (5)

with high probability, when
A is random Gaussian matrix.
A is random binary matrix.
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Local mixture model

Given observed data X : x1, · · · , xN with t1, · · · , tn distinct
values.

According to [Lindsay, 1995], embedding the likelihood of
mixture model in Rn with −1-affine geometry.

The likelihood of mixture model is

f(t ; θ,Q) = f(t ; θ) +
n∑

j=1

βjsj(t), (6)

where sj(t) are the basis generated from data.
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Robust local mixture model

sj(t) can be chosen to be sparse for robustness of the
model.

For each ti in observed data,

f(ti ; θ,Q) = f(ti ; θ) +
∑

j∈Ωi

βjsj(ti) (7)

For example, one x = ti is added to X, it will not affect the
inference on βj , j < Ωi.

Sparse basis sj(t) can be obtained by sparse methods.
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Statistical model space

Consider a family of statistical models,Mn, whose
likelihood can be embedded in Rn space.

The true model locates in Rk , k ≪ n.

By random orthogonal matrix A with RIP,Mn can be
projected into Rm, where model sufficiency is kept.

What is the statistical inference property on such Rm?
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Summary

ℓ1 minimization.

Sparse solution in ℓ1 minimization.

Outwardly k -neighborly polytope.

RIP and randomness.

Application to robust mixture models.

Future work on statistical model space.
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