Norm-regularized empirical risk minimization

Sara van de Geer

ETH Zürich

The usefulness of ℓ_1 -norm regularization in high-dimensional problems is nowadays well recognized. A fundamental property of the ℓ_1 -norm that allows for adaptive estimation and oracle results is its *decomposability*. The ℓ_1 -norm of a vector $\beta \in \mathbb{R}^p$ is

$$\|\beta\|_1 = \sum_{j=1}^p |\beta_j|.$$

With *decomposability* of $\|\cdot\|_1$ we mean that for any set $S \subset \{1, \ldots, p\}$,

$$\|\beta\|_1 = \|\beta_S\|_1 + \|\beta_{-S}\|_1,$$

where $\beta_S = \{\beta_j : j \in S\}$ and $\beta_{-S} := \{\beta_j : j \notin S\}$. In this talk, we review results for alternative norms Ω on \mathbb{R}^p . Fix some $\beta \in \mathbb{R}^p$. We call Ω weakly decomposable at β if

$$\Omega \ge \Omega^+ + \Omega^-,$$

where Ω^+ and Ω^- are semi-norms on \mathbb{R}^p , and where $\Omega^+(\beta) = \Omega(\beta)$ and $\Omega^-(\beta) = 0$. We will show sharp oracle results - depending on the (approximate) weak decomposability of Ω at certain "oracle" values β - for empirical risk minimizers with regularization penalty proportional to Ω . We also present an approach based on the so-called *triangle property*. We say that Ω has the triangle property at β if there exists semi-norms Ω^+ and Ω^- such that for all β'

$$\max_{z \in \partial \Omega(\beta)} z^T (\beta' - \beta) \ge \Omega^-(\beta') - \Omega^+(\beta' - \beta).$$

Here, $\partial \Omega(\beta)$ is the sub-differential of Ω at β . Several examples with various loss functions (least squares, minus log-likelihood) and penalties (wedge penalty, nuclear norm penalty) will illustrate the theory.