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Semi-Supervised Learning

Problem: Given data Ωn = {xi}n
i=1 ⊂ Rd and a subset of

labels {ℓi}i∈In ⊂ R, where In ⊆ {1, . . . , n}, find the ‘best’
un : Ωn → R such that un(xi) = ℓi for all i ∈ In.

‘Supervised classical’ approach: minimise ∥∇un∥2
L2 subject

to un(xi) = ℓi for all i ∈ In.

Example by Jeff Calder.
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Semi-Supervised Learning

1 Aim: Given feature vectors {xi}n
i=1 ⊂ Rd and a subset of

labels {ℓi}i∈In find labels of the unlabelled feature vectors
{xi}i ̸∈In .

2 Graph: Gn = (Ωn, Wn) where
1 Ωn = {xi}n

i=1 are the vertices/nodes,
2 Wn = (wij)n

i,j=1 are nonnegative and symmetric edge weights
with wij ≫ 1 if xi and xj are similar and wij ≈ 0 if dissimilar.

3 Labels: ℓj ∈ {e1, . . . , ek} ∈ Rk or ℓj ∈ R depending on the
setting.

4 Assumption: Similar feature vectors should have similar
labels.
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Laplace Learning
1 Laplacian Regularisation: Zhu, Ghahramani and Lafferty

(2003) or Zhou and Schölkopf (2005) define u∗
n as the

minimiser of

E(p)
n (un) =

n∑
i ,j=1

wij |un(xi) − un(xj)|p

over all un : Ωn → Rk such that un(xi) = ℓi for all i ∈ In.

2 Laplacian Classification: We define
ℓu∗

n (xi) = argmax
j∈{1,...,k}

u∗
n,j(xi).

3 If p = 2 it follows that u∗
n satisfies the following Laplace

equation

Lnu∗
n(xi) = 0 if i ̸∈ In

u∗
n(xi) = ℓi if i ∈ In

where Lnu(xi) =
∑n

j=1 wij(u(xi) − u(xj)) is the graph
Laplacian.
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4 Fractional Laplace Learning

5 Graph Neural Networks

5 / 56



Contents

1 Discrete-To-Continuum Topology

2 p-Laplace Learning

3 Poisson Learning

4 Fractional Laplace Learning

5 Graph Neural Networks

6 / 56



The TLp Topology

1 We want to compare un : Ωn → R to u : Ω → R where
Ω ⊂ Rd .

2 Key idea: we extend each un : Ωn → R to a piecewise
constant function ũn : Ω → R and compute ∥ũn − u∥Lp .

3 Let ũn(x) = un(Tn(x)) for some function Tn : Ω → Ωn.
4 We will choose Tn to be an optimal transport map.
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The TLp Metric

As introduced by García Trillos and Slepčev (2016), let
TLp := {(u, µ) : u ∈ Lp(µ), µ ∈ P(Ω)} .

The TLp metric is defined by dTLp : TLp × TLp → [0, ∞),
dp

TLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x − y |p + |u(x) − v(y)|p dπ(x , y)

Theoretically it is convenient to write:

dTLp ((u, µ), (v , ν)) = dWp (µ̃, ν̃) = inf
π̃∈Π(µ̃,ν̃)

p

√∫
(Ω×R)×(Ω×R)

|x − y |p dπ̃(x , y).

where µ̃ = (Id × u)#µ and ν̃ = (Id × v)#ν.
Numerically it is convenient to write:

dTLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

p

√∫
Ω×Ω

c(x , y ; u, v) dπ(x , y).

where c(x , y ; u, v) = |x − y |p + |u(x) − v(y)|p.

8 / 56



The TLp Metric

As introduced by García Trillos and Slepčev (2016), let
TLp := {(u, µ) : u ∈ Lp(µ), µ ∈ P(Ω)} .

The TLp metric is defined by dTLp : TLp × TLp → [0, ∞),
dp

TLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x − y |p + |u(x) − v(y)|p dπ(x , y)

Theoretically it is convenient to write:

dTLp ((u, µ), (v , ν)) = dWp (µ̃, ν̃) = inf
π̃∈Π(µ̃,ν̃)

p

√∫
(Ω×R)×(Ω×R)

|x − y |p dπ̃(x , y).

where µ̃ = (Id × u)#µ and ν̃ = (Id × v)#ν.
Numerically it is convenient to write:

dTLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

p

√∫
Ω×Ω

c(x , y ; u, v) dπ(x , y).

where c(x , y ; u, v) = |x − y |p + |u(x) − v(y)|p.

8 / 56



The TLp Metric

As introduced by García Trillos and Slepčev (2016), let
TLp := {(u, µ) : u ∈ Lp(µ), µ ∈ P(Ω)} .

The TLp metric is defined by dTLp : TLp × TLp → [0, ∞),
dp

TLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x − y |p + |u(x) − v(y)|p dπ(x , y)

Theoretically it is convenient to write:

dTLp ((u, µ), (v , ν)) = dWp (µ̃, ν̃) = inf
π̃∈Π(µ̃,ν̃)

p

√∫
(Ω×R)×(Ω×R)

|x − y |p dπ̃(x , y).

where µ̃ = (Id × u)#µ and ν̃ = (Id × v)#ν.

Numerically it is convenient to write:

dTLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

p

√∫
Ω×Ω

c(x , y ; u, v) dπ(x , y).

where c(x , y ; u, v) = |x − y |p + |u(x) − v(y)|p.

8 / 56



The TLp Metric

As introduced by García Trillos and Slepčev (2016), let
TLp := {(u, µ) : u ∈ Lp(µ), µ ∈ P(Ω)} .

The TLp metric is defined by dTLp : TLp × TLp → [0, ∞),
dp

TLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x − y |p + |u(x) − v(y)|p dπ(x , y)

Theoretically it is convenient to write:

dTLp ((u, µ), (v , ν)) = dWp (µ̃, ν̃) = inf
π̃∈Π(µ̃,ν̃)

p

√∫
(Ω×R)×(Ω×R)

|x − y |p dπ̃(x , y).

where µ̃ = (Id × u)#µ and ν̃ = (Id × v)#ν.
Numerically it is convenient to write:

dTLp ((u, µ), (v , ν)) = inf
π∈Π(µ,ν)

p

√∫
Ω×Ω

c(x , y ; u, v) dπ(x , y).

where c(x , y ; u, v) = |x − y |p + |u(x) − v(y)|p.
8 / 56



Aside: A TLp Approach to Histogram Specification

(a) Exemplar images. (b) Original image to be
shaded.

(c) The TLp colour
transfer solution.

Figure: More details and other applications in T., Park, Kolouri, Rohde
and Slepčev (2017).
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TLp In Practice

Theorem (García Trillos and Slepčev (2016))
If µ is absolutely continuous, then (un, µn) → (u, µ) in TLp if and
only if µn ⇀∗ µ and there exists a sequence of maps Tn : Ω → Ω
such that (Tn)#µ = µn, Tn → Id in Lp(µ) and

∥un ◦ Tn − u∥Lp(µ) → 0.

Theorem (García Trillos and Slepčev (2015))

Assume xi
iid∼ µ and µn = 1

n
∑n

i=1 δxi . With probability one, there
exists Tn : Ω → Ωn such that (Tn)#µ = µn and

∥Tn − Id∥L∞ ≲


(log n)

3
4√

n if d = 2(
log n

n

) 1
d if d ≥ 3.

Remark: by (for example) Penrose (2003) the connectivity radius of the geometric

random graph scales as
( log n

n

) 1
d for all d ∈ N.
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Asymptotic Setting

Aim: minimise

E(p)
n (un) =

n∑
i ,j=1

wij |un(xi) − un(xj)|p

over all un : Ωn → Rk such that un(xi) = ℓi for all i ∈ In.

Assume

wij = ηε(|xi − xj |) = 1
εd η

( |xi − xj |
ε

)
.

Formal Definition: The Laplacian regression problem is
asymptotically well-posed if constrained minimisers of E(p)

n
converge to constrained minimisers of some E(p)

∞ (to be
defined).
Formal Definition: The Laplacian regression problem is
asymptotically ill-posed if constrained minimisers of E(p)

n
converge to constants.
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Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we
should expect.

1
n2εp E(p)

n (u) = 1
n2εp+d

n∑
i ,j=1

η

( |xi − xj |
ε

)
|u(xi) − u(xj)|p

≈ 1
εp+d

∫ ∫
η

( |x − y |
ε

)
|u(x) − u(y)|p ρ(x)ρ(y) dx dy

= 1
εp

∫ ∫
η(|z |)|u(y + εz) − u(y)|pρ(y + εz)ρ(y) dy dz

≈
∫ ∫

η(|z |)|∇u(y) · z |pρ2(y) dy dz

= ση

∫
|∇u(y)|pρ2(y) dy =: E(p)

∞ (u)
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Limiting Constraints - Intuition

We intuitively see that p > d is necessary if the constrain set is
finite, i.e. maxn∈N |In| < +∞, is it sufficient?

No! Why not?
Problems occur when spikes have low energy.
Consider the function un(x1) = 1 and un(xi) = 0 for all i ≥ 2.

1
n2εp

n
E(p)

n (un) = 2
εp+d

n n2

∑n
j=2 η

(
|x1−xj |

εn

)
=
(

2
εp

nn

)
×
(

1
nεd

n
#{Ωn ∩ B(x1, εn)}

)
.

If εp
nn → ∞ then 1

n2εp
n
E(p)

n (un) → 0 and the spike pays no cost
in the limit!

This example turns out to be sharp: εp
nn → ∞ implies ill-posedness

and εp
nn → 0 implies well-posedness.
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Continuum Limit of p-Laplace Learning

Theorem (Slepčev and T., 17)

Let p > 1. Let u∗
n be a sequence of minimizers of E(p)

n satisfying
the u∗

n(xi) = ℓi for all i ∈ In where maxn∈N |In| < +∞. Then,
almost surely, the sequence (u∗

n, µn) is precompact in TLp. The
TLp limit of any convergent subsequence, (u∗

nm , µnm), is of the
form (u, µ) where u ∈ W 1,p(Ω). Furthermore,
(i) if nεp

n → 0 as n → ∞ then u is continuous and
(a) the whole sequence u∗

n converges to u both in TLp and locally
uniformly, meaning that for any Ω′ with Ω′ ⊂ Ω

lim
n→∞

max
{k∈{1,...,n} : xk ∈Ω′}

|u(xk) − u∗
n(xk)| = 0,

(b) u is a minimizer of E (p)
∞ with constraints;

(ii) if nεp
n → ∞ as n → ∞ then u is constant.
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Numerical Comparisons

0.5

1

1

0.5

0
0

0.5

1

(a) p = 4 continuum
limit minimiser.

0.5

1

1

0.5

0
0

0.5

1

(b) p = 4 minimiser
(ε = 0.06, n = 1280).

0.5

1

1

0.5

0
0

0.5

1

(c) p = 2 minimiser
(ε = 0.06, n = 1280).
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Development of Spikes (p = 4)

(a) ε = 0.05. (b) ε = 0.1. (c) ε = 0.2.
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Variational Convergence

Green - En, Blue - Em for m > n, Red - weak
limit, Black - Γ-limit.

We say E∞ = Γ- limn En, if for all u we
have

(i) ∀ un → u,
E∞(u) ≤ lim infn→∞ En(un);

(ii) ∃ un → u,
E∞(u) ≥ lim supn→∞ En(un).

Theorem
Let un be a sequence of almost minimizers of En. If un are precompact and
E∞ = Γ- limn En where E∞ is not identically +∞ then

min E∞ = lim
n→∞

inf En.

Furthermore any cluster point of {un}∞
n=1 minimizes E∞.
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Intuition on the Proof

1 Step 1: We show 1
n2εp

n
E(p)

n (un) ≈ E(p)
∞ (Jεn ∗ ũn) where

ũn = un ◦ Tn and J is a mollifier.

2 Step 2: We show osc(n)
εn (un) ≤ C p

√
nεp

n
(

1
n2εp

n
E(p)

n (un)
)

where

osc(n)
ε (un)(xk) = max

z∈B(xk ,ε)∩Ωn
un(z) − min

z∈B(xk ,ε)∩Ωn
un(z).

3 Step 3: Sobolev embedding of Jεn ∗ ũn plus the control over
oscillations is enough to infer uniform convergence:

lim
n→∞

max
{k∈{1,...,n} : xk∈Ω′}

|u(xk) − un(xk)| = 0.

4 Step 4: Γ-convergence of 1
n2εp

n
E(p)

n to E(p)
∞ plus a TLp

compactness result is now enough to get convergence of
constrained minimizers.

19 / 56



Intuition on the Proof

1 Step 1: We show 1
n2εp

n
E(p)

n (un) ≈ E(p)
∞ (Jεn ∗ ũn) where
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Minimal Number of Labels

Sobolev regularity implies that we can’t minimise E(p)
∞ with

finite constraints, but the problem is well-posed if labels are
imposed on an open subset.

We expect asymptotic ill-posedness if |In| ∼ 1 and asymptotic
well-posedness if |In| ∼ n.
Questions: What happens in between?
Model: Recall {(xi , ℓi)}i∈In is the labelled data.

1 Assume P(i ∈ In) = βn1Ω̃, Ω̃ ⊂ Ω is open and bounded.
2 If i ∈ In we set ℓi = g†(xi).

Well-posed case: Minimisers of E(p)
n subject to un(xi) = ℓi

for all i ∈ In converge to minimisers of E(p)
∞ subject to

u(x) = g†(x) for all x ∈ Ω̃.
Ill-posed case: Minimisers of E(p)

n subject to un(xi) = ℓi for
all i ∈ In converge to constants.
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Random Walks on Graphs

Let Gn = (Ωn, W ) be the graph with edge weights W = (wij).

Let Bx
t be the random walk on Ωn starting from Bx

0 = x ∈ Ωn
and transitioning with probability

P(Bx
t+1 = xj | Bx

t = xi) = wij
di

where di =
∑n

j=1 wij .
Define the stopping time

S(x) = min {t ∈ N : Bx
t ∈ {xi}i∈In} .

Proposition

Define u∗
n(x) = E[g†(Bx

S(x))]. Then u∗
n minimises E(2)

n subject to
the constraints.

21 / 56



Random Walks on Graphs

Let Gn = (Ωn, W ) be the graph with edge weights W = (wij).
Let Bx

t be the random walk on Ωn starting from Bx
0 = x ∈ Ωn

and transitioning with probability

P(Bx
t+1 = xj | Bx

t = xi) = wij
di

where di =
∑n

j=1 wij .

Define the stopping time

S(x) = min {t ∈ N : Bx
t ∈ {xi}i∈In} .

Proposition

Define u∗
n(x) = E[g†(Bx

S(x))]. Then u∗
n minimises E(2)

n subject to
the constraints.

21 / 56



Random Walks on Graphs

Let Gn = (Ωn, W ) be the graph with edge weights W = (wij).
Let Bx

t be the random walk on Ωn starting from Bx
0 = x ∈ Ωn

and transitioning with probability

P(Bx
t+1 = xj | Bx

t = xi) = wij
di

where di =
∑n

j=1 wij .
Define the stopping time

S(x) = min {t ∈ N : Bx
t ∈ {xi}i∈In} .

Proposition

Define u∗
n(x) = E[g†(Bx

S(x))]. Then u∗
n minimises E(2)

n subject to
the constraints.

21 / 56



Random Walks on Graphs

Let Gn = (Ωn, W ) be the graph with edge weights W = (wij).
Let Bx

t be the random walk on Ωn starting from Bx
0 = x ∈ Ωn

and transitioning with probability

P(Bx
t+1 = xj | Bx

t = xi) = wij
di

where di =
∑n

j=1 wij .
Define the stopping time

S(x) = min {t ∈ N : Bx
t ∈ {xi}i∈In} .

Proposition

Define u∗
n(x) = E[g†(Bx

S(x))]. Then u∗
n minimises E(2)

n subject to
the constraints.

21 / 56



Intuition on the Minimal Number of Labels Proof I
1 Step 1: We show Bx

t behaves approximately as a Brownian
motion and therefore

P
(

max
t=1,...,k

|Bx
t − x | > α

√
kε

)
≤ e−cα2

.

2 Step 2: Within the labelled domain we have a probability β
of stopping and so

P(S(x) > k) ≤ (1 − β)k ≤ e−ckβ ∀x ∈ Ω̃.

3 Step 3: Combining the previous results, for all x ∈ Ω̃,
|u∗

n(x) − g†(x)|

≤ E
∣∣∣g†(Bx

S(x)) − g†(x)
∣∣∣

= E
[∣∣∣g†(Bx

S(x)) − g†(x)
∣∣∣ ∣∣∣S(x) ≤ k

]
P(S(x) ≤ k)

+ E
[∣∣∣g†(Bx

S(x)) − g†(x)
∣∣∣ ∣∣∣S(x) > k

]
P(S(x) > k)

≤ αLip(g†)
√

kε + 2∥g†∥L∞e−ckβ.

Choosing k = C
β log

√
β

ε implies (with high probability)

|u∗
n(x) − g†(x)| ≤ C ε√

β
log

√
β

ε
.
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Euler-Lagrange Equations

1 Discrete variational problem:
minimise

E(2)
n (un) =

n∑
i ,j=1

wij |un(xi)−un(xj)|2

s.t. un(xi) = ℓi ∀ i ∈ In.

2 Euler-Lagrange equation:

Lnu∗
n(xi) = 0 for i ̸∈ In

u∗
n(xi) = ℓi for i ∈ In

where
Lnun(xi) =

n∑
j=1

wij (un(xi) − un(xj)) .

3 Continuum variational
problem: minimise

E(2)
∞ (u) = ση

∫
Ω

∥∇u(x)∥2ρ2(x) dx

s.t. u(x) = g†(x) ∀ x ∈ Ω̃.
4 Euler-Lagrange equation:

Lu∗(x) = 0 for x ∈ Ω \ Ω̃
u∗(x) = g†(x) for x ∈ Ω̃

∂u∗

∂n (x) = 0 for x ∈ ∂Ω

where
Lu(x) = − 1

ρ(x)div(ρ2∇u)(x).
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Intuition on the Minimal Number of Labels Proof II

From Step 3, we have

max
xi ∈Ω̃

|u∗
n(xi) − g†(xi)| ≤ C ε√

β
log

√
β

ε

and now we need to extend the convergence to the whole domain.

4 Step 4: Pointwise convergence of the graph Laplacian.

Theorem (Calder, Slepčev and T. (2020))
There exists C > c > 0 such that for any φ ∈ C3(Ω) and any
ε ≤ ϑ ≤ 1

ε ,

sup
x∈Ωn

∣∣∣∣∣Lnφ(x) − Lφ(x) + b.c.’s
∣∣∣∣∣ ≤ C∥φ∥C3(Ω)(ε + ϑ)

with probability at least 1 − Cne−cnεd+2ϑ2 .
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Intuition on the Minimal Number of Labels Proof III

5 Step 5: u∗ solves 
Lu∗ = 0 in Ω \ Ω̃

u∗ = g† in Ω̃
∂u∗

∂n = 0 on ∂Ω.

Let φ solve 
Lφ = 1 in Ω \ Ω̃

φ = 0 in Ω̃
∂φ

∂n = 1 on ∂Ω.

Then let
v =

{
u∗ + Mϑφ in Ω \ Ω̃
g† on Ω̃.
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Intuition on the Minimal Number of Labels Proof IV
6 Step 6: Choosing M large enough we have

Lnv =

Lu∗ + MϑLφ + O(ε + ϑ)
= Mϑ + O(ε + ϑ) > 0.

By the max principle, and since Ln(u∗
n − v) < 0 on Ω \ Ω̃,

max
Ωn

(u∗
n − v) = max

Ω̃∩Ωn
(u∗

n − v) = max
Ω̃∩Ωn

(u∗
n − g†) ≤ Cε√

β
log

√
β

ε
.

Using the same argument on v − u∗
n we have

∥u∗
n − v∥L∞(Ωn) ≤ Cε√

β
log

√
β

ε
.

7 Step 7: Since ∥φ∥L∞ ≤ C then

∥u∗
n − u∗∥L∞(Ωn) ≤ Cε√

β
log

√
β

ε
.
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Using the same argument on v − u∗
n we have

∥u∗
n − v∥L∞(Ωn) ≤ Cε√

β
log

√
β

ε
.

7 Step 7: Since ∥φ∥L∞ ≤ C then

∥u∗
n − u∗∥L∞(Ωn) ≤ Cε√

β
log

√
β

ε
.
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Large Data Limits for |In| → ∞

Theorem (Calder, Slepčev and T. (2020))
Ill-Posed Regime. Let εn satisfy a lower bound. Let u∗

n be a
sequence of minimizers of E(2)

n satisfying the constraints. Assume
βn ≪ ε2

n. Then, almost surely, {u∗
n}n∈N is precompact and any

convergent subsequence converges to a constant.

Theorem (Calder, Slepčev and T. (2020))
Well-Posed Regime. Let εn satisfy a lower bound. Let u∗

n be a
sequence of minimizers of E(2)

n satisfying the constraints and u∗ be
the minimiser of E(2)

∞ with constraints. Assume βn ≫ ε2
n. Then,

almost surely, u∗
n converges to u∗ uniformly, in particular

max
i=1,...,n

|u∗
n(xi) − u∗(xi)| ≲

εn√
βn

log
√

βn
εn

.
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Finite Constraint Degeneracy

Figure: A toy example with
two labels which are seen as
spikes.

1 Let us assume In = {1, . . . , m}.

2 We have that u∗
n(xi) ≈ c for

i ̸∈ In.1
3 Say c > 0, then this means the

majority of labels, classified using
ℓu∗

n (xi) = sign(u∗
n(xi)), will be

classed as ℓu∗
n (xi) = 1.

4 One way to correct this bias would
be to consider u∗

n − c, but this is
just the solution Laplace Learning
with the labels ℓi − c, why would
we expect to do better with the
the wrong label?

1Nadler, Srebro and Zhou, Statistical Analysis of Semi-Supervised Learning,
NeurIPS, 2009, pp. 1330–1338
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Laplace Learning on MNIST

# Labels/class 1 2 3 4

Laplace 16.1 (6.2) 28.2 (10) 42.0 (12) 57.8 (12)
Graph NN 58.8 (5.6) 66.6 (2.8) 70.2 (4) 71.3 (2.6)

# Labels/class 5 10 50 100

Laplace 69.5 (12) 93.2 (2.3) 96.9 (0.1) 97.1 (0.1)
Graph NN 73.4 (1.9) 82.3 (1.0) 89.0 (0.5) 90.6 (0.4)

Average accuracy over 10 trials with standard deviation in
brackets.

C.f. for 1 label per class the shifted Laplacian method achieves
85.9% accuracy.

Graph NN: 1-nearest neighbour using graph geodesic distance.
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Random Walks at Low Labelling Rates

1 The random walk interpretation of Laplace learning explains
the ill-posedness...

2 If |In| ≪ n then the probability of hitting a label is low.
3 Hence, we expect S(x) ≫ 1, and in particular S(x) may be

greater than the mixing time of the random walk.
4 This means Bx

S(x) is distributionally independent of x .
5 This implies u∗

n is approximately a constant on {xi}i ̸∈In .
6 The stationary distribution of Bx

t is π(xi) = di∑n
j=1 dj

, so it
follows that

u∗
n(xi) = E[ℓ(Bx

S(x))] ≈
∑

i∈In diℓi∑
i∈In di

=: c

for all i ̸∈ In.
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Laplace’s Equation at Low Labelling Rates I

1 Assume no labels are connected, i.e. wij = 0 for all i , j ∈ In.

2 Then, for i ∈ In = {1, . . . , m} and c =
∑

i∈In
di ℓi∑

i∈In
di

,

Lnu∗
n(xi) =

n∑
j=1

wij(u∗
n(xi) − u∗

n(xj))

≈
∑
j ̸∈In

wij(ℓi − c)

= di(ℓi − c).

3 We also have
n∑

i=1
diun(xi) ≈

∑
i∈In

diℓi + c
∑
i ̸∈In

di = c
n∑

i=1
di .
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Laplace’s Equation at Low Labelling Rates II

For |In| ≪ n, u∗
n approximately satisfies

Lnu∗
n(xi) ≈

∑
j∈In

dj(ℓj − c)δij ,
1∑n

i=1 di

n∑
i=1

diu∗
n(xi) ≈ c.

Shifting by c we could define v∗
n by

Lnv∗
n (xi) =

∑
j∈In

dj(ℓj − c)δij ,
n∑

i=1
div∗

n (xi) = 0.

However, we find a slight improvement in performance if we
additionally normalise each node and therefore we define v∗

n to
satisfy

Lnv∗
n (xi) =

∑
j∈In

(ℓj − c̄)δij ,
n∑

i=1
v∗

n (xi) = 0

where c̄ = 1
|In|

∑
i∈In ℓi .
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Poisson Random Walk

Recall that Bx
t is the random walk starting from x and

transitioning from xi to xj with probability proportional to wij .

Theorem (Calder, Cook, Slepčev and T. (2020))
Let

v (T )
n (xi) = E

 1
di

T∑
t=0

∑
j∈In

(ℓj − c̄)1B
xj
t =xi

 .

Then,

v (T+1)
n (xi) = v (T )

n (xi) + 1
di

∑
j∈In

(ℓj − c̄)δij − Lnv (T )
n (xi)


and moreover v (T )

n → v∗
n as T → ∞.
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Laplace’s Random Walk (Again)

x

Bx
1 Bx

2 Bx
3

Bx
S(x)

Red - labelled
nodes, grey -
unlabelled nodes.

u∗
n(x) = E

∑
j∈In

ℓj1Bx
S(x)=xj


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Poisson’s Random Walk

x1

x2

Bx1
0

Bx1
1Bx1

2

Bx1
3

Bx1
4

Bx1
5

Bx2
0

Bx2
1

Bx2
2Bx2

3

Bx2
4

Bx2
5

Red - labelled
nodes, grey -
unlabelled nodes.

Notice that

lim
T→∞

E

[
1
di

∑
j∈In

ℓj1B
xj
t =xi

]
=

mc̄∑n
j=1 dj

= lim
T→∞

E

[
c̄
di

∑
j∈In

1B
xj
t =xi

]
.

v∗
n (x) = lim

T→∞
E

 1
di

T∑
t=0

∑
j∈In

(ℓj − c̄)1B
xj
t =x

 .
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MNIST Results

# Labels per class
1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
NN 55.8 (5.1) 65.0 (3.2) 68.9 (3.2) 72.1 (2.8) 74.1 (2.4)
Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
Sparse LP 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

Average (standard deviation) classification accuracy over 100 trials.
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FashionMNIST Results

# Labels per class
1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
NN 44.5 (4.2) 50.8 (3.5) 54.6 (3.0) 56.6 (2.5) 58.3 (2.4)
Random Walk 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
VolumeMBO 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
Centered Kernel 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
Sparse LP 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

Average (standard deviation) classification accuracy over 100 trials.

C.f. state-of-the-art clustering result of 67.2% [McConville et al.,
2019].
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CIFAR-10 Results

# Labels per class
1 2 3 4 5

Laplace/LP 10.5 (1.3) 12.5 (4.4) 13.1 (3.8) 14.5 (4.7) 18.0 (6.9)
NN 33.6 (4.4) 37.3 (3.3) 40.3 (3.0) 40.9 (2.7) 42.1 (2.4)
Random Walk 37.1 (5.0) 42.1 (3.7) 45.8 (3.4) 47.0 (2.8) 48.8 (2.5)
MBO 15.2 (4.1) 20.4 (4.8) 25.9 (4.1) 29.6 (4.3) 34.5 (4.2)
VolumeMBO 40.3 (8.0) 47.2 (7.1) 52.2 (5.3) 53.3 (4.7) 55.9 (4.0)
WNLL 20.8 (6.4) 34.5 (6.2) 42.1 (5.2) 46.1 (4.4) 50.2 (3.5)
Centered Kernel 13.8 (1.1) 15.5 (1.2) 17.3 (1.4) 18.8 (1.7) 20.4 (1.6)
Sparse LP 10.4 (2.1) 11.1 (1.4) 11.8 (2.1) 12.8 (4.4) 13.6 (3.3)
p-Laplace 28.7 (6.6) 39.8 (6.4) 45.7 (2.6) 46.8 (1.7) 50.4 (2.9)
Poisson 41.6 (5.4) 46.9 (4.2) 51.1 (3.4) 52.5 (3.0) 54.5 (3.0)
PoissonMBO 42.1 (7.0) 49.1 (5.3) 53.8 (4.4) 55.6 (3.7) 57.4 (3.4)

Average (standard deviation) classification accuracy over 100 trials.

C.f. state-of-the-art clustering result of 41.2% [Mukherjee et al.,
ClusterGAN, CVPR 2019].
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The Fractional Graph Laplacian

Let (λ(n)
i , q(n)

i ) be the eigenvalues and eigenvectors of the
normalised graph Laplacian 1

nε2
nση

Ln.

We define the fractional graph Laplacian energy J (α,τ)
n by

J (α,τ)
n (un) =

n∑
i=1

(
λ

(n)
i + τ2

)α
⟨un, q(n)

i ⟩2
L2(µn).

When α = 1 and τ = 0,

J (1,0)
n (un) =

n∑
i=1

λ
(n)
i ⟨un, q(n)

i ⟩2
L2(µn)

= ⟨un, Lnun⟩L2(µn)

= 1
2E(2)

n (un).
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Continuum Limit of the Graph Fractional Laplacian

Let (λi , qi) be the eigenvalues and eigenfunctions of the
continuum operator L.

We define J (α,τ)
∞ by

J (α,τ)
∞ (u) =

∞∑
i=1

(λi + τ2)α⟨u, qi⟩2
L2(µ).

When α = 1 and τ = 0 we have

J (1,0)
∞ (u) =

∫
Ω

|∇u(x)|2ρ2(x) dx = 1
ση

E(2)
∞ (u).
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Convergence of the Fractional Graph Laplacian

Theorem (Dunlop, Slepčev, Stuart and T. (2017))
Under assumptions on η, Ω, µ and a lower bound on ϵn → 0 we
have, with probability one,

1 Γ- limn→∞ 2σηJ (α,τ)
n = J (α,τ)

∞ with respect to the TL2

topology;
2 if τ = 0, any sequence {un} with un : Ωn → R satisfying

supn ∥un∥L2(µn) < ∞ and supn∈N J (α,0)
n (un) < ∞ is

pre-compact in the TL2 topology;
3 if τ > 0, any sequence {un} with un : Ωn → R satisfying

supn∈N J (α,τ)
n (un) < ∞ is pre-compact in the TL2 topology.
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Large Data Limits of Fractional Laplace Learning: Ill-Posed
Case

Theorem (Dunlop, Slepčev, Stuart and T. (2017) and Weihs and
T.(2023))
Assume ε2α

n n → ∞ and |In| = m is fixed. Let {u∗
n}n∈N be

constrained minimisers of J (α,τ)
n . Assume

supn∈N ∥u∗
n∥L2(µn) < +∞. Then, with probability one, {u∗

n}n∈N are
precompact in TL2 and any converging subsequence converges to
a constant.

Remark 1: ε2α
n n → ∞ is always true if α ≤ d

2 (due to the
lower bound on εn).
Remark 2: The idea behind the proof is the same as in the
p-Laplacian: measure the cost of a spike un(xi) = 1 for i = 1
and u(xi) = 0 otherwise.
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Large Data Limits of Fractional Laplace Learning:
Well-Posed Case

Theorem (Weihs and T. (2023))

Let Ω = [0, 1]d be the torus. Assume ε
α−1

2n n is bounded,
α > 5d

2 + 4 and |In| = m is fixed. Let {u∗
n}n∈N be constrained

minimisers of J (α,τ)
n . Then, with probability one, the sequence u∗

n
converges uniformly to the constrained minimizer of J (α,τ)

∞ .
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Intuition on the Proof I
As in the p-Laplacian case we want to control

un(x) − un(y) =
n∑

k=1
⟨un, q(n)

k ⟩L2(µn)
(
q(n)

k (x) − q(n)
k (y)

)
.

We split the summation at Kn ∼ ε
− d

2n .
For k = Kn we use Weyl’s law: λ−1

n,Kn
∼ K− 2

dn ∼ εn.
For k = Kn, . . . , n we use∣∣∣q(n)

k (x) − q(n)
k (y)

∣∣∣ ≲ √
nE(2)

n (q(n)
k )|x − y | =

√
nλ

(n)
k |x − y |

to show that
n∑

k=Kn

|⟨un, q(n)
k ⟩L2(µn)|

∣∣∣q(n)
k (x) − q(n)

k (y)
∣∣∣ ≤

√
n|x − y |

n∑
k=Kn

√
λ

(n)
k |⟨un, q(n)

k ⟩L2(µn)|

≲ n|x − y |

(
n∑

k=1

λ
(n)
k |⟨un, q(n)

k ⟩L2(µn)|
2

) 1
2

≲ n|x − y |
√

J (α,0)
n (un)(λ(n)

Kn
)

1−α
2 ≲ nε

α−1
2

n |x − y |
√

J (α,0)
n .
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Intuition on the Proof II

For k = 1, . . . , Kn we can control

|λn,k − λk | ≲ λk

(√
λkεn + dW∞(µn, µ)

εn

)
∥q(n)

i ∥L∞ ≲ λd+1
k

thanks to García Trillos, Gerlach, Hein and Slepčev (2020)
and Calder, García Trillos and Lewicka (2022).

Putting everything together implies
|un(x) − un(y)|

|x − y | + dW∞(µn, µ) ≲
√

J (α,0)
n (un)(1+nε

α−1
2n )+∥un∥L2(µn).

Compactness: after (piecewise) extension and mollification
use the above Lipschitz bound and the Arzela-Ascoli theorem
to infer the existence of a uniformly converging subsequence.
Combined with the Γ-convergence result we can conclude the
theorem.

47 / 56



Intuition on the Proof II

For k = 1, . . . , Kn we can control

|λn,k − λk | ≲ λk

(√
λkεn + dW∞(µn, µ)

εn

)
∥q(n)

i ∥L∞ ≲ λd+1
k

thanks to García Trillos, Gerlach, Hein and Slepčev (2020)
and Calder, García Trillos and Lewicka (2022).
Putting everything together implies

|un(x) − un(y)|
|x − y | + dW∞(µn, µ) ≲

√
J (α,0)

n (un)(1+nε
α−1

2n )+∥un∥L2(µn).

Compactness: after (piecewise) extension and mollification
use the above Lipschitz bound and the Arzela-Ascoli theorem
to infer the existence of a uniformly converging subsequence.
Combined with the Γ-convergence result we can conclude the
theorem.

47 / 56



Intuition on the Proof II

For k = 1, . . . , Kn we can control

|λn,k − λk | ≲ λk

(√
λkεn + dW∞(µn, µ)

εn

)
∥q(n)

i ∥L∞ ≲ λd+1
k

thanks to García Trillos, Gerlach, Hein and Slepčev (2020)
and Calder, García Trillos and Lewicka (2022).
Putting everything together implies

|un(x) − un(y)|
|x − y | + dW∞(µn, µ) ≲

√
J (α,0)

n (un)(1+nε
α−1

2n )+∥un∥L2(µn).

Compactness: after (piecewise) extension and mollification
use the above Lipschitz bound and the Arzela-Ascoli theorem
to infer the existence of a uniformly converging subsequence.

Combined with the Γ-convergence result we can conclude the
theorem.

47 / 56



Intuition on the Proof II

For k = 1, . . . , Kn we can control

|λn,k − λk | ≲ λk

(√
λkεn + dW∞(µn, µ)

εn

)
∥q(n)

i ∥L∞ ≲ λd+1
k

thanks to García Trillos, Gerlach, Hein and Slepčev (2020)
and Calder, García Trillos and Lewicka (2022).
Putting everything together implies

|un(x) − un(y)|
|x − y | + dW∞(µn, µ) ≲

√
J (α,0)

n (un)(1+nε
α−1

2n )+∥un∥L2(µn).

Compactness: after (piecewise) extension and mollification
use the above Lipschitz bound and the Arzela-Ascoli theorem
to infer the existence of a uniformly converging subsequence.
Combined with the Γ-convergence result we can conclude the
theorem.

47 / 56



Contents

1 Discrete-To-Continuum Topology

2 p-Laplace Learning

3 Poisson Learning

4 Fractional Laplace Learning

5 Graph Neural Networks

48 / 56



Graph Diffusions

Let X (t) = [x1(t)⊤, x2(t)⊤, . . . , xn(t)⊤]⊤ ∈ Rn×d satisfy

dX
dt (t) = div(F (X (t), t) ⊙ ∇X (t))

where F : Rn×d × [0, ∞) → Rn×n is a given function, ∇ is the
graph gradient operator and div is the graph divergence
operator.

Special case: Assume [F (X , t)]ij = 1
di

where di =
∑n

j=1 wij
then

dX
dt (t) = −L̃nX (t)

where L̃ = Id − D−1W = D−1Ln is the random walk
Laplacian.
Remark: This is the gradient flow corresponding to minimising
a Dirichlet energy (without constraints). In particular,
xi(t) → c ∈ Rd , as t → ∞, for all i = 1, 2, . . . , n.
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GRAND

GRAph Neural Diffusion (GRAND) networks were proposed by
Chamberlain et. al.2 as a architecture for graph neural networks.

The architecture is based on

X (T ) = X (0) +
∫ T

0

dX
dt (t) dt

where
dX
dt (t) = div(F (X (t), t) ⊙ ∇X (t))

and the parameter values that define F are to be learned.

2Chamberlain, Rowbottom, Gorinova, Bronstein, Webb and Rossi, GRAND: Graph
neural diffusion, ICML, 2021, pp. 1407–1418.
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Random Walk Viewpoint of GRAND
We consider the (slightly modified) random walk Bx

t on
{xi(0)}n

i=1

Bx
0 = x ∈ {xi(0)}n

i=1

P
(
Bx

t+1 = xj(0)|Bx
t = xi(0)

)
=
{

1 − δt if i = j
δtWij

di
if i ̸= j

Result: Let X (t) = [x1(t)⊤, x2(t)⊤, . . . , xn(t)⊤]⊤ solve
X (0) = [x⊤

1 , x⊤
2 , . . . , x⊤

n ]⊤

X (kδt) = X ((k − 1)δt) − δt L̃nX ((k − 1)δt).
Then,

xi(kδt) = E[Bx i
k ].

Result: As k → ∞

xi(kδt) → x̃ :=
n∑

j=1
x jπj , πj = dj∑n

i=1 di
.
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P
(
Bx

t+1 = xj(0)|Bx
t = xi(0)

)
=
{

1 − δt if i = j
δtWij

di
if i ̸= j

Result: Let X (t) = [x1(t)⊤, x2(t)⊤, . . . , xn(t)⊤]⊤ solve
X (0) = [x⊤

1 , x⊤
2 , . . . , x⊤

n ]⊤

X (kδt) = X ((k − 1)δt) − δt L̃nX ((k − 1)δt).
Then,

xi(kδt) = E[Bx i
k ].

Result: As k → ∞

xi(kδt) → x̃ :=
n∑

j=1
x jπj , πj = dj∑n

i=1 di
.
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GRAND++

Problem: In GRAND we suffer from the oversmoothing
phenomena.

Solution: Add a source term: let
Z (t) = [z1(t)⊤, z2(t)⊤, . . . , zn(t)⊤]⊤ solve

dzi
dt (t) = [div(F (Z (t), t) ⊙ ∇Z (t))]i +

∑
j∈In

δijCj

where Cj is the source added at nodes j ∈ In.
We choose

Cj = x j − x̂ , x̂ = 1
|In|

∑
j∈In

x j .

GRAph Neural Diffusion with source (GRAND++) is based
on this architecture.
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Random Walk Viewpoint of GRAND++
Assume that the initial condition satisfies

n∑
i=1

zi(0) =
∑
i∈In

1
di

(x i − x̂) .

Theorem (T., Nguyen, Xia, Strohmer, Bertozzi, Osher and Wang
(2021))
Let Z (t) = [z1(t)⊤, z2(t)⊤, . . . , zn(t)⊤]⊤ solve

zi(kδt) = zi((k − 1)δt) − δt [L̃nZ ((k − 1)δt)]i +
∑
j∈In

δij (x j − x̂) .

Then, ∣∣∣∣∣∣zi(kδt) − E

 k∑
s=0

1
di

∑
j∈In

(x j − x̂)1
B

xj
s =x i

∣∣∣∣∣∣ → 0

as k → ∞.
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"Deep" Layer Results

Depth GRAND-nl GRAND-nl-rw GRAND++-nl GRAND++-nl-rw

CORA 1 79.70 (1.88) 79.07 (3.05) 79.24 (1.48) 79.24 (1.48)
4 82.31 (0.91) 82.47 (1.32) 82.64 (0.89) 82.23 (1.14)
16 82.11 (1.42) 82.05 (1.31) 83.24 (0.20) 81.48 (1.07)
32 79.42 (0.64) 81.01 (0.81) 81.21 (0.37) 82.20 (1.15)

CiteSeer 1 71.84 (2.98) 71.84 (2.66) 70.45 (2.12) 71.74 (1.37)
16 72.65 (2.42) 73.06 (2.98) 72.48 (1.10) 73.29 (1.37)
64 70.29 (2.58) 69.65 (2.50) 72.64 (0.93) 73.38 (0.95)
128 65.19 (6.77) 65.45 (7.18) 74.24 (0.70) 74.23 (0.70)

PubMed 1 77.93 (1.27) 77.93 (1.26) 78.01 (0.68) 78.01 (0.68)
4 77.95 (1.28) 78.02 (1.14) 78.41 (0.88) 78.17 (0.93)
16 76.51 (2.73) 76.88 (2.57) 78.43 (0.78) 78.12 (0.87)

Table: Classification accuracy of GRAND and GRAND++ variants of
different depth trained with 20 labels per class. (Unit: %)
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Low Label Rate Results
Model Labels/Class CORA CiteSeer PubMed CoauthorCS Computer Photo

1 54.94 (16.09) 58.95 (9.59) 65.94 (4.87) 60.30 (1.50) 67.65 (0.37) 83.12 (0.78)
2 66.92 (10.04) 64.98 (8.31) 69.31 (4.87) 76.53 (1.85) 76.47 (1.48) 83.71 (0.90)

GRAND++-l 5 77.80 (4.46) 70.03 (3.63) 71.99 (1.91) 84.83 (0.84) 82.64 (0.56) 88.33 (1.21)
10 80.86 (2.99) 72.34 (2.42) 75.13 (3.88) 86.94 (0.46) 82.99 (0.81) 90.65 (1.19)
20 82.95 (1.37) 73.53 (3.31) 79.16 (1.37) 90.80 (0.34) 85.73 (0.50) 93.55 (0.38)

1 52.53 (16.40) 50.06 (17.98) 62.11 (10.58) 59.15 (5.73) 48.67 (1.66) 81.25 (2.50)
2 64.82 (11.16) 59.55 (10.89) 69.00 (7.55) 73.83 (5.58) 74.77 (1.85) 82.13 (3.27)

GRAND-l 5 76.07 (5.08) 68.37 (5.00) 73.98 (5.08) 85.29 (2.19) 80.72 (1.09) 88.27 (1.94)
10 80.25 (3.40) 71.90 (7.66) 76.33 (3.41) 87.81 (1.36) 82.42 (1.10) 90.98 (0.93)
20 82.86 (2.39) 73.02 (5.89) 78.76 (1.69) 91.03 (0.47) 84.54 (0.90) 93.53 (0.47)

1 47.72 (15.33) 48.94 (10.24) 58.61 (12.83) 65.22 (2.25) 49.46 (1.65) 82.94 (2.17)
2 60.85 (14.01) 58.06 (9.76) 60.45 (16.20) 83.61 (1.49) 76.90 (1.49) 83.61 (0.71)

GCN 5 73.86 (7.97) 67.24 (4.19) 68.69 (7.93) 86.66 (0.43) 82.47 (0.97) 88.86 (1.56)
10 78.82 (5.38) 72.18 (3.47) 72.59 (3.19) 88.60 (0.50) 82.53 (0.74) 90.41 (0.35)
20 82.07 (2.03) 74.21 (2.90) 76.89 (3.27) 91.09 (0.35) 82.94 (1.54) 91.95 (0.11)

1 47.86 (15.38) 50.31 (14.27) 58.84 (12.81) 51.13 (5.24) 37.14 (7.81) 73.58 (8.15)
2 58.30 (13.55) 55.55 (9.19) 60.24 (14.44) 63.12 (6.09) 65.07 (8.86) 76.89 (4.89)

GAT 5 71.04 (5.74) 67.37 (5.08) 68.54 (5.75) 71.65 (4.53) 71.43 (7.34) 83.01 (3.64)
10 76.31 (4.87) 71.35 (4.92) 72.44 (3.50) 74.71 (3.35) 76.04 (0.35) 87.42 (2.38)
20 79.92 (2.28) 73.22 (2.90) 75.55 (4.11) 79.95 (2.88) 80.05 (1.81) 89.38 (2.48)

1 43.04 (14.01) 48.81 (11.45) 55.53 (12.71) 61.35 (1.35) 27.65 (2.39) 45.36 (7.13)
2 53.96 (12.18) 54.39 (11.37) 58.97 (12.65) 76.51 (1.31) 42.63 (4.29) 51.93 (4.21)

GraphSage 5 68.14 (6.95) 64.79 (5.16) 66.07 (6.16) 89.06 (0.69) 64.83 (1.62) 78.26 (1.93)
10 75.04 (5.03) 68.90 (5.08) 70.74 (3.11) 89.68 (0.39) 74.66 (1.29) 84.38 (1.75)
20 80.04 (2.54) 72.02 (2.82) 74.55 (3.09) 91.33 (0.36) 79.98 (0.96) 91.29 (0.67)

1 47.72 (15.53) 39.13 (11.37) 56.47 (4.67) 58.99 (5.17) 23.78 (7.57) 34.72 (8.18)
2 60.85 (14.01) 48.52 (9.52) 61.03 (6.93) 76.57 (4.06) 38.19 (3.72) 43.03 (8.22)

MoNet 5 73.86 (7.97) 61.66 (6.61) 67.92 (2.50) 87.02 (1.67) 59.38 (4.73) 71.80 (5.02)
10 78.82 (5.38) 68.08 (6.29) 71.24 (1.54) 88.76 (0.49) 68.66 (3.30) 78.66 (3.17)
20 82.07 (2.03) 71.52 (4.11) 76.49 (1.75) 90.31 (0.41) 73.66 (2.87) 88.61 (1.18)

Table: Classification accuracy of different GNNs trained with different
number of labelled data per class (#per class) on six benchmark graph
node classification tasks. (Unit: %)
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Thank you for listening!

Thank you for listening!
In theory, there is no difference between theory and prac-
tice. But in practice, there is.

— Yogi Berra
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