A theoretical analysis of one-dimensional discrete generation ensemble Kalman particle filters

Emma Horton¹ University of Warwick

Algorithms and Computationally Intensive Inference Seminars 8 March 2024

¹Joint work with Pierre Del Moral (Inria, Bordeaux)

Contents

1 The Kalman filter

2 Ensemble Kalman filter (EnKF)

Motivating example: target tracking

- Noisy measurements
- Path of target

3/44

Motivating example: target tracking

- Noisy measurements
- Path of target

 \leadsto What is the best way to combine the model and measurements to estimate the path of the target?

Motivating example: radiotherapy

Motivating example: radiotherapy

→ What is the best way to combine the model and measurements to estimate the dose?

The problem

Consider the following one-dimensional model,

$$X_{n+1} = AX_n + BW_{n+1}, \quad n \ge 1,$$

with noisy measurements

$$Y_n=CX_n+DV_n,\quad n\geq 0,$$

where

- ullet $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$,
- ullet $V_n, W_{n+1} \sim \mathcal{N}(0,1)$ are independent,
- $A, B, C, D \neq 0$.

The problem

Consider the following one-dimensional model,

$$X_{n+1} = AX_n + BW_{n+1}, \quad n \ge 1,$$

with noisy measurements

$$Y_n = CX_n + DV_n, \quad n \geq 0,$$

where

- ullet $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$,
- ullet $V_n, W_{n+1} \sim \mathcal{N}(0,1)$ are independent,
- $A, B, C, D \neq 0$.

 \leadsto Aim: to compute the distribution of X_n given the measurements, Y_0,\ldots,Y_n .

Emma Horton 1D Discrete EnKF 8 March 2024 5/44

- Write $x_{0:n}$ for the tuple (x_0, \ldots, x_n) and similarly for y.
- From Bayes' rule, the Markov property and the fact that the errors are independent, we have

$$p(x_{0:n}|y_{0:n}) \propto p(y_{0:n}|x_{0:n})p(x_{0:n})$$

- Write $x_{0:n}$ for the tuple (x_0, \ldots, x_n) and similarly for y.
- From Bayes' rule, the Markov property and the fact that the errors are independent, we have

$$p(x_{0:n}|y_{0:n}) \propto p(y_{0:n}|x_{0:n})p(x_{0:n})$$

$$= \prod_{k=0}^{n} p(y_k|x_k)p(x_0) \prod_{k=1}^{n} p(x_k|x_{k-1})$$

- Write $x_{0:n}$ for the tuple (x_0, \ldots, x_n) and similarly for y.
- From Bayes' rule, the Markov property and the fact that the errors are independent, we have

$$\begin{aligned} \rho(x_{0:n}|y_{0:n}) &\propto \rho(y_{0:n}|x_{0:n})\rho(x_{0:n}) \\ &= \prod_{k=0}^{n} \rho(y_{k}|x_{k})\rho(x_{0}) \prod_{k=1}^{n} \rho(x_{k}|x_{k-1}) \\ &= \rho(x_{0})\rho(y_{0}|x_{0}) \prod_{k=1}^{n} \rho(y_{k}|x_{k})\rho(x_{k}|x_{k-1}) \end{aligned}$$

- Write $x_{0:n}$ for the tuple (x_0, \ldots, x_n) and similarly for y.
- From Bayes' rule, the Markov property and the fact that the errors are independent, we have

$$p(x_{0:n}|y_{0:n}) \propto p(y_{0:n}|x_{0:n})p(x_{0:n})$$

$$= \prod_{k=0}^{n} p(y_k|x_k)p(x_0) \prod_{k=1}^{n} p(x_k|x_{k-1})$$

$$= p(x_0)p(y_0|x_0) \prod_{k=1}^{n} p(y_k|x_k)p(x_k|x_{k-1})$$

$$= p(x_0)p(y_0 - Cx_0) \prod_{k=1}^{n} p(y_k - Cx_k)p(x_k|x_{k-1})$$

 \bullet Recall that $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$ and the model

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1},$$

• Then $X_n | \mathcal{Y}_{n-1} \sim \mathcal{N}(\widehat{X}_n^-, \widehat{P}_n^-)$, where

$$\widehat{X}_n^- = \mathbb{E}[X_n | \mathcal{Y}_{n-1}], \quad \widehat{P}_n^- = \mathbb{E}[(X_n - \widehat{X}_n^-)^2].$$

• Similarly $X_n | \mathcal{Y}_n \sim \mathcal{N}(\widehat{X}_n, \widehat{P}_n)$, where

$$\widehat{X}_n = \mathbb{E}[X_n | \mathcal{Y}_n], \quad \widehat{P}_n = \mathbb{E}[(X_n - \widehat{X}_n)^2].$$

• \(\sim \) Just need to know how to calculate the mean and covariance.

Emma Horton 1D Discrete EnKF 8 March 2024 7 /

Emma Horton

ullet Recall that $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$ and the model

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1},$$

• Then $X_n | \mathcal{Y}_{n-1} \sim \mathcal{N}(\widehat{X}_n^-, \widehat{P}_n^-)$, where

$$\widehat{X}_n^- = \mathbb{E}[X_n|\mathcal{Y}_{n-1}], \quad \widehat{P}_n^- = \mathbb{E}[(X_n - \widehat{X}_n^-)^2].$$

• Similarly $X_n | \mathcal{Y}_n \sim \mathcal{N}(\widehat{X}_n, \widehat{P}_n)$, where

$$\widehat{X}_n = \mathbb{E}[X_n|\mathcal{Y}_n], \quad \widehat{P}_n = \mathbb{E}[(X_n - \widehat{X}_n)^2].$$

1D Discrete EnKF

 — Just need to know how to calculate the mean and covariance.

8 March 2024

ullet Recall that $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$ and the model

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1},$$

• Then $X_n | \mathcal{Y}_{n-1} \sim \mathcal{N}(\widehat{X}_n^-, \widehat{P}_n^-)$, where

$$\widehat{X}_n^- = \mathbb{E}[X_n|\mathcal{Y}_{n-1}], \quad \widehat{P}_n^- = \mathbb{E}[(X_n - \widehat{X}_n^-)^2].$$

• Similarly $X_n | \mathcal{Y}_n \sim \mathcal{N}(\widehat{X}_n, \widehat{P}_n)$, where

$$\widehat{X}_n = \mathbb{E}[X_n|\mathcal{Y}_n], \quad \widehat{P}_n = \mathbb{E}[(X_n - \widehat{X}_n)^2].$$

• \simplify Just need to know how to calculate the mean and covariance.

Emma Horton 1D Discrete EnKF 8 March 2024 7/44

The Kalman filter

The Kalman filter consists of two steps (update and predict)

$$(\widehat{X}_{n}^{-},\widehat{P}_{n}^{-}) \longrightarrow (\widehat{X}_{n},\widehat{P}_{n}) \longrightarrow (\widehat{X}_{n+1}^{-},\widehat{P}_{n+1}^{-}).$$

Update

$$\widehat{X}_{n} = (1 - G_{n}C)\widehat{X}_{n}^{-} + G_{n}Y_{n} = \widehat{X}_{n}^{-} + G_{n}(Y_{n} - C\widehat{X}_{n}^{-})$$

$$\widehat{P}_{n} = (1 - G_{n}C)\widehat{P}_{n}^{-},$$

where
$$G_n = C\hat{P}_n^-(C^2\hat{P}_n^- + D^2)^{-1}$$
.

Predict

$$\widehat{X}_{n+1}^{-} = A\widehat{X}_n$$

$$\widehat{P}_{n+1}^{-} = A^2 \widehat{P}_n + B^2.$$

The Kalman filter

The Kalman filter consists of two steps (update and predict)

$$(\widehat{X}_{n}^{-},\widehat{P}_{n}^{-}) \longrightarrow (\widehat{X}_{n},\widehat{P}_{n}) \longrightarrow (\widehat{X}_{n+1}^{-},\widehat{P}_{n+1}^{-}).$$

Update

$$\widehat{X}_n = (1 - G_n C)\widehat{X}_n^- + G_n Y_n = \widehat{X}_n^- + G_n (Y_n - C\widehat{X}_n^-)$$

$$\widehat{P}_n = (1 - G_n C)\widehat{P}_n^-,$$

where
$$G_n = C\widehat{P}_n^-(C^2\widehat{P}_n^- + D^2)^{-1}$$
.

Predict

$$\widehat{X}_{n+1}^{-} = A\widehat{X}_n$$

$$\widehat{P}_{n+1}^{-} = A^2 \widehat{P}_n + B^2.$$

The Kalman filter

The Kalman gain

• The quantity

$$G_n = C\widehat{P}_n^-(C^2\widehat{P}_n^- + D^2)^{-1}$$

is called the Kalman gain.

- It represents the relative importance of the errors $Y_n C\widehat{X}_n^-$ with respect to the prior estimate \widehat{X}_n^- .
- As $D \to 0$, $G_n \to C^{-1}$ and the update step becomes

$$\widehat{X}_n = \widehat{X}_n^- + C^{-1}(Y_n - C\widehat{X}_n^-) = C^{-1}Y_n.$$

• As $\widehat{P}_n^- o 0$, $\mathcal{G}_n o 0$ and the update step converges to $\widehat{X}_n = \widehat{X}_n^-$.

The Kalman gain

The quantity

$$G_n = C\widehat{P}_n^-(C^2\widehat{P}_n^- + D^2)^{-1}$$

is called the Kalman gain.

- It represents the relative importance of the errors $Y_n C\widehat{X}_n^-$ with respect to the prior estimate \widehat{X}_n^- .
- \bullet As $D \rightarrow$ 0, $\textit{G}_{\textit{n}} \rightarrow \textit{C}^{-1}$ and the update step becomes

$$\widehat{X}_n = \widehat{X}_n^- + C^{-1}(Y_n - C\widehat{X}_n^-) = C^{-1}Y_n.$$

• As $\widehat{P}_n^- o 0$, $G_n o 0$ and the update step converges to $\widehat{X}_n = \widehat{X}_n^-$.

The Kalman gain

The quantity

$$G_n = C\widehat{P}_n^-(C^2\widehat{P}_n^- + D^2)^{-1}$$

is called the Kalman gain.

- It represents the relative importance of the errors $Y_n C\widehat{X}_n^-$ with respect to the prior estimate \widehat{X}_n^- .
- ullet As D
 ightarrow 0, $G_n
 ightarrow C^{-1}$ and the update step becomes

$$\widehat{X}_n = \widehat{X}_n^- + C^{-1}(Y_n - C\widehat{X}_n^-) = C^{-1}Y_n.$$

• As $\widehat{P}_n^- o 0$, $G_n o 0$ and the update step converges to $\widehat{X}_n = \widehat{X}_n^-$.

Properties of the Kalman filter

- The Kalman filter BLUE.
- Best = the estimator that minimises the MSE amongst all unbiased linear estimators.
- To prove this, consider the following estimator

$$\widehat{X}_n = H_n \widehat{X}_n^- + G_n Y_n.$$

Consider the bias

$$\mathbb{E}[\widehat{X}_n - X_n] = \mathbb{E}[H_n \widehat{X}_n^- + G_n Y_n - X_n]$$

Emma Horton 1D Discrete EnKF 8 March 2024 12 / 44

Consider the bias

$$\begin{split} \mathbb{E}[\widehat{X}_n - X_n] &= \mathbb{E}[H_n \widehat{X}_n^- + G_n Y_n - X_n] \\ &= \mathbb{E}[H_n (X_n + \widehat{X}_n^- - X_n) + G_n (CX_n + DV_n) - X_n] \end{split}$$

Emma Horton 1D Discrete EnKF 8 March 2024 12 / 44

Consider the bias

$$\begin{split} \mathbb{E}[\widehat{X}_{n} - X_{n}] &= \mathbb{E}[H_{n}\widehat{X}_{n}^{-} + G_{n}Y_{n} - X_{n}] \\ &= \mathbb{E}[H_{n}(X_{n} + \widehat{X}_{n}^{-} - X_{n}) + G_{n}(CX_{n} + DV_{n}) - X_{n}] \\ &= (G_{n}C + H_{n} - 1)\mathbb{E}[X_{n}] + G_{n}D\mathbb{E}[V_{n}] + H_{n}\mathbb{E}[\widehat{X}_{n}^{-} - X_{n}] \end{split}$$

Consider the bias

$$\begin{split} \mathbb{E}[\widehat{X}_{n} - X_{n}] &= \mathbb{E}[H_{n}\widehat{X}_{n}^{-} + G_{n}Y_{n} - X_{n}] \\ &= \mathbb{E}[H_{n}(X_{n} + \widehat{X}_{n}^{-} - X_{n}) + G_{n}(CX_{n} + DV_{n}) - X_{n}] \\ &= (G_{n}C + H_{n} - 1)\mathbb{E}[X_{n}] + G_{n}D\mathbb{E}[V_{n}] + H_{n}\mathbb{E}[\widehat{X}_{n}^{-} - X_{n}] \\ &= (G_{n}C + H_{n} - 1)\mathbb{E}[X_{n}] + G_{n}D\mathbb{E}[V_{n}] + H_{n}A\mathbb{E}[\widehat{X}_{n-1} - X_{n-1}] \\ &- H_{n}B\mathbb{E}[W_{n}]. \end{split}$$

Emma Horton 1D Discrete EnKF 8 March 2024 12 / 44

Consider the bias

$$\begin{split} \mathbb{E}[\widehat{X}_{n} - X_{n}] &= \mathbb{E}[H_{n}\widehat{X}_{n}^{-} + G_{n}Y_{n} - X_{n}] \\ &= \mathbb{E}[H_{n}(X_{n} + \widehat{X}_{n}^{-} - X_{n}) + G_{n}(CX_{n} + DV_{n}) - X_{n}] \\ &= (G_{n}C + H_{n} - 1)\mathbb{E}[X_{n}] + G_{n}D\mathbb{E}[V_{n}] + H_{n}\mathbb{E}[\widehat{X}_{n}^{-} - X_{n}] \\ &= (G_{n}C + H_{n} - 1)\mathbb{E}[X_{n}] + G_{n}D\mathbb{E}[V_{n}] + H_{n}A\mathbb{E}[\widehat{X}_{n-1} - X_{n-1}] \\ &- H_{n}B\mathbb{E}[W_{n}]. \end{split}$$

In order for the estimator to be unbiased, need

$$H_n = (1 - G_n C),$$

which yields

$$\widehat{X}_n := \widehat{X}_n^- + G_n(Y_n - C\widehat{X}_n^-).$$

12 / 44

First note that

$$(X_n - \widehat{X}_n)^2 = (X_n - \widehat{X}_n^- - G_n(Y_n - C\widehat{X}_n^-))^2$$

= $[(1 - G_nC)(X_n - \widehat{X}_n^-) - G_nDV_n]^2$.

First note that

$$(X_n - \widehat{X}_n)^2 = (X_n - \widehat{X}_n^- - G_n(Y_n - C\widehat{X}_n^-))^2$$

= $[(1 - G_nC)(X_n - \widehat{X}_n^-) - G_nDV_n]^2$.

Expanding and taking expectations yields

$$\hat{P}_n = (1 - G_n C)^2 \hat{P}_n^- + G_n^2 D^2.$$

First note that

$$(X_n - \widehat{X}_n)^2 = (X_n - \widehat{X}_n^- - G_n(Y_n - C\widehat{X}_n^-))^2$$

= $[(1 - G_nC)(X_n - \widehat{X}_n^-) - G_nDV_n]^2$.

Expanding and taking expectations yields

$$\widehat{P}_n = (1 - G_n C)^2 \widehat{P}_n^- + G_n^2 D^2.$$

Minimise w.r.t. G_n :

$$0 = \frac{\partial}{\partial G_n} \widehat{P}_n = -2C(1 - G_n C)\widehat{P}_n^- + 2D^2 G_n,$$

Emma Horton 1D Discrete EnKF 8 March 2024 13/44

First note that

$$(X_n - \widehat{X}_n)^2 = (X_n - \widehat{X}_n^- - G_n(Y_n - C\widehat{X}_n^-))^2$$

= $[(1 - G_nC)(X_n - \widehat{X}_n^-) - G_nDV_n]^2$.

Expanding and taking expectations yields

$$\widehat{P}_n = (1 - G_n C)^2 \widehat{P}_n^- + G_n^2 D^2.$$

Minimise w.r.t. G_n :

$$0 = \frac{\partial}{\partial G_n} \widehat{P}_n = -2C(1 - G_n C)\widehat{P}_n^- + 2D^2 G_n,$$

which implies

$$G_n = C\widehat{P}_n^-(C\widehat{P}_n^- + D^2)^{-1}.$$

We may write

$$X_{n+1} - \widehat{X}_{n+1}^- = A(1 - G_nC)(X_n - \widehat{X}_n^-) + BW_{n+1} - AG_nDV_n$$

- Can't hope to obtain a result of the form $||X_n \widehat{X}_n^-|| \to 0$ unless the measurement noise vanishes.
- However, we can study the homogeneous part of the above recursion:

$$Z_{n+1} = A(1 - G_n C) Z_n (1)$$

• We may write

$$X_{n+1} - \widehat{X}_{n+1}^- = A(1 - G_nC)(X_n - \widehat{X}_n^-) + BW_{n+1} - AG_nDV_n.$$

- Can't hope to obtain a result of the form $||X_n \widehat{X}_n^-|| \to 0$ unless the measurement noise vanishes.
- However, we can study the homogeneous part of the above recursion:

$$Z_{n+1} = A(1 - G_n C) Z_n (1)$$

14 / 44

• We may write

$$X_{n+1} - \widehat{X}_{n+1}^- = A(1 - G_nC)(X_n - \widehat{X}_n^-) + BW_{n+1} - AG_nDV_n.$$

- Can't hope to obtain a result of the form $||X_n \widehat{X}_n^-|| \to 0$ unless the measurement noise vanishes.
- However, we can study the homogeneous part of the above recursion:

$$Z_{n+1} = A(1 - G_n C) Z_n (1)$$

• We may write

$$X_{n+1} - \widehat{X}_{n+1}^- = A(1 - G_nC)(X_n - \widehat{X}_n^-) + BW_{n+1} - AG_nDV_n.$$

- Can't hope to obtain a result of the form $||X_n \widehat{X}_n^-|| \to 0$ unless the measurement noise vanishes.
- However, we can study the homogeneous part of the above recursion:

$$Z_{n+1} = A(1 - G_n C) Z_n (1)$$

Theorem (Deyst & Price '68, Jazwinski '70)

If $A,B,C,D\neq 0$ and $\widehat{P}_0^->0$ then there exist constants K>0, $\gamma\in (0,1)$, $n_0\geq 0$ such that

$$||Z_n|| \leq K\gamma^{n-n_0}||Z_{n_0}||.$$

Theorem (Deyst & Price '68, Jazwinski '70)

If $A,B,C,D\neq 0$ and $\widehat{P}_0^->0$ then there exist constants $K>0,\ \gamma\in (0,1),\ n_0\geq 0$ such that

$$||Z_n|| \leq K\gamma^{n-n_0}||Z_{n_0}||.$$

Many criteria for proving exponential stability but we will focus on Lyapunov-type criteria.

Emma Horton 1D Discrete EnKF 8 March 2024 15 / 44

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function such that

- V(0) = 0 and V(x) > 0 for $x \neq 0$,
- $V(x) \to \infty$ as $\|x\| \to \infty$, and
- $V(Z_{n+1}) V(Z_n) \leq 0$.
- A Lyapunov function is a non-negative function of a system's state that decreases as the state changes.
- If a system is described by a set of differential equations and we can find a Lyapunov function for these equations, then local minima of the Lyapunov function are stable.
- ullet A Lyapunov function V is an analogue of the energy of a physical system.

Lyapunov Stability Theorem

The system (1) is exponentially stable if there exists a continuous scalar function such that

- V(0) = 0 and V(x) > 0 for $x \neq 0$,
- $V(x) \to \infty$ as $\|x\| \to \infty$, and
- $V(Z_{n+1}) V(Z_n) \leq 0$.
- A Lyapunov function is a non-negative function of a system's state that decreases as the state changes.
- If a system is described by a set of differential equations and we can find a Lyapunov function for these equations, then local minima of the Lyapunov function are stable.
- ullet A Lyapunov function V is an analogue of the energy of a physical system.

• What about the covariance?

 \bullet We have the following recursion for \widehat{P}_n^-

$$\widehat{P}_{n+1}^{-} = A^2 (1 - G_n C) \widehat{P}_n^{-} + B^2$$

• Again, we can't hope for a result of the form $\|\widehat{P}_n^-\| \to 0$.

- What about the covariance?
- \bullet We have the following recursion for \widehat{P}_n^-

$$\widehat{P}_{n+1}^- = A^2 (1 - G_n C) \widehat{P}_n^- + B^2$$

• Again, we can't hope for a result of the form $\|\widehat{P}_n^-\| \to 0$.

17 / 44

- What about the covariance?
- \bullet We have the following recursion for \widehat{P}_n^-

$$\widehat{P}_{n+1}^- = A^2 (1 - G_n C) \widehat{P}_n^- + B^2$$

ullet Again, we can't hope for a result of the form $\|\widehat{P}_n^-\| o 0$.

- What about the covariance?
- \bullet We have the following recursion for \widehat{P}_n^-

$$\widehat{P}_{n+1}^- = A^2 (1 - G_n C) \widehat{P}_n^- + B^2$$

ullet Again, we can't hope for a result of the form $\|\widehat{P}_n^-\| o 0$.

Theorem (West & Harris '97)

For time-invariant systems, there exists $P_{\infty}^{-}>0$ such that

$$\|\widehat{P}_n^- - P_\infty^-\| \to 0, \quad \text{ as } n \to \infty.$$

In addition, there exists G_{∞} such that

$$\|\widehat{G}_n - G_\infty\| \to 0$$
, as $n \to \infty$.

Riccati rational difference equation

• The evolution equation for \widehat{P}_n^- can equivalently be written as

$$\widehat{P}_{n+1}^{-} = \phi(\widehat{P}_n^{-}) = \frac{a\widehat{P}_n^{-} + b}{c\widehat{P}_n^{-} + d},$$

where a, b, c, d are determined by A, B, C, D.

- ullet The function ϕ is known as a Riccati map and the above equation as a Riccati rational difference equation.
- More on these maps later...

18 / 44

Emma Horton 1D Discrete EnKF 8 March 2024

Riccati rational difference equation

• The evolution equation for \widehat{P}_n^- can equivalently be written as

$$\widehat{P}_{n+1}^{-} = \phi(\widehat{P}_n^{-}) = \frac{a\widehat{P}_n^{-} + b}{c\widehat{P}_n^{-} + d},$$

where a, b, c, d are determined by A, B, C, D.

- \bullet The function ϕ is known as a Riccati map and the above equation as a Riccati rational difference equation.
- More on these maps later...

Emma Horton 1D Discrete EnKF 8 March 2024 18 / 44

Riccati rational difference equation

• The evolution equation for \widehat{P}_n^- can equivalently be written as

$$\widehat{P}_{n+1}^{-} = \phi(\widehat{P}_n^{-}) = \frac{a\widehat{P}_n^{-} + b}{c\widehat{P}_n^{-} + d},$$

where a, b, c, d are determined by A, B, C, D.

- \bullet The function ϕ is known as a Riccati map and the above equation as a Riccati rational difference equation.
- More on these maps later...

Emma Horton 1D Discrete EnKF 8 March 2024 18 / 44

Let $\widehat{X}_n(x,p)$ denote the solution of the Kalman filter associated with the initial conditions $(\widehat{X}_0,\widehat{P}_0)=(x,p)$.

Theorem (Del Moral, H., '22)

The Riccati equation $\widehat{P}_{n+1}^- = \phi(\widehat{P}_n^-)$ has a unique positive fixed point, P_{∞}^- and for any $p = (p_1, p_2) \in \mathbb{R}^2$, we have

$$|\phi^n(p_1) - \phi^n(p_2)| \le C_1(1 - \varepsilon_1)^n |p_1 - p_2|.$$

In addition, there exists $k(p_1) \in \mathbb{N}$ such that for any $x = (x_1, x_2) \in \mathbb{R}^2$ we have

$$\mathbb{E}\left[\left(\widehat{X}_{n}(x_{1},p_{1})-\widehat{X}_{n}(x_{2},p_{2})\right)^{2}\right]^{\frac{1}{2}} \leq C(x,p)(1-\varepsilon_{2})^{n-k(p_{1})}(|p_{1}-p_{2}|+|x_{1}-x_{2}|).$$

- The parameters A, B, C, D are non-zero.
- The parameters A, B, C, D are independent of the time step.
- The source is Gaussian.
- The errors are Gaussian.
- The system is one-dimensional.

Recall the original system:

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1}.$$

Definition (Kalman '60)

The system is said to be observable if

$$[C, CA, CA^2, \dots, CA^{d-1}]^T$$

has rown rank d, where d is the dimension of the state space.

21 / 44

Recall the original system:

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1}.$$

Definition (Kalman '60)

The system is said to be observable if

$$[\mathit{C}, \mathit{CA}, \mathit{CA}^2, \ldots, \mathit{CA}^{d-1}]^T$$

has rown rank d, where d is the dimension of the state space.

- Observability says that any state x can be inferred from a sufficient number of observations.
- Suppose now the state space has dimension d, so that $X_n \in \mathbb{R}^d$, for example and consider the average behaviour of the system:

$$Y_n = CX_n,$$

$$X_{n+1} = AX_n.$$

• If we knew X_0 , then the second equation would give us complete knowledge of the state at any time $n \rightsquigarrow \text{just need to determine } X_0$.

- Observability says that any state x can be inferred from a sufficient number of observations.
- Suppose now the state space has dimension d, so that $X_n \in \mathbb{R}^d$, for example and consider the average behaviour of the system:

$$Y_n = CX_n,$$

$$X_{n+1} = AX_n.$$

 If we knew X₀, then the second equation would give us complete knowledge of the state at any time n → just need to determine X₀.

- Observability says that any state x can be inferred from a sufficient number of observations.
- Suppose now the state space has dimension d, so that $X_n \in \mathbb{R}^d$, for example and consider the average behaviour of the system:

$$Y_n = CX_n,$$

$$X_{n+1} = AX_n.$$

• If we knew X_0 , then the second equation would give us complete knowledge of the state at any time $n \rightsquigarrow \text{just need to determine } X_0$.

• Since X_0 has d unknowns, we expect to need d observations in order to determine X_0 :

$$Y_0 = CX_0$$

$$Y_1 = CX_1 = CAX_0$$

$$\vdots$$

$$Y_{d-1} = CX_{d-1} = \dots = CA^{d-1}X_0.$$

Writing this in vector form,

$$[Y_0, \dots, Y_{n-1}]^T = [C, CA, CA^2, \dots, CA^{d-1}]^T X_0,$$

we see that this has a unique solution iff $[C, CA, CA^2, ..., CA^{d-1}]^T$ is invertible.

• In one dimension, this implies that $C \neq 0$.

23 / 44

Emma Horton 1D Discrete EnKF 8 March 2024

• Since X_0 has d unknowns, we expect to need d observations in order to determine X_0 :

$$Y_0 = CX_0$$

$$Y_1 = CX_1 = CAX_0$$

$$\vdots$$

$$Y_{d-1} = CX_{d-1} = \dots = CA^{d-1}X_0.$$

Writing this in vector form,

$$[Y_0,\ldots,Y_{n-1}]^T=[C,CA,CA^2,\ldots,CA^{d-1}]^TX_0,$$

we see that this has a unique solution iff $[C, CA, CA^2, \dots, CA^{d-1}]^T$ is invertible.

• In one dimension, this implies that $C \neq 0$.

• Since X_0 has d unknowns, we expect to need d observations in order to determine X_0 :

$$Y_0 = CX_0$$

$$Y_1 = CX_1 = CAX_0$$

$$\vdots$$

$$Y_{d-1} = CX_{d-1} = \dots = CA^{d-1}X_0.$$

• Writing this in vector form,

$$[Y_0, \dots, Y_{n-1}]^T = [C, CA, CA^2, \dots, CA^{d-1}]^T X_0,$$

we see that this has a unique solution iff $[C, CA, CA^2, \dots, CA^{d-1}]^T$ is invertible.

• In one dimension, this implies that $C \neq 0$.

23 / 44

Emma Horton 1D Discrete EnKF 8 March 2024

Recall the original system:

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1}.$$

Definition (Kalman '60)

The system is said to be controllable if

$$[B, AB, A^2B, \dots, A^{d-1}B]$$

has column rank d where d is the dimension of the state space.

- Controllability says that any state x can be reached from any initial condition x_0 in a finite number of steps.
- In one dimension, this implies that $B \neq 0$, i.e. it means that the state is affected by the noise W_n .

Recall the original system:

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1}.$$

Definition (Kalman '60)

The system is said to be controllable if

$$[B, AB, A^2B, \dots, A^{d-1}B]$$

has column rank d where d is the dimension of the state space.

- Controllability says that any state x can be reached from any initial condition x_0 in a finite number of steps.
- In one dimension, this implies that $B \neq 0$, i.e. it means that the state is affected by the noise W_n .

Recall the original system:

$$Y_n = CX_n + DV_n,$$

$$X_{n+1} = AX_n + BW_{n+1}.$$

Definition (Kalman '60)

The system is said to be controllable if

$$[B, AB, A^2B, \dots, A^{d-1}B]$$

has column rank d where d is the dimension of the state space.

- Controllability says that any state x can be reached from any initial condition x_0 in a finite number of steps.
- In one dimension, this implies that $B \neq 0$, i.e. it means that the state is affected by the noise W_n .

Contents

The Kalman filter

2 Ensemble Kalman filter (EnKF)

- The EnKF is a Monte Carlo implementation of the Kalman filter.
- Idea is to evolve the ensemble forward in time and estimate the mean and covariance from the evolved sample.
- "Why the EnKF works well with a small ensemble has remained a complete mystery." A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large dimensions. Communications on Pure and Applied Mathematics, vol. 71, no. 5, pp. 892–937 (2018
- Fix $N \ge 1$ and let $\xi_{0,i}^-$, i = 1, ..., N be i.i.d. copies of $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$.
- For $n \ge 1$, let W_n^i , i = 1, ..., N be i.i.d. copies of $W_n \sim \mathcal{N}(0, 1)$. Similarly for V_n .

- The EnKF is a Monte Carlo implementation of the Kalman filter.
- Idea is to evolve the ensemble forward in time and estimate the mean and covariance from the evolved sample.
- "Why the EnKF works well with a small ensemble has remained a complete mystery." A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large dimensions. Communications on Pure and Applied Mathematics, vol. 71, no. 5, pp. 892–937 (2018
- Fix $N \ge 1$ and let $\xi_{0,i}^-$, i = 1, ..., N be i.i.d. copies of $X_0 \sim \mathcal{N}(\widehat{X}_0^-, \widehat{P}_0^-)$.
- For $n \ge 1$, let W_n^i , i = 1, ..., N be i.i.d. copies of $W_n \sim \mathcal{N}(0, 1)$. Similarly for V_n .

- The EnKF is a Monte Carlo implementation of the Kalman filter.
- Idea is to evolve the ensemble forward in time and estimate the mean and covariance from the evolved sample.
- "Why the EnKF works well with a small ensemble has remained a complete mystery." A. J. Majda, X. T. Tong. Performance of ensemble Kalman filters in large dimensions. Communications on Pure and Applied Mathematics, vol. 71, no. 5, pp. 892–937 (2018
- Fix $N \geq 1$ and let $\xi_{0,i}^-$, $i=1,\ldots,N$ be i.i.d. copies of $X_0 \sim \mathcal{N}(\widehat{X}_0^-,\widehat{P}_0^-)$.
- For $n \ge 1$, let W_n^i , i = 1, ..., N be i.i.d. copies of $W_n \sim \mathcal{N}(0, 1)$. Similarly for V_n .

The EnKF algorithm is given by the following update-predict sequence:

$$\xi_{n,i} = \xi_{n,i}^- + g_n(Y_n + DV_n^i - C\xi_{n,i}^-),$$
 (update)
 $\xi_{n+1,i}^- = A\xi_{n,i} + BW_n^i,$ (predict)

where

$$g_n = Cp_n^-(C^2p_n^- + D^2)^{-1},$$

is the sample Kalman gain, and

$$m_n^- = \frac{1}{N} \sum_{i=1}^N \xi_{n,i}^-$$
 and $p_n^- = \frac{1}{N-1} \sum_{i=1}^N (\xi_{n,i}^- - m_n^-)^2$

are the prior sample mean and covariance, respectively.

Emma Horton 1D Discrete EnKF 8 March 2024

Similarly, we can define the posterior sample mean and covariance

$$m_n = \frac{1}{N} \sum_{i=1}^{N} \xi_{n,i}$$
 and $p_n = \frac{1}{N-1} \sum_{i=1}^{N} (\xi_{n,i} - m_n)^2$.

Thus, we have the following update-predict steps of the EnKF

$$(m_n^-, p_n^-) \longrightarrow (m_n, p_n) \longrightarrow (m_{n+1}^-, p_{n+1}^-).$$

EnKF: First results

Theorem (Le Gland et. al., '11, Mandel et. al. '11)

For each $n \ge 0$, as $N \to \infty$,

$$m_n \to \widehat{X}_n$$
 and $p_n \to \widehat{P}_n$,

in L^p at rate $1/\sqrt{N}$, and almost surely.

Theorem (Le Gland et. al. '11)

The EnKF does not converge to the optimal filter for non-linear or non-Gaussian filtering problems.

Theorem (Del Moral, H., '22)

With initial conditions,

$$m_0^- = \widehat{X}_0^- + \frac{1}{\sqrt{N+1}} v_0 \quad \text{and} \quad p_0^- = \widehat{P}_0^- + \frac{1}{\sqrt{N}} \nu_0,$$

the ensemble Kalman filter update-predict transitions are as follows:

Update

$$m_n = m_n^- + g_n(Y_n - Cm_n^-) + \frac{1}{\sqrt{N+1}}v_n$$

 $p_n = (1 - g_nC)p_n^- + \frac{1}{\sqrt{N}}v_n,$

Predict

$$m_{n+1}^{-} = Am_n + \frac{1}{\sqrt{N+1}} v_{n+1}^{-}$$

$$p_{n+1}^{-} = A^2 p_n + B^2 + \frac{1}{\sqrt{N}} v_{n+1}^{-}.$$

30 / 44

• The previous result implies that the sample variance, p_n^- , of the EnKF satisfies the stochastic Riccati rational difference equation

$$p_{n+1}^- = \phi(p_n^-) + \frac{1}{\sqrt{N}} \delta_{n+1},$$

where $\delta_{n+1} = A^2 \nu_n + \nu_{n+1}^-$.

- Let $\mathcal{P}(p,\mathrm{d}q)$ denote the Markov transitions associated with the Markov chain $(p_n^-)_{n\geq 0}$, i.e. $\mathcal{P}(p,\mathrm{d}q)=\mathbb{P}[p_{n+1}^-\in\mathrm{d}q|p_n=p]$. For suitable test functions, we write $\mathcal{P}(f)(p)=\mathbb{E}[f(p_{n+1}^-)|p_n=p]$
- For a locally finite signed measure μ on \mathbb{R}_+ and functions $f: \mathbb{R}_+ \to \mathbb{R}$, $V: \mathbb{R}_+ \to \mathbb{R}_+$, define

$$\|f\|_V = \sup_{\rho \ge 0} \left| \frac{f(\rho)}{\frac{1}{2} + V(\rho)} \right| \quad \text{and} \quad \|\mu\| := \sup\{|\mu(f)| : \|f\|_V \le 1\}.$$

Emma Horton 1D Discrete EnKF 8 March 2024 31/44

• The previous result implies that the sample variance, p_n^- , of the EnKF satisfies the stochastic Riccati rational difference equation

$$p_{n+1}^- = \phi(p_n^-) + \frac{1}{\sqrt{N}} \delta_{n+1},$$

where $\delta_{n+1} = A^2 \nu_n + \nu_{n+1}^-$.

- Let $\mathcal{P}(p,\mathrm{d}q)$ denote the Markov transitions associated with the Markov chain $(p_n^-)_{n\geq 0}$, i.e. $\mathcal{P}(p,\mathrm{d}q)=\mathbb{P}[p_{n+1}^-\in\mathrm{d}q|p_n=p]$. For suitable test functions, we write $\mathcal{P}(f)(p)=\mathbb{E}[f(p_{n+1}^-)|p_n=p]$
- For a locally finite signed measure μ on \mathbb{R}_+ and functions $f: \mathbb{R}_+ \to \mathbb{R}$, $V: \mathbb{R}_+ \to \mathbb{R}_+$, define

$$\|f\|_V = \sup_{p \ge 0} \left| \frac{f(p)}{\frac{1}{2} + V(p)} \right| \quad \text{and} \quad \|\mu\| := \sup\{|\mu(f)| : \|f\|_V \le 1\}.$$

• The previous result implies that the sample variance, p_n^- , of the EnKF satisfies the stochastic Riccati rational difference equation

$$p_{n+1}^- = \phi(p_n^-) + \frac{1}{\sqrt{N}} \delta_{n+1},$$

where $\delta_{n+1} = A^2 \nu_n + \nu_{n+1}^-$.

- Let $\mathcal{P}(p,\mathrm{d}q)$ denote the Markov transitions associated with the Markov chain $(p_n^-)_{n\geq 0}$, i.e. $\mathcal{P}(p,\mathrm{d}q)=\mathbb{P}[p_{n+1}^-\in\mathrm{d}q|p_n=p]$. For suitable test functions, we write $\mathcal{P}(f)(p)=\mathbb{E}[f(p_{n+1}^-)|p_n=p]$
- For a locally finite signed measure μ on \mathbb{R}_+ and functions $f: \mathbb{R}_+ \to \mathbb{R}$, $V: \mathbb{R}_+ \to \mathbb{R}_+$, define

$$\|f\|_V = \sup_{\rho \geq 0} \left| \frac{f(\rho)}{\frac{1}{2} + V(\rho)} \right| \quad \text{and} \quad \|\mu\| := \sup\{|\mu(f)| : \|f\|_V \leq 1\}.$$

Stability results

Theorem (Del Moral, H., 2022)

There exists a unique invariant measure π such that $\pi \mathcal{P} = \pi$, a function \mathcal{U} and a constant $\beta \in (0,1)$ such that for any function f satisfying $\|f\|_{\mathcal{U}} \leq 1$ and for any $p \in \mathbb{R}_+$, we have

$$|\mathcal{P}^n(f)(p) - \pi(f)| \le \beta^n(1 + \mathcal{U}(p) + \pi(\mathcal{U})).$$

Emma Horton 1D Discrete EnKF 8 March 2024 32 / 44

Stability results: idea of proof

For a function V, define

$$\beta_V(\mathcal{P}) := \sup_{p,q \geq 0} \frac{\|\mathcal{P}(p,\cdot) - \mathcal{P}(q,\cdot)\|_V}{1 + V(p) + V(q)}$$

Now suppose we can first prove the following result.

Proposition

There exists a function $\mathcal{U}: \mathbb{R}_+ \to \mathbb{R}_+$ such that $\beta_{\mathcal{U}}(\mathcal{P}) < 1$ and for any two probability measures μ_1, μ_2 , we have

$$\|\mu_1 \mathcal{P}^n - \mu_2 \mathcal{P}^n\|_{\mathcal{U}} \le \beta_{\mathcal{U}}(\mathcal{P})^n \|\mu_1 - \mu_2\|_{\mathcal{U}}.$$

Emma Horton 1D Discrete EnKF 8 March 2024 33 / 44

For a function V, define

$$\beta_{V}(\mathcal{P}) := \sup_{p,q \ge 0} \frac{\|\mathcal{P}(p,\cdot) - \mathcal{P}(q,\cdot)\|_{V}}{1 + V(p) + V(q)}$$

Now suppose we can first prove the following result.

Proposition

There exists a function $\mathcal{U}: \mathbb{R}_+ \to \mathbb{R}_+$ such that $\beta_{\mathcal{U}}(\mathcal{P}) < 1$ and for any two probability measures μ_1, μ_2 , we have

$$\|\mu_1 \mathcal{P}^n - \mu_2 \mathcal{P}^n\|_{\mathcal{U}} \le \beta_{\mathcal{U}}(\mathcal{P})^n \|\mu_1 - \mu_2\|_{\mathcal{U}}.$$

Emma Horton 1D Discrete EnKF 8 March 2024

- The existence of a unique invariant (probability) measure π follows from the fixed point theorem.
- From the definition of $\beta_{\mathcal{U}}(\mathcal{P})$, we have

$$|\mathcal{P}^n(f)(p) - \mathcal{P}^n(f)(q)| \leq \beta_{\mathcal{U}}(\mathcal{P}^n)(1 + \mathcal{U}(p) + \mathcal{U}(q)).$$

Then

$$\begin{aligned} |\mathcal{P}^{n}(f)(p) - \pi(f)| &= |\mathcal{P}^{n}(f)(p) - \pi \mathcal{P}(f)| \\ &= \left| \int_{0}^{\infty} \pi(\mathrm{d}q) \left(\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q) \right) \right| \\ &\leq \int_{0}^{\infty} \pi(\mathrm{d}q) |\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q)| \\ &\leq \beta_{\mathcal{U}}(\mathcal{P}^{n}) (1 + \mathcal{U}(p) + \pi(\mathcal{U})) \\ &\leq \beta_{\mathcal{U}}(\mathcal{P})^{n} (1 + \mathcal{U}(p) + \pi(\mathcal{U})) \end{aligned}$$

- The existence of a unique invariant (probability) measure π follows from the fixed point theorem.
- From the definition of $\beta_{\mathcal{U}}(\mathcal{P})$, we have

$$|\mathcal{P}^n(f)(p) - \mathcal{P}^n(f)(q)| \leq \beta_{\mathcal{U}}(\mathcal{P}^n)(1 + \mathcal{U}(p) + \mathcal{U}(q)).$$

Then

$$\begin{aligned} |\mathcal{P}^{n}(f)(p) - \pi(f)| &= |\mathcal{P}^{n}(f)(p) - \pi \mathcal{P}(f)| \\ &= \left| \int_{0}^{\infty} \pi(\mathrm{d}q) \left(\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q) \right) \right| \\ &\leq \int_{0}^{\infty} \pi(\mathrm{d}q) |\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q)| \\ &\leq \beta_{\mathcal{U}}(\mathcal{P}^{n}) (1 + \mathcal{U}(p) + \pi(\mathcal{U})) \\ &\leq \beta_{\mathcal{U}}(\mathcal{P})^{n} (1 + \mathcal{U}(p) + \pi(\mathcal{U})) \end{aligned}$$

Emma Horton 1D Discrete EnKF 8 March 2024 34 / 44

- The existence of a unique invariant (probability) measure π follows from the fixed point theorem.
- From the definition of $\beta_{\mathcal{U}}(\mathcal{P})$, we have

$$|\mathcal{P}^n(f)(p) - \mathcal{P}^n(f)(q)| \leq \beta_{\mathcal{U}}(\mathcal{P}^n)(1 + \mathcal{U}(p) + \mathcal{U}(q)).$$

Then

$$\begin{split} |\mathcal{P}^{n}(f)(p) - \pi(f)| &= |\mathcal{P}^{n}(f)(p) - \pi \mathcal{P}(f)| \\ &= \left| \int_{0}^{\infty} \pi(\mathrm{d}q) \left(\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q) \right) \right| \\ &\leq \int_{0}^{\infty} \pi(\mathrm{d}q) |\mathcal{P}^{n}(f)(p) - \mathcal{P}^{n}(f)(q)| \\ &\leq \beta_{\mathcal{U}}(\mathcal{P}^{n})(1 + \mathcal{U}(p) + \pi(\mathcal{U})) \\ &\leq \beta_{\mathcal{U}}(\mathcal{P})^{n}(1 + \mathcal{U}(p) + \pi(\mathcal{U})) \end{split}$$

Emma Horton 1D Discrete EnKF 8 March 2024 34 / 44

To prove the auxiliary result, it is sufficient to prove the following.

• For any compact set $K \subset \mathbb{R}_+$, there exists a constant $\varepsilon_K \in (0,1]$ and a probability measure ν_K on \mathbb{R}_+ such that for all $p \in K$,

$$\mathcal{P}(p, dq) \geq \varepsilon_K \nu_K(dq).$$

• There exists a non-negative function $\mathcal{U}:\mathbb{R}_+ \to [1,\infty)$ with compact level sets, such that

$$\mathcal{P}(\mathcal{U}) \leq \varepsilon \mathcal{U} + c$$

for come $\varepsilon \in [0,1)$ and $c < \infty$.

Uniform mean-error estimates

Theorem (Del Moral, H., 2022)

For any $k \ge 1$, there exists an integer $N_k \ge 1$ such that for any $N \ge N_k$ and n > 0, we have

$$\mathbb{E}\left[\left|p_n^- - \widehat{P}_n^-\right|^k\right]^{1/k} \vee \mathbb{E}\left[\left|p_n - \widehat{P}_n\right|^k\right]^{1/k} \vee \mathbb{E}\left[\left|g_n - \widehat{G}_n\right|^k\right]^{1/k} \leq \frac{C_k(1 \vee P_0)}{\sqrt{N}}.$$

Emma Horton 1D Discrete EnKF 8 March 2024 36 / 44

Central Limit Theorem

Define the collection of stochastic processes $(\mathbb{Q}_{N,n}^-,\mathbb{Q}_{N,n+1})_{n\geq 0}$ defined via

$$\mathbb{Q}_{N,n}^- := \sqrt{N}(p_n^- - \widehat{P}_n^-)$$
 and $\mathbb{Q}_{N,n} := \sqrt{N}(p_n - \widehat{P}_n)$.

Theorem (Del Moral, H., 2022)

The stochastic processes $(\mathbb{Q}_{N,n},\mathbb{Q}_{N,n+1}^-)$ converge in law in the sense of f.d.d., as the number of particles $N\to\infty$, to a sequence of centred stochastic processes $(\mathbb{Q}_n,\mathbb{Q}_{n+1}^-)$ with initial condition $\mathbb{Q}_0^-=\mathbb{V}_0^-$ and update-predict transitions given by

$$\mathbb{Q}_n = (1 - G_n C) \mathbb{Q}_n^- + \mathbb{V}_n$$
$$\mathbb{Q}_{n+1}^- = A \mathbb{Q}_n + \mathbb{V}_{n+1}^-.$$

Emma Horton 1D Discrete EnKF 8 March 2024 37 / 44

Idea behind the proofs

- Let us consider $p_n^- \widehat{P}_n^-$. The idea is to write this difference as a telescoping sum involving the increments of the Markov chain $(p_n^-)_{n\geq 1}$ and show that we can control these increments nicely.
- Recall from the evolution equation for p_n^- , the increments are related to the Riccati map

$$\phi(x) = \frac{ax+b}{cx+d}, \quad x \ge 0.$$

Thus, we first need to look at the behaviour of these maps...

Idea behind the proofs

- Let us consider $p_n^- \widehat{P}_n^-$. The idea is to write this difference as a telescoping sum involving the increments of the Markov chain $(p_n^-)_{n\geq 1}$ and show that we can control these increments nicely.
- Recall from the evolution equation for p_n^- , the increments are related to the Riccati map

$$\phi(x) = \frac{ax+b}{cx+d}, \quad x \ge 0.$$

Thus, we first need to look at the behaviour of these maps...

Idea behind the proofs

- Let us consider $p_n^- \widehat{P}_n^-$. The idea is to write this difference as a telescoping sum involving the increments of the Markov chain $(p_n^-)_{n\geq 1}$ and show that we can control these increments nicely.
- Recall from the evolution equation for p_n^- , the increments are related to the Riccati map

$$\phi(x) = \frac{ax+b}{cx+d}, \quad x \ge 0.$$

Thus, we first need to look at the behaviour of these maps...

Idea behind proofs : Riccati maps

Lemma (Del Moral, H., 2022)

- (i) For any $n \ge 1$, $b/d \le \phi^n(x) \le a/c$.
- (ii) We have the Lipschitz estimates

$$|\phi^n(x) - \phi^n(y)| \le C_1 \lambda^n |x - y|$$
 and $|\partial \phi^n(x) - \partial \phi^n(y)| \le C_2 \lambda^n |x - y|$,

where $C_1, C_2 > 0$ and $\lambda \in (0,1)$.

(iii) Finally, we have the second order estimate

$$|\phi^n(x) - \phi^n(y) - \partial \phi^n(y)(x - y)| \le C_3 \lambda^n |x - y|^2,$$

where $C_3 > 0$.

39 / 44

Emma Horton 1D Discrete EnKF 8 March 2024

Idea behind proofs: Riccati maps

- A.N. Bishop and P. Del Moral. On the stability of Kalman-Bucy diffusion processes. SIAM Journal on Control and Optimization. vol. 55, no. 6. pp 4015–4047 (2017); arxiv e-print arXiv:1610.04686.
- A.N. Bishop and P. Del Moral. An explicit Floquet-type representation of Riccati aperiodic exponential semigroups. International Journal of Control, pp. 1–9 (2019).
- P. Del Moral and E. Horton. A note on Riccati matrix difference equations. SIAM J. Control Optim., 60(3), pp. 1393-1409 (2022).

Idea behind proofs

Consider the following decomposition

$$p_n^- - \widehat{P}_n^- = \phi^n(p_0^-) - \phi^n(\widehat{P}_0^-) + \sum_{k=1}^n \left(\phi^{n-k}(p_k^-) - \phi^{n-(k-1)}(p_{k-1}^-) \right).$$

- \bullet Use the Lipschitz estimates for ϕ^n to obtain bounds on the summands for the moment estimates.
- The CLT requires more delicate treatment: need to use the second order Taylor expansion type bounds and then the Lipschitz estimates for the first derivative.

Emma Horton 1D Discrete EnKF 8 March 2024 41/44

Idea behind proofs

Consider the following decomposition

$$p_n^- - \widehat{P}_n^- = \phi^n(p_0^-) - \phi^n(\widehat{P}_0^-) + \sum_{k=1}^n \left(\phi^{n-k}(p_k^-) - \phi^{n-(k-1)}(p_{k-1}^-) \right).$$

- \bullet Use the Lipschitz estimates for ϕ^{n} to obtain bounds on the summands for the moment estimates.
- The CLT requires more delicate treatment: need to use the second order Taylor expansion type bounds and then the Lipschitz estimates for the first derivative.

Emma Horton 1D Discrete EnKF 8 March 2024 41 / 44

Idea behind proofs

• Consider the following decomposition

$$p_n^- - \widehat{P}_n^- = \phi^n(p_0^-) - \phi^n(\widehat{P}_0^-) + \sum_{k=1}^n \left(\phi^{n-k}(p_k^-) - \phi^{n-(k-1)}(p_{k-1}^-) \right).$$

- \bullet Use the Lipschitz estimates for ϕ^n to obtain bounds on the summands for the moment estimates.
- The CLT requires more delicate treatment: need to use the second order Taylor expansion type bounds and then the Lipschitz estimates for the first derivative.

Emma Horton 1D Discrete EnKF 8 March 2024 41/44

- Now define $M_n := m_n X_n$.
- Observe that

$$M_{n+1} = \frac{A}{1 + (C/D)^2 p_n} M_n + \Upsilon_{n+1}$$

where Υ_n is a conditionally centred Gaussian random variable.

 Understanding the stability of the sample means thus reduces to understanding the behaviour of the products

$$\mathcal{E}_{l,n} := \prod_{k=l}^n \frac{A}{1 + (C/D)^2 p_k}.$$

• Similar theorems to those presented for the sample covariances and the corresponding Kalman gain hold for M_n .

- Now define $M_n := m_n X_n$.
- Observe that

$$M_{n+1} = \frac{A}{1 + (C/D)^2 p_n} M_n + \Upsilon_{n+1},$$

where Υ_n is a conditionally centred Gaussian random variable.

 Understanding the stability of the sample means thus reduces to understanding the behaviour of the products

$$\mathcal{E}_{l,n} := \prod_{k=l}^n \frac{A}{1 + (C/D)^2 p_k}.$$

• Similar theorems to those presented for the sample covariances and the corresponding Kalman gain hold for M_n .

- Now define $M_n := m_n X_n$.
- Observe that

$$M_{n+1} = \frac{A}{1 + (C/D)^2 p_n} M_n + \Upsilon_{n+1},$$

where Υ_n is a conditionally centred Gaussian random variable.

 Understanding the stability of the sample means thus reduces to understanding the behaviour of the products

$$\mathcal{E}_{l,n}:=\prod_{k=l}^n\frac{A}{1+(C/D)^2p_k}.$$

• Similar theorems to those presented for the sample covariances and the corresponding Kalman gain hold for M_n .

Emma Horton 1D Discrete EnKF 8 March 2024

- Now define $M_n := m_n X_n$.
- Observe that

$$M_{n+1} = \frac{A}{1 + (C/D)^2 p_n} M_n + \Upsilon_{n+1},$$

where Υ_n is a conditionally centred Gaussian random variable.

 Understanding the stability of the sample means thus reduces to understanding the behaviour of the products

$$\mathcal{E}_{l,n}:=\prod_{k=l}^n\frac{A}{1+(C/D)^2p_k}.$$

• Similar theorems to those presented for the sample covariances and the corresponding Kalman gain hold for M_n .

Emma Horton 1D Discrete EnKF 8 March 2024

Future work/open problems

- Higher dimensions
- Stability analysis for unstable signals for other genetic-type particle filters
- Time-varying systems
- Genealogies of particle filters
- Plenty of other particle filters..!

Thank you!