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Introduction

Consider the problem of approximating an integral

I := µ(f ) =

∫
f (x)µ(dx)

where µ is a probability distribution and f is some function.

Markov chain Monte Carlo algorithms are based on the construction of a
Markov chain {Xn}n∈N with transition probabilities

P(Xn ∈ A|Xn−1 = x) = Pµ(x ,A)

µ here is the invariant distribution of the Markov Chain Pµ:

Pµ(µ,A) =

∫
µ(dx)Pµ(x ,A) = µ(A)

If Pµ is good enough, we can conclude In := n−1 ∑n
i=1 f (Xi ) → I .
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Introduction

Algorithm 1 Hastings algorithm

Starting with X0 = x . For i = 1, . . . , n,

▶ Draw Y ∼ Q(Xi−1, ·)

▶ Compute rµ(Xi−1,Y ) :=
µ(Y )Q(Y ,Xi−1)

µ(Xi−1)Q(Xi−1,Y )
.

▶ Set Xi = Y with probability g(rµ(Xi−1,Y )), otherwise set Xi = Xi−1.

Where g(x) = xg(1/x), g(x) ≤ 1 is an acceptance/balancing function. With
g(x) = min(1, x) this is the Metropolis-Hastings algorithm.



Introduction

▶ In this work, we study some calculus-type methods and tools to compare
Markov kernels with different invariant distributions, say Pµ and Pν ;

▶ In particular, we will check that if the derivative in the invariant
distribution of P is bounded, then Pµ and Pν move alike if µ and ν are
close;

▶ This provides a natural theoretical framework to analyze
approximation-based algorithms.
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Markov families

There are usually many possible Markov chains for each given invariant
distribution. We first need to restrict the space of Markov kernels.

Definition
A family of Markov kernels {P⋆} is a collection of Markov kernels indexed by
an open, convex subset of invariant distributions.

If for some µ, ν ∈ P(X), Pµ,Pν ∈ {P⋆}, then the curve µt := (1− t)µ+ tν
interpolating µ and ν satisfies Pµt ∈ {P⋆}.
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Markov families

Your best friends are Markov families!

Example

The Hastings family

Pµ(x , f ) :=

∫
f (y)Q(x , dy)g(rµ(x , y)) + f (x)(1−

∫
Q(x , dy)g(rµ(x , y)))

with rµ(x , y) :=
µ(y)Q(y,x)
µ(x)Q(x,y)

, g(x) = xg(1/x), g(x) ≤ 1.

Many other choices are possible.
Gibbs, MALA, Metropolis-in-Gibbs families...



Derivative in the invariant distribution

Let {P⋆} be a Markov family. We define the derivative of P by first fixing a
starting distribution and a test function. Consider the functional
P·(ρ, f ) : µ ∈ P(X) 7→ Pµ(ρ, f ) ∈ R for some fixed (ρ, f ).

Definition
The derivative of P·(ρ, f ) in the invariant distribution at µ ∈ Pλ(X) is the
functional ∂πPµ(ρ, f )[·] : Mλ,0(X) 7→ R such that for all ν ∈ Pλ(X),

d

dt
Pµ+t(ν−µ)(ρ, f )

∣∣∣∣
t=0

= ∂πPµ(ρ, f )[ν − µ].

Where Mλ,0(X) := {set of 0-mass measures with Lebesgue-density}

The derivative of P·(ρ, ·) is defined in the oblivious way: it is the operator

∂πPµ(ρ, ·)[·] : f ∈ {some set} 7→ ∂πPµ(ρ, f )[·]

.
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Derivative in the invariant distribution

For ρ ∈ Pλ(X), the action of the functional ∂πPµ(ρ, f ) will be expressible in
integral form: for some function ∂πPµ(ρ, f )(·) : X 7→ R

∂πPµ(ρ, f )[ν − µ] =

∫
(ν(y)− µ(y))∂πPµ(ρ, f )(y)λ(dy) and

µ(∂πPµ(ρ, f )(·)) = 0.

∂πPµ(ρ, f )(·), if it exists, is the first variation of P·(ρ, f ). We call it the density
of the derivative in the invariant distribution.

However, for ρ /∈ Pλ(X) (e.g. ρ = δx), ∂πPµ(ρ, f ) will have no density:

∂πPµ(x , f )[ν − µ] = (a density part) + (a singular part)
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Getting to know ∂πPµ(ρ, f )

▶ ∂πPµ(ρ, ·) describes how Pµ(ρ, ·) changes when we perturb the
distribution µ infinitesimally by a 0-mass measure.

⇒ If ∂πPµ(ρ, ·) is large, P(ρ, ·) is not robust to changes in the invariant.

▶ Interestingly, it always hold

∂πPµ(µ, f )(y) = f (y)− Pµ(y , f ).

(minus) the generator of P! So...

Theorem (Ergodic Theorem with derivatives)

Suppose that {Xn}n∈N is an aperiodic, µ-irreducible Markov Chain with
transition probabilities Pµ and invariant distribution µ. If there exists some
petite set C, some b < ∞ and a non-negative finite function f bounded on C
such that

−∂πPµ(µ, f )(x) ≤ −1 + b1C (x), x ∈ X

whenever such kernel derivative exists, then for all x ∈ X, as k → ∞,∥∥∥Pk
µ(x , ·)− µ

∥∥∥
tv

→ 0.
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Example: the Hastings family

Consider the Hastings family. Let WH := {ρ ∈ Pλ(X) : ρ/µ
2 is bounded} – and

assume that g is differentiable.

Proposition

The Hastings kernel P·(ρ, ·) is differentiable in the invariant distribution at µ
for all ρ ∈ WH . The derivative ∂πPµ(ρ, ·) admits an integral representation,
with its density given by

∂πPµ(ρ, f )(y) =

∫
(f (y)− f (z))

ρ(z)

µ(z)
g ′(rµ(z , y))Q(y , dz)

− ρ(y)

µ(y)2

∫
(f (z)− f (y))q(z , y)g ′(rµ(y , z))µ(dz).

▶ This rules out Metropolis-Hastings but don’t worry.
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Example: the Hastings family

Proposition (cont.)

Under some regularity conditions, P·(x , ·) is also differentiable for all x ∈ X.
∂πPµ(x , ·) is given by

∂πPµ(x , f )[ν − µ] =

∫
(f (y)− f (x))

g ′(rµ(x , y))q(y , x)

µ(x)
(ν − µ)(dy)︸ ︷︷ ︸

density part

− (ν − µ)(x)

µ(x)2

∫
(f (y)− f (x))q(y , x)g ′(rµ(x , y))µ(dy)︸ ︷︷ ︸

singular part

.



Fundamental theorem of MCMC Calculus

Theorem
For all ρ such that P·(ρ, ·) is differentiable at µt := (1− t)µ+ tν for all
t ∈ [0, 1]

Pµ(ρ, ·)− Pν(ρ, ·) =
∫ 1

0

∂πPµt (ρ, ·)[ν − µ] dt.



Bounded derivatives

We want to say bounded derivative and µ, ν close ⇒ Pµ and Pν move alike.

Definition
We say that a differentiable Markov kernel P·(ρ, ·) has a bounded derivative at
µ towards ν if there exist constants M1,ρ,M2,ρ < ∞ such that∥∥Pµ(ρ, ·)− Pν(ρ, ·)

∥∥
tv

≤ M1,ρ∥µ− ν∥tv +M2,ρρ(|µ− ν|). (1)

▶ d(µ, ν) =∥µ− ν∥tv + ρ(|µ− ν|) is a metric, so this could be written as
Lipschitz continuity w.r.t. d , with constant given by max(M1,ρ,M2,ρ).
However, (1) separates contributions.

▶ When ρ ∈ Pλ(X), this definition is equivalent to the existence of a
constant Mρ < ∞ such that∥∥Pµ(ρ, ·)− Pν(ρ, ·)

∥∥
tv

≤ Mρ∥µ− ν∥tv .

whereas if ρ = δx , it becomes∥∥Pµ(x , ·)− Pν(x , ·)
∥∥
tv

≤ M1,x∥µ− ν∥tv +M2,x |µ(x)− ν(x)|.
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Example - Mean Value for Hastings kernels

Proposition

For Hastings kernels, if P·(ρ, ·) is differentiable in µt = (1− t)µ+ tν for all
t ∈ [0, 1] and a boundedness condition on the derivative holds, then P·(ρ, ·) will
have a bounded derivative in the invariant distribution at µ towards ν. The
“mean-value” inequalities∥∥Pµ(ρ, ·)− Pν(ρ, ·)

∥∥
tv

≤ Mρ∥µ− ν∥tv∥∥Pµ(x , ·)− Pν(x , ·)
∥∥
tv

≤ M1,x∥µ− ν∥tv +M2,x |µ(x)− ν(x)|

hold, with some explicit values for the ‘Lipschitz constants’ Mρ,M1,x ,M2,x .

By considering gj(x) := (x + · · ·+ x j)/(1 + x + · · ·+ x j) → min(1, x) we can
also obtain similar mean-value inequalities for the Metropolis-Hastings family.

▶ The Metropolis-Hastings kernel is an example of non-differentiable but
Lipschitz mapping of its invariant distribution!



Example - Mean Value for Hastings kernels

Proposition

For Hastings kernels, if P·(ρ, ·) is differentiable in µt = (1− t)µ+ tν for all
t ∈ [0, 1] and a boundedness condition on the derivative holds, then P·(ρ, ·) will
have a bounded derivative in the invariant distribution at µ towards ν. The
“mean-value” inequalities∥∥Pµ(ρ, ·)− Pν(ρ, ·)

∥∥
tv

≤ Mρ∥µ− ν∥tv∥∥Pµ(x , ·)− Pν(x , ·)
∥∥
tv

≤ M1,x∥µ− ν∥tv +M2,x |µ(x)− ν(x)|

hold, with some explicit values for the ‘Lipschitz constants’ Mρ,M1,x ,M2,x .

By considering gj(x) := (x + · · ·+ x j)/(1 + x + · · ·+ x j) → min(1, x) we can
also obtain similar mean-value inequalities for the Metropolis-Hastings family.

▶ The Metropolis-Hastings kernel is an example of non-differentiable but
Lipschitz mapping of its invariant distribution!



Example - Mean Value for Hastings kernels

These inequalities seem to be fairly tight!

Figure: The mean value inequality∥∥Pµ(x , ·)− Pν(x , ·)
∥∥
tv

≤∥µ− ν∥tv M1,x + |µ(x)− ν(x)|M2,x for RW MH as a
function of x ∈ X



Fluctuations of Markov kernels

With a bounded derivative Pµn chain moves similarly to Pµ if µn and µ are
close. An alternative is to minimize fluctuations Pµn around Pµ. Suppose that
{µn}n∈N ∈ P(X) are random, and that n−1/2[µn − µ](f ) ⇒ N(0, v(f )).

Proposition

If P·(ρ, f ) is differentiable, then

n−1/2(Pµn (ρ, f )− Pµ(ρ, f )) ⇒ N
(
0, v(∂πPµ(ρ, f ))

)
.

The random fluctuations of Pµn (ρ, f ) around Pµ(ρ, f ) depend explicitly on the
derivative ∂πPµ(ρ, f ).
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Applications

▶ The methods developed allow an easy comparison between Markov Chains
of the same family with different invariant distributions.

▶ It is natural to think of ν as an approximation of µ. In this sense we are
investigating when an “approximated” Markov chain Pν moves like the
limiting Pµ, which is desirable.

▶ Roughly speaking (and under some other regularity conditions), if P·(x , ·)
has a bounded derivative in the invariant distribution at µ towards ν, and
ν is somewhat close to µ, the “approximated” Markov chain Pν will
achieve the same asymptotic variance of Pµ plus an additional variability
due the fluctuations of ν around µ.
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Applications - Sequential MCMC

Suppose that we can write µ = Φ(η), for some transformation
Φ : P(X) 7→ P(X).

Algorithm 2 Sequential MCMC

1. Simulate Y
′
i+1 ∼ Pη(Y

′
i , ·) for i = 0, . . . , n; set ηn := n−1 ∑n

i=0 δY ′
i
.

2. Simulate Yi+1 ∼ PΦ(ηn)(Yi , ·) for i = 0, . . . , n.

Typically Φ is the Boltzmann-Gibbs transformation associated to some
Feynman-Kac model, and this algorithm is popular in the context of particle
filtering where

µ︸︷︷︸
Predictive distribution at later time

= Φ( η︸︷︷︸
Predictive distribution at earlier time

)

See Berzuini et al., 1997; Golightly and Wilkinson, 2006; Septier et al., 2009; Li
et al., 2023; Finke, Doucet, and Johansen, 2020. . .



Applications - Sequential MCMC

Denote with σ2 the asymptotic variance achieved by the Markov chain Pµ and
let µn := Φ(ηn).

Theorem
Assume that

▶ P· has a bounded derivative in the invariant distribution at µ towards
every µn;

▶ µn(x) → µ(x) for all x ∈ X and n−1/2[µn − µ](f ) ⇒ N(0, v(f )).

▶ P satisfies an uniform drift and minorization condition.

Then,

n−1/2
n∑

i=0

f (Yi )− µ(f ) ⇒ N(0, σ2(f ) + v 2(f )).

Extends the theoretical guarantees for sMCMC of Finke, Doucet, and
Johansen, 2020!



Conclusions

▶ We studied methods to compare Markov chains using different invariant
distributions commonly used in Markov chain Monte Carlo using a
calculus-type approach;

▶ Via the “mean-value” inequalities, we studied when we can expect two
Markov chains with different but close invariant distributions to behave
similarly;

▶ Other than being of theoretical interest per se, these methods are
naturally suited to the study of approximation-based algorithms. In
general, whenever we can control how good the approximation of the
invariant is, there should be room to use these tools;

▶ The methods and the strategy developed can be adapted to other
contexts. A calculus with proposals and/or other distributions the kernel
depends on?

▶ Many directions to explore, in terms of development of the theory (second
order derivatives, Taylor-type theorems...) and/or employing these or
similar results in interesting contexts.
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