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A Dynamic Treatment Model
Consider the following causal graph.

A Z B

U

Y

Here:

• A,B are treatments given by a doctor;
• Z is an intermediate outcome;
• Y is a final outcome;
• U represents unobserved confounders.

Suppose we’re interested in interventions on A and B.

What would happen if everyone were given treatments (A,B) = (a, b)?
i.e. we want

P(Y | do(A = a,B = b)).
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Identification

A Z B

U

Y

How can we identify P(Y | do(A = a,B = b))?

Just regressing on the treatments fails, because Z is a confounder of the
causal effect of B on Y .

Regressing on the treatments and covariates also fails, as Z is a mediator
of the effect of A on Y and a collider opening a non-causal path.

Here, Z is a time-varying confounder (aka ‘treatment-confounder
feed-back’).
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Identification

A Z B

U

Y

Under ‘standard’ causal assumptions, we can identify
P(Z ,Y | do(A = a,B = b)) using inverse probability weighting:

p(z , y | do(a, b)) =
p(a, z , b, y)

p(a) · p(b | a, z)
.

Alternatively, we can use the g-formula (Robins, 1986):

p(z , y | do(a, b)) = p(z | a) · p(y | a, z , b).

Marginalizing over z then yields:

p(y | do(a, b)) =

∫
Z

p(a, z , b, y)

p(a) · p(b | a, z)
dz =

∫
Z
p(z | a) · p(y | a, z , b) dz .
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Marginal Structural Models (MSMs)

Models of p(y |do(a, b)) are marginal structural models (Robins, 2000).

MSMs are very popular in epidemiology, as time-varying confounding
is simply ‘removed’ by suitable weighting.

Examples:

1. ART therapy (‘when to start’, ‘when to switch’) for HIV-patients
with CD4 count as time-varying confounder;

2. survival of Cystic Fibrosis patients under sustained treatments
(‘always’ vs. ‘never’);

3. cancer-screening attendance (‘regular’ vs. ‘delayed’ vs. ‘never’) with
cancer incidence or mortality outcomes;

4. assessing side effects of (sustained or combined) anti-diabetic drug
use in type-2 diabetes patients.
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Marginal Structural Models (MSMs)

However, papers that simulate from them do so in indirect ways.

Examples
• Young et al. (2008, 2010) give two different approaches to

simulating from MSMs using special cases of other models and
computing the implied parameters.

• Havercroft and Didelez (2012) try simulating such that
p(y | do(a, b)) does not depend upon a. Their approach requires
removing the direct effect Z → Y .

• Keogh et al. (2021) use fully conditional (additive or Cox) hazard
models and then work out the implied MSMs.
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Obstacles

A Z B

U

Y

Simulating from MSMs is hard.

Why?

In discussing marginal structural models Robins (2000, p107) notes:

“...the difficulty in performing likelihood-based inference... since
the likelihood is a computational nightmare.”

The g-formula (alternative to IPTW) suffers from the g-null paradox
(Robins and Wasserman, 1997).
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The G-null Paradox
Robins and Wasserman (1997) show that specifying seemingly nice
parametric models for Z | A and Y | A,Z ,B lead to it being (almost)
impossible for the null hypothesis to hold.

Suppose Z | A ∼ Bernoulli(expit(αA))

E[Y | A,Z ,B] = Aβa + Zβz + Bβb.

Then we can compute:

E[Y | do(A,B)] = Aβa + Bβb + expit(αA) · βz .

Hence g-null holds ⇐⇒ βa = 0 and α · βz = 0

⇐⇒ either Y ⊥⊥ A,Z | B or

{
Z ⊥⊥ A
Y ⊥⊥ A | Z ,B

}
.

This is much more restrictive than the hypothesis of interest.

Lesson: just specifying nice models for all conditionals is not helpful if
we want data under a specific causal hypothesis.
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Further Problems

Another approach to overcoming (some of) these problems is to use
models that are over-parameterized and/or not congenial.

Example

Some propose to consider separate marginal and conditional
specifications:

logitE[Y | A] = α0 + αaA

logitE[Y | A,B] = β0 + βaA + βbB.

However, only trivial models satisfy these restrictions for any
α0, αa, β0, βa if βb 6= 0, because the logit function is not collapsible.
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Objectives

There are three broad objectives for our proposal.

1 Parameterization. Describe a joint distribution P of all variables
(confounders, treatments, outcomes) that:

• obeys an explicitly provided parameterization of the causal
functional of interest;

• allows the rest of the distribution to be as flexible as possible;

• remains coherent and unambiguous.

2 Simulation. Obtain samples from P such that:

• observationally the data exhibit complex confounding structures;

• under an intervention they obey the causal model.

3 Fitting. Allow for fitting typically performed semi-paramerically
(e.g. marginal structural models), using likelihood-based methods.
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Marginal Models

Define p∗(z , y | a, b) ≡ p(z , y | do(a, b))

= p(z | a) · p(y | a, z , b).

Given interventional distribution P∗ suppose we have:
A

Z

B

U

Y• a model for p∗(y | a, b);

• a model for p∗(z | a, b) = p(z | a).

Question

These do not fully specify p∗(z , y | a, b) so what else do we need?

Answer

Some sort of (conditional) dependence measure for Y and Z under P∗

(e.g. a conditional odds ratio or copula):

φ∗ZY |AB(z , y | a, b).

R. .J. Evans, University of Oxford Parameterizing and Simulating from Causal Models 15 / 39



Marginal Tension

We’ve seen that there is generally a tension between:

• simple specification of the joint distribution P, in order to facilitate
simulation and likelihood-based inference;

• simple specification of the target of inference p∗(y | a, b) (i.e. some
interventional marginal quantity) in order that it is interpretable;

• enforcing marginal constraints implied by the causal model.
(In our case this was Z ⊥⊥ B | A under P∗.)

Our proposal resolves these as best one can.
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Setup
In general, we consider three groups of variables:

X treatments and effect modifiers

Y outcome(s) of interest

Z other variables to be marginalized

These can all be vector valued.

Note that there is not necessarily a strict causal order on Z , X and Y :
in our example, we had X = (A,B).

A Z B

U

Y

Object of interest is p∗(y | x) for some interventional P∗.
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Cognate Distributions

We need a marginal parameterization, but some of the ‘margins’ we are
interested in are non-standard.

Let w(z | x) be a kernel function:

• w(z | x) ≥ 0;

• ∫
Z w(z | x) dz = 1 for each x .

We allow it to be a (smooth) function of p(z , x).

Definition

We say p∗(y | x) is cognate to p(y | x) (within p(z , x , y)) if

p∗(y | x) ≡
∫
Z
p(y | x , z) · w(z | x) dz .
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Cognate Distributions: Examples

Z

X Y

Z

C

X Y

Examples

p(y | x) =

∫
Z
p(y | x , z) · p(z | x) dz

p(y | do(x)) =

∫
Z
p(y | x , z) · p(z) dz

p(y | c ; do(x)) =

∫
Z
p(y | c , z , x) · p(z | c) dz

p(Y (x) | x ′) =

∫
Z
p(y | x , z) · p(z | x ′) dz .

(Here Y (x) is the potential outcome for Y when X is set to x .)

Note that E[Y (0) | X = 1] appears in the effect of treatment on the
treated estimand.
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Frugal Parameterization

Definition

A frugal parameterization consists of three separate (smooth and
regular) parametric models for:

• p(z , x) (‘the past’);

• p∗(y | x) (distribution of interest);

• φ∗ZY |X (z , y | x) (a dependence measure).

The distribution of interest can be any that is cognate to p(y | x).

These quantities:

• specify the whole distribution P;

• can be chosen to be variation independent;

• have no redundancy.
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Main Result

Theorem
Consider an outcome Y , and causally prior variables X and Z .
Then we can smoothly parameterize the joint distribution P with a
frugal parameterization of

p(z , x) p∗(y | x) φ∗ZY |X (z , y | x),

where p∗(y | x) is cognate to p(y | x), if and only if P can also be
smoothly parameterized by the same models applied to

p(z , x) p(y | x) φZY |X (z , y | x).

(That is, the ordinary conditional and the dependence measure in P.)

Can choose distinct parts of second list to be variation independent, in
which case same is true for the first.

This gives us the best of both worlds: a coherent joint distribution and
a marginal specification of our choice.
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Copula Model Example

Consider the two-step dynamic
model from Havercroft and Didelez
(2012). A Z B Y

U

Then:

• Simulate A,B ∼ Bernoulli( 1
2 ) independently;

• Obtain conditional quantiles of Y , Z from a Gaussian copula with
correlation 2 expit(1 + a/2)− 1;

• Using inversion, set Z | A = a ∼ Exp(exp(0.2a− 0.3));

• Set Y | do(A = a,B = b) ∼ N(−0.5 + 0.2a + 0.3b, 1);

After rejection sampling:

• B | A = a,Z = z ∼ Bernoulli(expit(a/2 + z/2)).

We take a sample of size n = 104 using the R package causl

(Evans, 2021, https://github.com/rje42/causl).
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Results (Outcome Regression)

We fit the näıve outcome regression model

E[Y | A = a,B = b] = β0 + βAa + βBb + βABab.

truth estimate bias s.e. z-value p-value

intercept −0.5 −0.564 −0.064 0.021 −3.12 1.7× 10−3

A 0.2 0.156 −0.044 0.030 −1.44 0.15
B 0.3 0.448 0.148 0.028 5.22 1.8× 10−7

A · B 0.0 0.047 0.047 0.040 1.18 0.24
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Results (IPW)
We estimate the inverse weights by fitting a logistic regression for
B | A,Z :

logitP(B = 1 | A = a,Z = z) = α0 + αAa + αZ z + αAZaz .

We then inverse weight each observation by p̂(b | a, z), and fit the
outcome model using these inverse weights.

The bias is very small:

truth estimate bias s.e. z-value p-value

intercept −0.5 −0.489 0.011 0.021 0.49 0.62
A 0.2 0.196 −0.004 0.032 −0.14 0.89
B 0.3 0.302 0.002 0.029 0.08 0.94
A · B 0.0 0.003 0.003 0.042 0.07 0.95

This suggests that (i) our simulation is working well; and (ii) IPW works.
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Results (Maximum Likelihood Estimation)

Since we have a parametric model, we can also evaluate the likelihood
and compute the MLE

Comparison with MLE is very useful for simulation, because it provides
an optimally efficient comparator.

truth estimate bias s.e. z-value p-value

intercept −0.5 −0.490 0.010 0.019 0.53 0.60
A 0.2 0.195 −0.005 0.027 −0.20 0.84
B 0.3 0.302 0.002 0.026 0.08 0.94
A · B 0.0 0.010 0.010 0.034 0.28 0.78

However, we don’t recommended using MLE in practice, because
misspecification may lead to poor estimates.
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Results
Bias over 1,000 fits to simulated data (n = 250).
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Results
With a stronger Z → B edge (E[B | A,Z ] = expit(a/2 + z)):
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Survival Analysis

We can also parameterize, simulate from, and fit survival models, such as
Cox Marginal Structural Models with our method.

Ut−1

Zt−1

At−1

Yt−1

Ut

Zt

At

Yt

Specify a model for:

P(Yt | Yt−1 = 0; do(A1, . . . ,At))

where we marginalize over
time-varying covariates
Z1, . . . ,Zt .

This resolves an open problem in the literature: methods for simulating
from Cox MSMs have been proposed, but they cannot specify the
marginal structure in as much generality we can (e.g. Keogh et al.,
2021).
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Example: Survival Models

With the frugal parameterization simulation is easy even under a null
hypothesis; e.g.:

P(Yt |Yt−1 = 0; do(a1, . . . , at)) = P(Yt |Yt−1 = 0).

Can also easily incorporate, for e.g., a stationarity assumption:

P(Yt |Yt−1 = 0; do(At = a)) = g(a).

Young and Tchetgen Tchetgen (2014) note that this is not at all trivial.

“We therefore may be limited to simulation scenarios with the
proposed algorithm to unrealistic settings if we wish

simultaneously to generate data under the null.”
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Sensitivity Analysis

Note that since we have control over the propensity score model, it is
comparatively easy to evaluate the effect of using the wrong model.

Example

Suppose we fit using a logistic regression model, but the true propensity
uses a different link function (e.g. probit).

Or perhaps the truth is a random forest model.

We can also see the effect of having
unobserved confounders that are not
included in the model.

Z

C

X Y

U
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‘Many Data’

A more fundamental use for frugal parameterization is to allow for the
integrated causal analysis of different types of studies.

Want to leverage data from multiple sources
(different subjects, populations, and
experimental settings) to improve causal
learning.

• randomized controlled trials;

• observational cross-sectional and longitudinal studies;

• case-control studies;

• . . .

We call this the paradigm of Many Data.

Using our parameterization we can jointly describe these models
(e.g. Lin and Evans, 2023).
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The Verma Constraint
Richardson et al. (2023) consider nested Markov models, which allow for
generalized conditional independence constraints.

The frugal parameterization allows us to fit (some) nested models very
easily.

Example

A Z B Y

Constraint is that

p(y | do(a, b)) =
∑
z

p(z | a) · p(y | a, z , b)

is independent of A.

We can explicitly fit and test this constraint using (e.g.) likelihood ratio.
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Summary

• We have presented the frugal parameterization, and used methods
from marginal modelling to simulate from causal models;

• we can also fit these models using likelihood-based methods;

• this is a marginal parameterization: there is a rich literature on
marginal models to consider for other causal problems.

• We envisage applications to marginal structural models, survival
models, dynamic treatment regimes, structural nested models,
stationarity, transportability, sensitivity analysis, data fusion (Many
Data) ...;

• can also simulate from arbitrary instrumental variables models.

Limitations
• Mediation models are still difficult to simulate from!
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Thank you!
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Joint distribution

Let P be the distribution of interest, P∗ its interventional counterpart.

We have

p∗(z , x , y) = p(z , x , y) · p
∗(z , x)

p(z , x)

= p(z , x , y) · p
∗(x) · w(z | x)

p(x , x)

= p∗(x) · w(z | x) · p(y | z , x).

Note this factorization is not in the (standard) causal order.
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Plot of Data
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Structural Nested Mean Models

A structural nested mean model is defined by considering blips of
treatment at each time-point; e.g.

θ(z t , x t−1) := bt(z t , x t−1, 1)− bt(z t , x t−1, 0)

where

bt(z t , x t−1, x) := E[Y | z t , x t−1; do(Xt = x ,X t+1 = 0)].

These models are more flexible than marginal structural models, as they
allow for the incorporation of the covariate history into the causal effect.
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Structural Nested Mean Models

We can also parameterize this using a frugal parameterization at each
time t.

Definition
Consider for t = 1, . . . ,T :

• P(zt , xt | z t−1, x t−1) (i.e. ‘the past’);

• θ(z t , x t−1) (the parameter of interest);

• a conditional dependence measure between Y and Zt given X t ,Z t−1.

Then one can see that by building up from time t − 1 to time t we go
from

E[Y | z t−1, x t−1; do(0t)] to E[Y | z t , x t ; do(0t+1)];

i.e. the same thing with t replaced by t + 1.
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Example

Suppose we wish to model

Y | do(X = x) ∼ Gamma(µx , φµ
2
x)

where E[Y | do(X = x)] = µx = exp(β0 + β1x); along with specifying
that

Z ∼ N(ν, τ 2),

logX | {Z = z} ∼ N(α0 + α1z , σ
2)

and that there is a Gaussian copula between Y and Z with partial
correlation 2 expit(γ0 + γ1x)− 1.

This specification is guaranteed to give a unique joint distribution, for
any values of ν, τ 2, α0, α1, β0, β1, φ, γ0, γ1 and σ2.
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Example

Suppose we pick:

α0 = −1 α1 = 1 β0 = −4 β1 = 0.5

γ0 = 0.5 γ1 = 0.02 ν = 0 σ2 = τ 2 = 1 φ = 2

We can simulate very quickly to obtain (say) 104 observations from P∗.
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Copula Model Example

Recall our simulation with n = 104 observations.

If we fit an ordinary (i.e. unweighted) linear model with

E[Y |A = a,B = b] = β0 + βAa + βBb + βABab,

then the results are wrong:

parameter truth estimate bias s.e. z-value p-value

intercept −1.0 −1.120 −0.120 0.022 −5.53 3.16× 10−8

A 0.5 0.550 0.050 0.033 1.52 0.13
B 0.5 0.656 0.156 0.028 5.51 3.67× 10−8

A · B 0.0 −0.061 −0.061 0.041 −1.47 0.14
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Mediation Models

A

M

Y AY

AM

M

Y

Non-parametric mediation models typically ask what would happen if
distinct treatment values were passed to the outcome Y and the mediator
M, so they ask (e.g.) about the natural (in)direct effect (NDE/NIE):

NDE = E[Y | do(AM = 0,AY = 1)]− E[Y | do(AM = 0,AY = 0)]

NIE = E[Y | do(AM = 1,AY = 1)]− E[Y | do(AM = 0,AY = 1)].

The difficulty for the frugal parameterization is that we must enforce
Y ⊥⊥ AM | AY ,M and model p(y | aM , aY ); this does not usually lead to
congenial models.
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Generalising Odds Ratios

Let p be a density for X ,Y .

The odds ratio for X ,Y is the equivalence class of functions φXY such
that

φXY (x , y) = p(x , y) · u(x) · v(y).

some functions u, v > 0.

Some points to note:

• defined for any distribution with a density;

• p is a member of the equivalence class;

• there’s no requirement for p to be positive;

• iterative proportional fitting recovers the joint distribution.
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Specifying Margins

Let rXY (x , y) be a joint distribution with odds ratio φXY .

Theorem
Let pX and pY be densities such that pX � rX and pY � rY . Then there
exists a unique joint distribution with margins pX , pY and odds ratio φXY .

This follows from Csiszár (1975).

This is a form of variation independence: we can paste together
essentially any dependence structure with any margins and get a
distribution.
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Odds Ratio Examples

• For discrete variables this reduces to the ‘usual’ odds ratio;

• for Gaussian variables:

φXY ∼ exp

(
ρxy

σxσy (1− ρ2)

)
• multivariate t-distribution (x = (x , y)T ):

φXY ∼
(
1 + ν−1xTΣ−1x

)−ν/2−1
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Margins

Let’s think about the simplest example of this kind.

X Y

Z

p(y | do(x)) =
∑
z

p(z)p(y | x , z).

This is a ‘margin’ of the joint distribution

p∗(z , y | x) ≡ p(z)p(y | x , z).

To work with P∗ we need to model the XY -margin (because that’s the
quantity of interest) and the XZ -margin (to enforce the independence).

So what’s left to know?
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Odds Ratios

X Y

Z

Bergsma and Rudas’ results show that the remaining information is
precisely the odds ratio between Y and Z conditional upon X .

Any additional information given the dependence ratio, p(y | do(x)), and
p(x , z) would be redundant.
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Odds Ratios

X Y

Z

There’s nothing to stop us specifying that the parameters β and γ are
from this model:

logit p(y | x , z) = µ+ αx + βz + γxz .

But µ and α are not free.

Take home message—you can have part of a nice model on X ,Y ,Z that
includes p(y | do(x)); just don’t expect all of it!
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g-null Paradox Illustration

Suppose that we have continuous
X and Y , but binary Z .

Z Y

X

An innocuous seeming model would be:

E[Y |X = x ,Z = z ] = µ+ βx + γz .

But:

E[Y |X = x ] =
∑
z

E[Y |X = x ,Z = z ] · P(Z = z | X = x)

= µ+ βx + γP(Z = 1 | X = x).

Now P(Z = 1 | X = x) can’t be a linear function of x (unless it’s
constant). So E[Y |X = x ] is only a linear function if either:

• Z ⊥⊥ X ; or

• γ = 0 (so Y ⊥⊥ Z | X ).
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