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Consider the problem of approximating an integral

= () = [ F(u(ax)

where 1 is a probability distribution and f is some function.

Markov chain Monte Carlo algorithms are based on the construction of a
Markov chain {X,}sen with transition probabilities

P(X» € AlXo—1 = x) = Pu(x,A)
1 here is the invariant distribution of the Markov Chain P,:

P, A) = / H(dx)Py(x, A) = u(A)

If P, is good enough, we can conclude I, :=n"' Y7 f(X) — I.



Introduction

Algorithm 1 Hastings algorithm

Starting with Xo = x. Fori=1,...,n,
» Draw Y ~ Q(Xi-1,")

#(Y)Q(Y,Xi—1)

» Compute ru(Xi—1,Y) := TR DALY

> Set Xi = Y with probability g(r.(Xi—1, Y)), otherwise set X; = Xj_1.

Where g(x) = xg(1/x), g(x) < 1 is an acceptance/balancing function. With
g(x) = min(1, x) this is the Metropolis-Hastings algorithm.
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Introduction

» In this work, we study some calculus-type methods and tools to compare
Markov kernels with different invariant distributions, say P, and P,;

» In particular, we will check that if the derivative in the invariant
distribution of P is bounded, then P, and P, move alike if ;» and v are
close;

» This provides a natural theoretical framework to analyze
approximation-based algorithms.
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Markov families

There are usually many possible Markov chains for each given invariant
distribution. We first need to restrict the space of Markov kernels.

Definition
A family of Markov kernels {P,} is a collection of Markov kernels indexed by
an open, convex subset of invariant distributions.

If for some p, v € P(X), Pu, P, € {P.}, then the curve p; := (1 — t)u + tv
interpolating u and v satisfies P, € {Px}.



Markov families

Your best friends are Markov families!

Example
The Hastings family

P ) = [ F)Qxsdy)eru(x, ) + Fx)(L - / Q(x, dy)g(ru(x,¥)))

with r,(x,y) == % g(x) = xg(1/x), g(x) <

Many other choices are possible.
Gibbs, MALA, Metropolis-in-Gibbs families...
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Let {P.} be a Markov family. We define the derivative of P by first fixing a
starting distribution and a test function. Consider the functional
P.(p,f):p € P(X)— Pu.(p,f) € R for some fixed (p, f).

Definition
The derivative of P.(p, f) in the invariant distribution at p € P, (X) is the
functional 0x Pu(p, f)[-] : Max,0(X) — R such that for all v € Px(X),

d
g¢ Perte—m (e )| = O0nPulp, ) — -
t=0

Where M o(X) := {set of 0-mass measures with Lebesgue-density}
The derivative of P.(p,-) is defined in the oblivious way: it is the operator

OxPulp;)[]: f € {some set} = 0= Ppu(p, f)[]



Derivative in the invariant distribution

For p € Pa(X), the action of the functional 9P, (p, f) will be expressible in
integral form: for some function 9=Pu(p, f)(-) : X — R

O Pulp; )l — 1] = /(V(y) = ()9 Pu(p, f)(y)A(dy) and
1(0xPu(p, £)(-)) = O.

O=P.(p, f)(-), if it exists, is the first variation of P.(p, ). We call it the density
of the derivative in the invariant distribution.



Derivative in the invariant distribution

For p € Pa(X), the action of the functional 9P, (p, f) will be expressible in
integral form: for some function 9=Pu(p, f)(-) : X — R

O Pu(p, F)lv — ] = /(V(Y) = ()9 Pu(p, f)(y)A(dy) and
(0 Pu(p, f)(-)) = 0.
O=P.(p, f)(-), if it exists, is the first variation of P.(p, ). We call it the density
of the derivative in the invariant distribution.
However, for p ¢ Pa(X) (e.g. p = dx), O=Pu(p, f) will have no density:

Or Pu(x, f)[v — p] = (a density part) + (a singular part)
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» 0.Pu(p,-) describes how P,(p,-) changes when we perturb the
distribution p infinitesimally by a 0-mass measure.
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» 0.Pu(p,-) describes how P,(p,-) changes when we perturb the
distribution p infinitesimally by a 0-mass measure.

= If 9-P.(p,-) is large, P(p,-) is not robust to changes in the invariant.

» Interestingly, it always hold

O Pu(p, F)(v) = f(y) = Puly, f).
(minus) the generator of P! So...

Theorem (Ergodic Theorem with derivatives)

Suppose that { X, }nen is an aperiodic, p-irreducible Markov Chain with
transition probabilities P,, and invariant distribution . If there exists some
petite set C, some b < oo and a non-negative finite function f bounded on C
such that

—0xPu(p, F)(x) < =14 blc(x), xe€X
whenever such kernel derivative exists, then for all x € X, as k — oo,

’ P:(x,-)—u — 0.

tv




Example: the Hastings family

Consider the Hastings family. Let Wy := {p € P»(X) : p/u? is bounded} — and
assume that g is differentiable.
Proposition

The Hastings kernel P.(p, -) is differentiable in the invariant distribution at
for all p € Wy. The derivative 0 P,.(p,-) admits an integral representation,
with its density given by

0:Pu(p. D) = [ (F) ~ 7() E A2) p1(r, (2, )@y, d2)

)
- :((}},/))2 (f(z) = F(¥))a(z,¥)g" (ru(y, z))u(dz).




Example: the Hastings family

Consider the Hastings family. Let Wy := {p € P»(X) : p/u? is bounded} — and
assume that g is differentiable.
Proposition

The Hastings kernel P.(p, -) is differentiable in the invariant distribution at
for all p € Wy. The derivative 0 P,.(p,-) admits an integral representation,
with its density given by

0:Pu(p. D) = [ (F) ~ 7() E A2) p1(r, (2, )@y, d2)

)
- ;((;))2 (f(z) = F(¥))a(z,¥)g" (ru(y, z))u(dz).

» This rules out Metropolis-Hastings but don't worry.



Example: the Hastings family

Proposition (cont.)

Under some regularity conditions, P.(x,-) is also differentiable for all x € X.
0= Pu(x, ") is given by

0P Nl — sl = [ (7(y) — 1) ELEINA2 gy

density part

7% /(f(y) — F(x))q(y, X)g" (ru(x, y))u(dy) -

singular part




Fundamental theorem of MCMC Calculus

Theorem
For all p such that P.(p,-) is differentiable at p: := (1 — t)p + tv for all
t €[0,1]

P~ Pulp) = | 0, Py — il .
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Bounded derivatives

We want to say bounded derivative and p,v close == P, and P, move alike.

Definition
We say that a differentiable Markov kernel P.(p, ) has a bounded derivative at
1 towards v if there exist constants My ,, M> , < oo such that

1Pup,) = Pulp, ),y < Mipllin = vllgy + Mopp(lp — vl). (1)

> d(p,v) =|lu—v|,, + p(ln —v|) is a metric, so this could be written as
Lipschitz continuity w.r.t. d, with constant given by max(Mi ,, M2 ).
However, (1) separates contributions.

» When p € Px(X), this definition is equivalent to the existence of a
constant M, < oo such that

1Pup, ) = Pu(p, oy < Mol = vl -
whereas if p = dx, it becomes

[P, ) = Pu(x, )|y, < Mullie = vl + Mol p(x) — v(x)].

tv —



Example - Mean Value for Hastings kernels

Proposition

For Hastings kernels, if P.(p,-) is differentiable in p: = (1 — t)u + tv for all

t € [0,1] and a boundedness condition on the derivative holds, then P.(p,-) will
have a bounded derivative in the invariant distribution at y towards v. The
“mean-value” inequalities

[1Pu(os-) = Py )|,y < Molls = vy,

HPI»L(Xa ) - PV(Xa )H < Mlsx

tv —

= vl + M2x|p(x) = v(x)]

hold, with some explicit values for the ‘Lipschitz constants’ M,, My x, M .
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Proposition

For Hastings kernels, if P.(p,-) is differentiable in p: = (1 — t)u + tv for all

t € [0,1] and a boundedness condition on the derivative holds, then P.(p,-) will
have a bounded derivative in the invariant distribution at y towards v. The
“mean-value” inequalities

[1Pu(os-) = Py )|,y < Molls = vy,

[|Pu(x, ) = Pu(x, )|,y < Mix

tv —

= vl + M2x|p(x) = v(x)]

hold, with some explicit values for the ‘Lipschitz constants’ M,, My x, M .

By considering gj(x) := (x +--- + x/) /(1 + x + - - - + x/) = min(1, x) we can
also obtain similar mean-value inequalities for the Metropolis-Hastings family.
» The Metropolis-Hastings kernel is an example of non-differentiable but

Lipschitz mapping of its invariant distribution!



Example - Mean Value for Hastings kernels

These inequalities seem to be fairly tight!

Figure: The mean value inequality
||P“(><7 ) — Pu(x, )HH <|lp = vl M1 x + [(x) — v(x)| M2, for RW MH as a

function of x €



Fluctuations of Markov kernels

With a bounded derivative P,, chain moves similarly to P, if p, and p are
close. An alternative is to minimize fluctuations P,, around P,. Suppose that
{pin}nen € P(X) are random, and that n=Y/2[u, — u](f) = N(0, v(f)).



Fluctuations of Markov kernels

With a bounded derivative P,, chain moves similarly to P, if p, and p are
close. An alternative is to minimize fluctuations P,, around P,. Suppose that
{pin}nen € P(X) are random, and that n=Y/2[u, — u](f) = N(0, v(f)).

Proposition
If P.(p, f) is differentiable, then

nil/z(PHn(pv f) - Pﬂ(pv f)) =N (07 V(aﬂ'Pu(pv f))) 0

The random fluctuations of P, (p, f) around P,(p, f) depend explicitly on the
derivative 0P, (p, f).



Applications

» The methods developed allow an easy comparison between Markov Chains
of the same family with different invariant distributions.



Applications

» The methods developed allow an easy comparison between Markov Chains
of the same family with different invariant distributions.

» It is natural to think of v as an approximation of u. In this sense we are

investigating when an “approximated” Markov chain P, moves like the
limiting P,,, which is desirable.



Applications

» The methods developed allow an easy comparison between Markov Chains
of the same family with different invariant distributions.

» It is natural to think of v as an approximation of u. In this sense we are
investigating when an “approximated” Markov chain P, moves like the
limiting P,,, which is desirable.

» Roughly speaking (and under some other regularity conditions), if P.(x, -)
has a bounded derivative in the invariant distribution at x towards v, and
v is somewhat close to u, the “approximated” Markov chain P, will
achieve the same asymptotic variance of P, plus an additional variability
due the fluctuations of v around p.



Applications - Sequential MCMC

Suppose that we can write u = ®(n), for some transformation
& : P(X) = P(X).

Algorithm 2 Sequential MCMC

1. Simulate Y,-/H ~ Py(Y;,)fori=0,...,nsetn,:=n"13" 8.

2. Simulate Yiy1 ~ Po(,)(Yi, ) for i=0,...,n.

Typically @ is the Boltzmann-Gibbs transformation associated to some
Feynman-Kac model, and this algorithm is popular in the context of particle
filtering where

@ = 9( L )

Predictive distribution at later time Predictive distribution at earlier time

See Berzuini et al., 1997; Golightly and Wilkinson, 2006; Septier et al., 2009; Li
et al., 2023; Finke, Doucet, and Johansen, 2020. ..



Applications - Sequential MCMC

Denote with o2 the asymptotic variance achieved by the Markov chain P, and
let wn := ®(nn).
Theorem
Assume that
» P. has a bounded derivative in the invariant distribution at j towards
every [in;
> 1in(x) = p(x) for all x € X and n=?[u, — p](f) = N(O, v(f)).
» P satisfies an uniform drift and minorization condition.
Then,

_1/2Zf — u(f) = N(0,0 (f)+ v ( ))-

Extends the theoretical guarantees for sMCMC of Finke, Doucet, and
Johansen, 2020!
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Conclusions

» We studied methods to compare Markov chains using different invariant
distributions commonly used in Markov chain Monte Carlo using a
calculus-type approach;

» Via the “mean-value” inequalities, we studied when we can expect two
Markov chains with different but close invariant distributions to behave
similarly;

» Other than being of theoretical interest per se, these methods are
naturally suited to the study of approximation-based algorithms. In
general, whenever we can control how good the approximation of the
invariant is, there should be room to use these tools;

» The methods and the strategy developed can be adapted to other
contexts. A calculus with proposals and/or other distributions the kernel
depends on?

» Many directions to explore, in terms of development of the theory (second
order derivatives, Taylor-type theorems...) and/or employing these or
similar results in interesting contexts.
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