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Both research fields estimate expectations wrt some

probability distribution 7(x; B, 8) o< e AU 6)




s t(x |y, B,0) < e BU(x |y, 0) « T(x;B,0) x e BUXO)

* Fix hyperparameters 3, 6. * Defined independent of input data.

* Encode input data y via likelihood... * Expectations are functions of  and 0.
e ...and estimate expectations wrt x. * (3,0 are thermodynamic parameters,

eg, system temperature = 1/p.



Expected potential variance per particle

(black) is non-analytic at S

p1jos 01 pinbr
|ImN_,oo[ECV / N1
A P~

i
Ul

o
=)

maghnetic to non-magnetic

Fig.: Murayama, Kasahara, Matsuda (2020) | Fig.: Faulkner & Livingstone, Stat. Sci., in press (2023)



Metastability informs...

pU(x)

Diverging barrier height
blocks access to right-hand

well of potential fU(x)

X

...Bayesian computation

Fig.: Pampel & Valsson, J. Chem. Theory Comput. 18, 4127 (2022)



* Statistical physics and phase transitions
* Metastability and Wolff algorithm

* Continuous state spaces and ECMC



2D Ising model 2D hard-disk model
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Thermodynamic phase space

* With y(x; B, 0, N) some observabile...

* Thermodynamic phase space (TPS) of y(x; f8,0,N) is Al,im E[x(x;B,0,N)]
as a function of # and 6.

 Thermodynamic phase: any open and connected region of TPS where
Al,im E[x(x; 8,0, N)] is analytic.

* Phase transition: any boundary between any two thermodynamic phases.




...but no phase transition has
been detected in 1D case

2D Ising model has non-analytic
expectations at § = f3.....
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Figs: Faulkner & Livingstone, Stat. Sci., in press (2023)
Theory: Onsager, Phys. Rev. 65, 117 (1944); Ising, Z. Physik 31, 253 (1925)



* Statistical physics and phase transitions
* Metastability and Wolff algorithm

* Continuous state spaces and ECMC



2D Ising model
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Single active particle a € {1, ..., N}

Xg = —Xg4

AUing = Zj €S, XakXj

Accept x, w/prob min|[1, exp(—BAU;,.)]

NB, one unit of MC time corresponds to N
attempted particle moves



Magnetisation: m(x; f3,J, h, N) := %Z’i"ﬂ X;

IE[m(x; ﬁ],h - O, N)] = (0 for all ﬁ < 00 (spin-flip symmetry)

1 :
So ;Z:ﬁrl m(x;; fJ,h = 0,N) - 0 on some timescale T,

But at low temperature and w/Metropolis dynamics...

..T,, diverges with system size N




Low-temp Metrop dynamics freeze...
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...as neighbours are typically aligned

Right-hand figs: Faulkner & Livingstone, Stat. Sci., in press (2023)
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Metastable dynamics result in
m(t) close to 1 at low temp.
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Wolff algorithm

Randomly pick base lattice site for new cluster

2. Add aligned neighbours (to cluster) with
probability p = 1 — e 28]

3. Repeat step 2 for each new spin...

4. ...and flip entire cluster with probability one.

Algorithms: Swendsen & Wang, PRL 58, 86 (1987); Wolff, PRL 62, 361 (1989)
Fig.: Jorge L. delLyra, Sao Paulo Physics
Proof: Faulkner & Livingstone, Stat. Sci., in press (2023)
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Magnetisation: m(x; f3,J, h, N) := %Z’i"zl X;

Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 32x32 spins)
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Figs: Faulkner & Livingstone, Stat. Sci., in press (2023) (N = 32x32 spins)
Metropolis convergence: Neal & Roberts, Ann. Appl. Probab. 16 475 (2006)



iting into an apple and finding a

'maggot is unpleasant enough, but
finding half a maggot is worse. Dis-
covering one-third of a maggot would
be more distressing still: The less you
find, the more you might have eaten.
Extrapolating to the limit, an en-
counter with no maggot at all should
be the ultimate bad-apple experience.
This remorseless logic fails, however,
because the limit is singular: A very
small maggot fraction (f < 1) is qual-
itatively different from no maggot
(f = 0). Limits in physics can be sin-
gular too—indeed they usually are—
reflecting deep aspects of our scientif-
ic description of the world.
In physics, limits abound and are
d al in the p ge between
descriptions of nature at different lev-
els. The classical world is the limit of
the quantum world when Planck’s
constant / is inappreciable; geometri-
cal optics is the limit of wave optics
when the wavelength A is insignifi-
cant; thermodynamics is the limit of
statistical mechanics when the num-
ber of particles N is so large that 1/N
is negligible; mechanics of a slippery
fluid is the limit of mechanics of a vis-
cous fluid when the inverse Reynolds
number 1/R can be disregarded. These
limits have a common feature: They
are all singular—they must be,
because the theories they connect
involve concepts that are qualitative-
ly very different. As I explain here,
there are both reassuring and cre-
ative aspects to singular limits. And
by regarding them as a general fea-
ture of physical science, we get insight
into two related philosophical prob-
lems: how a more general theory can
reduce to a less general theory and
how higher-level phenomena can
emerge from lower-level ones.

The coherence of our physical
worldview requires the reassurance
that, singularities notwithstanding,
quantum mechanics does reduce to
classical mechanics, statistical mech-
anics does reduce to thermodynamics,
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and so on, in the appropriate limits.
We know that when calculating the
orbit of a spacecraft (and indeed
knowing that it has an orbit) we can
safely use classical mechanics, rather
than having to solve the Schrodinger
equation. An engineer designing a
bridge can rely on continuum elastic-
ity theory, without needing to know
the atomic arrangements underlying
the equation of state of the materials
used in the construction. However,
getting these reassurances from fun-
damental theory can involve subtle
and unexpected concepts.

Perhaps the simplest example is
two flashlights shining on a wall.
Their combined light is twice as bright
as when each shines separately: This
is the optical embodiment of the equa-
tion 1 + 1 = 2. But we learned from
Thomas Young almost exactly two
centuries ago that this mathematics
does not describe the intensity of
superposed light beams: To account
for wave interference, amplitudes
must be added, and the sum then
squared to give the intensity. This
involves the phases of the two waves,
+¢ say, and gives the intensity as
explid) + exp(=id)|* = 2 + 2 cos 2¢,
which can take any value between 0
and 4. So, what becomes of 1 + 1 = 2?
Young himself, responding to a critic
who claimed that the wall should be
covered with interference fringes,
agreed, but pointed out that “the
fringes will demonstrably be invisible
...a hundred . .. would not cover the
point of a needle.” Underlying this
explanation is a singular limit: The
unwanted cos 2¢ does not vanish but
oscillates rapidly. If the beams make
an angle 6, the fringe spacing is A/26,
vanishing in the geometrical limit of

small A. The limit is singular because
the cosine oscillates infinitely fast as
A vanishes. Mathematically, this is an
essential singularity of a type dis-
missed as pathological to students
learning mathematics, yet here it
appears naturally in the geometrical
limit of the simplest wave pattern.
Young’s “demonstrable” invisibility
requires an additional concept, later
made precise by Augustin Jean Fres-
nel and Lord Rayleigh: The rapidly
varying cos 2¢ must be replaced by its
average value, namely zero, reflecting
the finite resolution of the detectors,
the fact that the light beam is not
monochromatic, and the rapid phase
variations in the uncoordinated light
from the two flashlights. Only then
does 1 + 1 = 2 apply—a relation thus
reinterpreted as a singular limit.
Nowadays this application of the
idea that the average of a cosine is
zero, elaborated and reincarnated, is
called decoherence. This might seem
a bombastic redescription of the com-
pl but the applications of
decoherence are far from trivial. Deco-
herence quantifies the uncontrolled
extraneous influences that could
upset the delicate superpositions in
quantum computers. And, as we have
learned from the work of Wojciech
Zurek and others, the same concept
governs the emergence of the classical
from the quantum world in situations
more sophisticated than Young's,
where chaos is involved. For example,
the chaotic tumbling of Saturn’s satel-
lite Hyperion, regarded as a quantum
rotator with about 10% quanta of
angular momentum, would, according
to an unpublished calculation by
Ronald Fox, be suppressed in a few
decades by the discrete nature of the
energy spectrum. However, nobody
expects to witness this suppression,
because Hyperion is not isolated: Just
one photon arriving from the Sun
(whose reemission enables our obser-
vations) destroys the coherence
ponsible for q ization in a time
of the order of 10~ seconds, and rein-
states classicality.! Alternatively stat-
ed, decoherence suppresses the quan-
tum suppression of chaos.
Other reassurances are equally
hard to come by. For example, for-

© 2002 American Institwte of Physics, $003192280205-2109

Thermodynamic limit of expected magnetisation
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Figs: Walter & Barkema, Physica A 418, 78 (2015)
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Top figs: Walter & Barkema, Physica A 418, 78 (2015); bottom figs: Anshul Kogar
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* Statistical physics and phase transitions
* Metastability and Wolff algorithm

* Continuous state spaces and ECMC



ECMC and Metrop. algorithms... ...were first applied to hard disks




Metropolis move accepted

Evolve single particle at each iteration
Xg = X4 D u, where...
uj~U(—¢¢e)forjefl,..,dLe>0

...and @ indicates addition on torus

Accept/reject configs without/with overlaps

Algorithm: Metropolis et al., J. Chem. Phys. 21, 1087 (1953)
Fig.: Bernard, Krauth & Wilson, Phys. Rev. E 80, 056704 (2009)



Hard-disk model

@) ,
O 'o:.ﬂ'
S 090 %4 0®

Tightly packed
clusters = high
rejection rates

Tl'(overlaps/no overlaps) =0 / Unif.

Left-hand fig.: Bernard, PhD thesis, ENS (2011)
Right-hand fig.: Bernard, Krauth & Wilson, Phys. Rev. E 80, 056704 (2009)
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Left-hand fig.: Krauth, unpublished



imensions

...to sample along both d
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Right-hand fig.: Bernard, PhD thesis, ENS (2011)

Left-hand fig.: Krauth, unpublished



xy refreshment... ...Vs uniform refreshment

Left-hand fig.: Krauth, unpublished
Right-hand fig.: Bernard, PhD thesis, ENS (2011) m-invariance: Andrieu & Livingstone, Ann. Stat. 49, 1958 (2021)



ECMC solved 2D melting Colloidal hard-disk experiment
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__—7: projection axis (sample orientation)

Disputed for 50 years Confirms ECMC numerics

Left-hand fig.: Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011) Right-hand fig.: Thorneywork et al., Phys. Rev. Lett. 118, 158001 (2017)



Continuous potentials?

Thard(X) = 0 or const. & U, ,.4(X) = oo or finite...
* ...s0 ECMC freely advances hard disks until dU/dx, = ...
* ...but particles never collide in the case of continuous potentials U(x)

« =» somehow account for continuous increases in U(x)?

1 Peters & de With, Phys. Rev. E 85, 026703 (2012); Michel, Kapfer & Krauth, J. Chem. Phys. 140, 054116 (2014)



Consider m Metropolis translations of length A in a fixed direction.

Probability of translating active particle a through distance n := mA is...

p(xy, > x4 + 1) = [112; min|1, exp(—B|U(x, + AD) — U(x, + A(i — 1))])]
= exp |~ X1y max (0, U(x, + Ai) — U(x, + Ai — 1))
- exp|—B f: max(0, V,U(x))dx,| as A > 0

=» Advance active particle at constant velocity v from time ty > 0 and solve:

—logY =8 ftto" max(0, v - V,U(x))dt where Y ~ U[0,1)...

...to find the next event time t,, = t, + 1 /v (assuming no ‘boundary’ collisions).

Particle i then becomes active w/prob. « max(O, —v - ViU[x(t,,)]) att = t,.

Peters & de With, Phys. Rev. E 85, 026703 (2012); Michel, Kapfer & Krauth, J. Chem. Phys. 140, 054116 (2014)



2-particle sampling

* Need to integrate v - V,U(x) over only positive
contributions...

e ..but this is non-trivial for multiple particles

e So we have two options for Poisson process (PP):
1. Thinned PP: choose q, to overestimate event
rate gq,(x) == B max(0,v - V,U(x)), then
confirm events with probability q,(x)/q,(x)

2. 2-particle blocking: Sample Poisson process of
each two-particle interaction and take shortest
displacement (superposition of PPs)

Fig.: Manon Michel, PhD thesis, ENS (2015)
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ECMC rotates active spin
until neighbouring veto

4

Uy = —JXiL1Yjcs, cos(x; — x;) withx; € (—m, 7], J>0



N=16x16

— 1/(BJ)) = 0.45
— 1/(B)) = 1.35

m(x;B,J,h,N) := %Z?’:l(cos x;, sin x;)¢, x; € (—m, @]

Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)

N =64x%x64

N=256Xx256

— 1/(B)) = 0.45
— V(B)) =135

— 1/(B)) = 0.45
— 1/(B)) = 1.35




a 1.0 1My N=16x16]| b 1.0 ymy N =64x%64 1.01My [n=256x256
" + — T
1 1.0]-1.0 ’ 1.0
. — 1/(B) =045 — 1/(B)) = 0.45 — 1/(8)) = 0.45
-1.0 — 1/(B)=1.35 -1.0 - — 1/(B)) =135 -1.0- — 1/(B) =135
N=16x16 1.01my N=64x64 1.09my [n=256x256

Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)

1/(B)) = 0.45
— 1) =1.35




a 1.01my N=16x16]| b 1.0 ymy N=64x64]| C 1.01My (n=256%x256
. & | $ i
-1. -1.0 1.0}-1.0 ’ 1.0
X — 1/(B)) = 0.45 — 1/(B)) = 0.45 — 1/(B)) = 0.45
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ECMC’s constant-speed dynamics circumvent critical slowing down?

Faulkner, arXiv:2209.03699 (2022); Faulkner & Livingstone, Stat. Sci., in press (2023)
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Summary and outlook

e Bayesians fix hyperparameters, whereas physicists vary them.
* Varying hyperparameters can induce metastability and critical slowing down.
* Physicists combat these phenomena w/sophisticated sampling algorithms.

* Future plans: use ECMC to characterise CSD in 2DXY model; explore Bayesian analogues.

e Also interested in r-invariance of canonical ECMC if anyone has any ideas!

* Thanks to Sam Livingstone!, EPSRC and Advanced Computing Research Centre (Bristol).

1 Faulkner & Livingstone, Stat. Sci., in press (2023)



Example 2D Ising configuration

_ J N .
Ulsing — _EZizl ZjES,- xixj;xi - il

Spin—spin correlation length
increases as temperature decreases

=» nonergodic Metropolis dynamics

Wolff combats this by flipping clusters

— — = = —
— = = —
— > — —
— = = — —
S
— = = —

Swendsen & Wang, PRL 58, 86 (1987); Wolff, PRL 62, 361 (1989)



Fundamental axiom

* If some scalar observable y(x; B, 0, N) is sum of O(N) random numbers...

. ..and X [X] can be made arbitrarily small as N — oo (with Jim 1 E[x(x; B,6,N)] # 0)...

E [X(X;B,H,N:N())]
Jim E[x (6B ON)

 ..then3d Ny € N s.t. — 1| < € (with € > 0 immeasurably small)

« = thermodynamic limit (usually!) reflects macroscopic physics



1D Ising model No phase transition wrt free energy, F

I l I * Using= —3 Z, 12jes; XiXj — hYY x;,heR
! !
| I * Fi U (B.], b, N)=-B~11og[AY(B,], h) + 2Y(B,J, h)]
l 1
b, « 2¥(B,], h) = eP/[cosh(Bh) + \/sinh2(Bh) + e *F/]

Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)
Theory: Ising, Z. Physik 31, 253 (1925)



2D Ising model Thermodynamic specific heat per particle
(black curve) divergesat f = ., h =0

* Expected specific heat (ECy = B*Var[U]) is non-
analyticas N —» o at B = B, h = 0 (black curve) 20
:>1.5-
° l IECV(x;ﬁ;];h=O;N) _ 212 %‘1.0_
e =p*ogy(BJ) :
= 0.5
y(B)) = In[2cosh(2B))] + X [ In [; (1 e ““‘ngf,f{;;;;f("’))] aw | %83

Theory: Onsager, Phys. Rev. 65, 117 (1944)
Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)



What about order and magnetisation? Spontaneous magnetisation (m, in red) is
also non-analytic...

_ 1$N
¢ m(x) ﬁ)]; h; N) T NZizl xi 2.0}
=
51.5-
‘m ,J) = limlim Em(x; f,], h,N) is... i
O(B ]) W10 N—oo ( B J ) il.o-
EO.S
* ..also non-analyticat f = 8. (below & red curve)
0.0
0.4

e« moB,)) =11~ (sinh(28)))~H)"/® for B > B,

0 for ﬁ < Bc ...indicating an order—disorder

transition at f = f

Theory: Onsager, Nuovo Cimento 6, 261 (1949); Yang, Phys. Rev. 85, 808 (1952)
Fig.: Faulkner & Livingstone, arXiv:2208.04751 (2022)



Spontaneous magnetisation (m, in red) ...as symmetry breaking induces
reflects experimental reality... N — oo discontinuityin Emath =0

110 1.0F
_ 2.0}
E 10.8 g 0.5k
1.5} 2]
S {06 _ Q
) S A
R | {0.4 =
s & N0
£0.5 {0.2 . — N>>N
— N3>N2
0.0 " M X L 40.0 — N> x
0.4 0.6 0.8 1.0 1.2 1.4 1.6 5

BB hiho

mqa(B,]) = lim lim Em(x; B,], h, N
o(B.]) lim lim m(x; B,],h,N)



iting into an apple and finding a

'maggot is unpleasant enough, but
finding half a maggot is worse. Dis-
covering one-third of a maggot would
be more distressing still: The less you
find, the more you might have eaten.
Extrapolating to the limit, an en-
counter with no maggot at all should
be the ultimate bad-apple experience.
This remorseless logic fails, however,
because the limit is singular: A very
small maggot fraction (f < 1) is qual-
itatively different from no maggot
(f = 0). Limits in physics can be sin-
gular too—indeed they usually are—
reflecting deep aspects of our scientif-
ic description of the world.
In physics, limits abound and are
d al in the p ge between
descriptions of nature at different lev-
els. The classical world is the limit of
the quantum world when Planck’s
constant / is inappreciable; geometri-
cal optics is the limit of wave optics
when the wavelength A is insignifi-
cant; thermodynamics is the limit of
statistical mechanics when the num-
ber of particles N is so large that 1/N
is negligible; mechanics of a slippery
fluid is the limit of mechanics of a vis-
cous fluid when the inverse Reynolds
number 1/R can be disregarded. These
limits have a common feature: They
are all singular—they must be,
because the theories they connect
involve concepts that are qualitative-
ly very different. As I explain here,
there are both reassuring and cre-
ative aspects to singular limits. And
by regarding them as a general fea-
ture of physical science, we get insight
into two related philosophical prob-
lems: how a more general theory can
reduce to a less general theory and
how higher-level phenomena can
emerge from lower-level ones.

The coherence of our physical
worldview requires the reassurance
that, singularities notwithstanding,
quantum mechanics does reduce to
classical mechanics, statistical mech-
anics does reduce to thermodynamics,

f
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and so on, in the appropriate limits.
We know that when calculating the
orbit of a spacecraft (and indeed
knowing that it has an orbit) we can
safely use classical mechanics, rather
than having to solve the Schrodinger
equation. An engineer designing a
bridge can rely on continuum elastic-
ity theory, without needing to know
the atomic arrangements underlying
the equation of state of the materials
used in the construction. However,
getting these reassurances from fun-
damental theory can involve subtle
and unexpected concepts.

Perhaps the simplest example is
two flashlights shining on a wall.
Their combined light is twice as bright
as when each shines separately: This
is the optical embodiment of the equa-
tion 1 + 1 = 2. But we learned from
Thomas Young almost exactly two
centuries ago that this mathematics
does not describe the intensity of
superposed light beams: To account
for wave interference, amplitudes
must be added, and the sum then
squared to give the intensity. This
involves the phases of the two waves,
+¢ say, and gives the intensity as
explid) + exp(=id)|* = 2 + 2 cos 2¢,
which can take any value between 0
and 4. So, what becomes of 1 + 1 = 2?
Young himself, responding to a critic
who claimed that the wall should be
covered with interference fringes,
agreed, but pointed out that “the
fringes will demonstrably be invisible
...a hundred . .. would not cover the
point of a needle.” Underlying this
explanation is a singular limit: The
unwanted cos 2¢ does not vanish but
oscillates rapidly. If the beams make
an angle 6, the fringe spacing is A/26,
vanishing in the geometrical limit of

small A. The limit is singular because
the cosine oscillates infinitely fast as
A vanishes. Mathematically, this is an
essential singularity of a type dis-
missed as pathological to students
learning mathematics, yet here it
appears naturally in the geometrical
limit of the simplest wave pattern.
Young’s “demonstrable” invisibility
requires an additional concept, later
made precise by Augustin Jean Fres-
nel and Lord Rayleigh: The rapidly
varying cos 2¢ must be replaced by its
average value, namely zero, reflecting
the finite resolution of the detectors,
the fact that the light beam is not
monochromatic, and the rapid phase
variations in the uncoordinated light
from the two flashlights. Only then
does 1 + 1 = 2 apply—a relation thus
reinterpreted as a singular limit.
Nowadays this application of the
idea that the average of a cosine is
zero, elaborated and reincarnated, is
called decoherence. This might seem
a bombastic redescription of the com-
pl but the applications of
decoherence are far from trivial. Deco-
herence quantifies the uncontrolled
extraneous influences that could
upset the delicate superpositions in
quantum computers. And, as we have
learned from the work of Wojciech
Zurek and others, the same concept
governs the emergence of the classical
from the quantum world in situations
more sophisticated than Young's,
where chaos is involved. For example,
the chaotic tumbling of Saturn’s satel-
lite Hyperion, regarded as a quantum
rotator with about 10% quanta of
angular momentum, would, according
to an unpublished calculation by
Ronald Fox, be suppressed in a few
decades by the discrete nature of the
energy spectrum. However, nobody
expects to witness this suppression,
because Hyperion is not isolated: Just
one photon arriving from the Sun
(whose reemission enables our obser-
vations) destroys the coherence
ponsible for q ization in a time
of the order of 10~ seconds, and rein-
states classicality.! Alternatively stat-
ed, decoherence suppresses the quan-
tum suppression of chaos.
Other reassurances are equally
hard to come by. For example, for-
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Thermodynamic limit is singular as swapping

limits in equation returns zero
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Translational symmetry Time-driven, reversible algorithm

 ECMC potentials: symmetric to

imultaneous translation of both
simu /\o ~

particles; f’+ ‘\
* U(x; x;) = f(x); g . Q

* x:=(G—x;+L/2)mod (L)-L/2is

shortest separation with PBCs.
Red / blue: +ve / -ve x evolution
1D, two-particle model

Fig.: Michel, PhD thesis, ENS Paris (2015)



Can explore x via positive particle motion;

L|fted Markov process
Two copies of space
N

e Active particles augment the configuration
space: x =2 (x, & = £1);

* Lifting variable ¢ = £1 describes two copies of
the original config. space (x);

e § = 1) = ;) = 7o, § =-1);

* Red: particle i active = & = +1; system on

positive copy of config. space;
Red / blue: +ve / -ve x evolution
* Blue: particle j active = & = -1; system on

negative copy of config. space;

Fig.: Michel, PhD thesis, ENS Paris (2015)



Nonreversible process
Reversible process

Detailed balance = m-invariant

T-invariant?

Figs: Michel, PhD thesis, ENS Paris (2015) Faulkner & Livingstone, in preparation



At (x, § = £1): plx > x + §) = min{1, 7t(x + &, &) / 7(x, &)}

At x: p(x 2 xt 1) =min{1, m(x £ 1) / (x)}

0
e

TS
.

Figs: Michel, PhD thesis, ENS Paris (2015) Faulkner & Livingstone, in preparation



Skew detailed balance
Detailed balance —
—@—

Ve

. =2

()
\/
TT-invariant

Figs: Michel, PhD thesis, ENS Paris (2015) Faulkner & Livingstone, in preparation




e Easy to implement. * Convergence slow at high particle
density with long-range interactions.
* Converges quickly enough in many
settings. e Suffers from symmetry breaking.

* Recreates physical Brownian * And critical slowing down — inducing
dynamics — useful for experiment. strongly non-convergent estimates.



Fig.: arogozhnikov.github.io (2016)

Molecular dynamics (MD) follows numerical Newtonian
trajectories (eg, red curve on potential landscape)

It sets random initial particle positions and velocities...

...then solves X; = —V;U(x) Vi at each time step.

Approximately converges on T w/resampled velocities.



MD is typically much more efficient than Metropolis...

...and captures physical Newtonian dynamics.

BUT it’s unstable — especially at high particle density
with long-range interactions...

...and it also suffers from energy drifts.

Fig.: arogozhnikov.github.io (2016)



