# Sparse change detection in high-dimensional linear regression

Tengyao Wang

London School of Economics and Political Science

Warwick Algorithm Seminar

1 Dec 2023

#### **Collaborator**





Fengnan Gao Fudan University

Tengyao Wang 2/29

#### High-dimensional changepoint models



- The evolution of technology enables the collection of vast amounts of time-ordered data:
  - Healthcare devices
  - Covid case numbers
  - Network traffic data
  - Trading data of financial instruments



► Changes in the dynamics of the data streams are frequently of interest, leading to a renaissance of research on changepoint analysis.

Tengyao Wang 3/29

#### Changepoint in regression coefficients



- ▶ When data consist of covariate-response pairs, we are often interested in changes in the regression function.
- ▶ Observations  $(X_t, Y_t) \in \mathbb{R}^p \times \mathbb{R}$  for t = 1, ..., n generated from

$$Y_t = X_t^{\top} \beta_t + \epsilon_t,$$

where  $\epsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ .

lacktriangle Coefficients  $eta_1,\ldots,eta_n$  piecewise constant with changepoints at  $z_1,\ldots,z_
u$ 

$$\beta_t = \beta^{(r)}$$
 for  $z_{r-1} < t \le z_r, 1 \le r \le \nu + 1$ .

(Convention:  $z_0 = 0, z_{\nu+1} = n$ )

▶ **Goal**: estimate the changepoint locations  $z_1, \ldots, z_{\nu}$ .

Tengyao Wang 4/29

#### Classically ...



- ▶ When  $p \ll n$ , least squares estimators work well (Bai, 1997; Bai and Perron 1998, Julious, 2001)
- For a fixed  $\nu$ , find the optimal partition of  $\{1,\ldots,n\}$  into  $\nu+1$  segments such that the sum of RSS of least squares fit within each segment is minimised:

$$(\hat{z}_1, \dots, \hat{z}_{\nu}) = \operatorname*{argmin}_{\tilde{z}_1 < \tilde{z}_2 < \dots < \tilde{z}_{\nu}} \sum_{r=1}^{\nu+1} \min_{\tilde{\beta}} \sum_{t=\tilde{z}_{r-1}+1}^{\tilde{z}_r} (Y_t - X_t^{\top} \tilde{\beta})^2.$$

If  $\nu$  is unknown, compare goodness-of-fit from different choices of  $\nu$ , e.g. using BIC.

Tengyao Wang 5.

#### Challenges in high dimensions



- ▶ When  $p \approx n$ , the above least squares approach no longer works.
- ► Several approaches were proposed to analyse changepoints in high-dimensional regression problems (Lee et al., 2016; Kaul et al., 2019; Rinaldo et al., 2021; Wang et al., 2021).
  - These works impose the additional assumption that all regression coefficients  $\beta^{(1)}, \ldots, \beta^{(\nu+1)}$  are sparse.
  - This allows reasonable estimation of  $\beta^{(r)}, 1 \leq r \leq \nu+1$  given a candidate set of changepoints
  - Choose the best candidate set using goodness-of-fit statistics
- In contrast, we will only assume that the **changes are sparse**:

$$\|\beta^{(r+1)} - \beta^{(r)}\|_0 \le k.$$

Tengyao Wang 6/29

#### Single changepoint setup



- We focus first on the single changepoint problem, i.e.  $\nu=1$ , we write  $z=z_1$ .
- ▶ Observations  $(X_t, Y_t) \in \mathbb{R}^p \times \mathbb{R}$  for t = 1, ..., n generated from

$$Y_t = X_t^{\top}(\beta^{(1)} \mathbb{1}_{\{t \le z\}} + \beta^{(2)} \mathbb{1}_{\{t > z\}}) + \epsilon_t,$$

where  $\epsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ .

▶ We assume  $\|\beta^{(2)} - \beta^{(1)}\|_0 \le k$  but allow  $\beta^{(1)}$  and  $\beta^{(2)}$  to be individually dense.

Tengyao Wang 7/29

#### Real data examples



- ▶ Differential networks: find changepoints in the dynamics of Gaussian graphical models over time.
  - Brain connectivity network
  - Gene-gene interaction network
  - Financial network model between countries
- Central players in the network may have dense connection to other nodes, but their changes may still be sparse.



#### Dense nuisance parameters



- This problem is an example of high-dimensional inference in the presence of dense nuisance parameters.
- ► True parameter of interest is  $\beta^{(2)} \beta^{(1)}$ , which is sparse. The dense nuisance parameter  $\beta^{(1)} + \beta^{(2)}$  interferes with the inference.
- Relation to the literature
  - The Neyman-Scott paradox (Neyman and Scott, 1948)
  - High-dimensional change-point problems (e.g. Cho and Fryzlewicz, 2015;
     Jirak, 2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019)
  - Matched-pair survival analysis (Battey and Cox, 2020)
  - Single coefficient inference in high-dimensional regression (Battey and Reid, 2023)

Tengyao Wang 9/29

Our method: complementary sketching



A complimentary sketching

## Complementary sketching



- Assume n>p and define  $m:=n-p, X:=(X_1^\top,\ldots,X_n^\top)^\top$  and write  $X_{(s,e]}$  for the submatrix of X using rows  $s+1,\ldots,e$ .
- **Procedure:** Given data  $X \in \mathbb{R}^{n \times p}$  and  $Y \in \mathbb{R}^n$ ,
  - 1. Construct  $A \in \mathbb{R}^{n \times m}$  such that A has orthonormal columns orthogonal to the column space of X.
  - 2. For each  $t \in \{1, \dots, n-1\}$ , compute

$$\begin{split} W_t := \begin{pmatrix} A_{(0,t]}^\top & -A_{(t,n]}^\top \end{pmatrix} \begin{pmatrix} X_{(0,t]} \\ X_{(t,n]} \end{pmatrix} \in \mathbb{R}^{m \times p}, \quad t \\ Z := \begin{pmatrix} A_{(0,t]}^\top & A_{(t,n]}^\top \end{pmatrix} \begin{pmatrix} Y_{(0,t]} \\ Y_{(t,n]} \end{pmatrix} \in \mathbb{R}^m. \end{split}$$

► Similar to orthogonal sketching, but sketches the covariate matrix and the response vector in opposite ways in the second block.

Tengyao Wang 12/29

#### Elimination of nuisance parameters



- Why does complementary sketching work?
- Write  $\theta := (\beta^{(1)} \beta^{(2)})/2$  and  $\zeta := (\beta^{(1)} + \beta^{(2)})/2$ .

$$\begin{split} Z &= A_{(0,z]}^{\top} Y_{(0,z]} + A_{(z,n]}^{\top} Y_{(z,n]} \\ &= A_{(0,z]}^{\top} (X_{(0,z]} \beta^{(1)} + \epsilon_{(0,z]}) + A_{(z,n]}^{\top} (X_{(z,n]} \beta^{(2)} + \epsilon_{(z,n]}) \\ &= A_{(0,z]}^{\top} X_{(0,z]} \theta + A_{(0,z]}^{\top} X_{(0,z]} \zeta - A_{(z,n]}^{\top} X_{(z,n]} \theta + A_{(z,n]}^{\top} X_{(z,n]} \zeta \\ &\qquad \qquad + A_{(0,z]} \epsilon_{(0,z]} + A_{(z,n]} \epsilon_{(z,n]} \\ &= W_z \theta + \xi. \end{split}$$

- We have eliminated the contribution of the nuisance parameter  $\zeta$  in Z.
- ► This idea of complementary sketching was first used in a two-sample testing problem (Gao and W. 2022).
- ▶ The changepoint problem is reduced to finding t such that  $W_t$  forms a 'best sparse linear approximation' to Z.

Tengyao Wang 13/29



- Several different approaches are possible once we have eliminated the nuisrance parameter, which we collectively call the **charcoal** (<u>changepoint</u> in <u>regression</u> via a <u>complementary-sketching algorithm</u>) methology.
- ▶ charcoal<sub>corr</sub>:  $Q_t := \{\operatorname{diag}(W_t^\top W_t)\}^{-1/2}W_t^\top Z$ ,

$$\hat{z}^{\text{corr}} := \underset{t}{\operatorname{argmax}} \|\mathbf{soft}(Q_t, \lambda)\|_2^2.$$

Tengyao Wang 14/29



- Several different approaches are possible once we have eliminated the nuisrance parameter, which we collectively call the **charcoal** (<u>cha</u>ngepoint in <u>regression</u> via a <u>complementary-sketching algorithm</u>) methology.
- ▶ charcoal<sub>corr</sub>:  $Q_t := \{ \operatorname{diag}(W_t^\top W_t) \}^{-1/2} W_t^\top Z,$

$$\hat{z}^{\text{corr}} := \underset{t}{\operatorname{argmax}} \|\mathbf{soft}(Q_t, \lambda)\|_2^2.$$





- ➤ Several different approaches are possible once we have eliminated the nuisrance parameter, which we collectively call the **charcoal** (<u>cha</u>ngepoint in <u>regression</u> via a <u>complementary-sketching algorithm</u>) methology.
- ▶ charcoal<sub>corr</sub>:  $Q_t := \{\operatorname{diag}(W_t^\top W_t)\}^{-1/2}W_t^\top Z$ ,

$$\hat{z}^{\text{corr}} := \underset{t}{\operatorname{argmax}} \| \mathbf{soft}(Q_t, \lambda) \|_2^2.$$



Tengyao Wang 14/29



- ► Several different approaches are possible once we have eliminated the nuisrance parameter, which we collectively call the **charcoal** (<u>cha</u>ngepoint in <u>regression</u> via a <u>complementary-sketching algorithm</u>) methology.
- ▶ charcoal<sub>corr</sub>:  $Q_t := \{\operatorname{diag}(W_t^\top W_t)\}^{-1/2}W_t^\top Z$ ,

$$\hat{z}^{\text{corr}} := \underset{t}{\operatorname{argmax}} \| \mathbf{soft}(Q_t, \lambda) \|_2^2.$$

▶ charcoal<sub>proj</sub>: let  $\hat{v}$  be the leading left singular vector of  $\mathbf{soft}(Q, \lambda)$ , estimate

$$\hat{z}^{\text{proj}} := \underset{t}{\operatorname{argmax}} (\hat{v}^{\top} Q_t).$$

**charcoal**<sub>lasso</sub>: simply run Lasso on  $(W_t, Z)$  to find the best fit

$$\hat{\theta}_t(\lambda_t) := \underset{\theta}{\operatorname{argmin}} \left\{ \frac{1}{2m} \|Z - W_t \theta\|_2^2 + \lambda_t \|\theta\|_1 \right\}$$
$$\hat{z}^{\text{lasso}} := \underset{t}{\operatorname{argmin}} \|Z - W_t \hat{\theta}_t(\lambda_t)\|_2^2,$$

Tengyao Wang 14/29



- ► The **charcoal** algorithms can be combined with any of the top-down methods to recursively identify multilple changepoints.
- ▶ We use the narrowest-over-threshold method (Baranowski et al., 2019)

```
Algorithm 4: Pseudocode for multiple changepoint estimation
    Input: X \in \mathbb{R}^{n \times p}, Y \in \mathbb{R}^n satisfying n - p > 0, a soft threshold level \lambda > 0,
                burn-in parameter \alpha > 0, number of intervals M, testing threshold T > 0
 1 Set \hat{Z} \leftarrow \emptyset and generate M pairs of integers (s_1, e_1), \dots, (s_M, e_M) uniformly from
      \{(a,b]: a,b \in \mathbb{N} \cup \{0\}, b-a > p\}.
 2 Run NOT(0, n) where NOT is defined below.
 3 Let \hat{\nu} \leftarrow |\hat{Z}| and sort elements of \hat{Z} in increasing order to yield \hat{z}_1 < \cdots < \hat{z}_{\hat{\nu}}.
     Output: \hat{z}_1, \dots, \hat{z}_n
 4 Function NOT(s, e)
          Set \mathcal{M}_{s,e} \leftarrow \{m : (s_m, e_m] \subseteq (s, e]\}
          for m \in \mathcal{M}_{**} do
               Run Algorithm 2 with input X_{(s_m,e_m]}, Y_{(s_m,e_m]}, \lambda and \alpha, and let \hat{z}^{(m)} and
 7
                H_{\text{max}}^{(m)} be the output.
          end
 8
         \mathcal{M}_{s,e}^* \leftarrow \{m \in \mathcal{M}_{s,e} : H_{\text{max}}^{(m)} > T\}
          if \mathcal{M}_{*,c}^* \neq \emptyset then
10
               m_0 \leftarrow \operatorname{arg\,min}_{m \in \mathcal{M}}(e_m - s_m)
11
               b \leftarrow \hat{s}_{m_0} + \hat{z}^{(m_0)}
12
               \hat{Z} \leftarrow \hat{Z} \cup \{b\}
13
               NOT(s, b)
14
               NOT(b, e)
15
          end
17 end
```

Tengyao Wang 15/29



- ► The **charcoal** algorithms can be combined with any of the top-down methods to recursively identify multiple changepoints.
- ▶ We use the narrowest-over-threshold method (Baranowski et al., 2019)





- ► The **charcoal** algorithms can be combined with any of the top-down methods to recursively identify multilple changepoints.
- ▶ We use the narrowest-over-threshold method (Baranowski et al., 2019)



Tengyao Wang 15/29



- ► The **charcoal** algorithms can be combined with any of the top-down methods to recursively identify multilple changepoints.
- ▶ We use the narrowest-over-threshold method (Baranowski et al., 2019)



## **Theoretical results**

#### **Theoretical analysis**



Test statistics are formed from

$$Q_t = \{\operatorname{diag}(W_t^{\top} W_t)\}^{-1/2} (W_t^{\top} W_z \theta + W_t^{\top} \xi)$$

- ▶ **Key step**: show that  $W_t^\top W_z$  is close to  $4t(n-z)(n-p)n^{-2}I_p$  in k-operator norm uniformly over t.
- ▶ Difficult to control  $\{\operatorname{diag}(W_t^\top W_t)\}^{-1/2}$  uniformly over t. For theoretical analysis, we look at a slight variant where

$$Q_t = \sqrt{\frac{n}{t(n-t)}} W_t^{\top} Z = \sqrt{\frac{n}{t(n-t)}} (W_t^{\top} W_z \theta + W_t^{\top} \xi).$$

Tengyao Wang 16/29



► Test statistics are formed from

$$Q_t = \sqrt{\frac{n}{t(n-t)}} (W_t^{\top} W_z \theta + W_t^{\top} \xi)$$

▶ **Key step**: show that  $W_t^\top W_z$  is close to  $4t(n-z)(n-p)n^{-2}I_p$  in k-operator norm uniformly over t for  $t \leq z$ .

Tengyao Wang 17/29



► Test statistics are formed from

$$Q_t = \sqrt{\frac{n}{t(n-t)}} \big( W_t^\top W_z \theta + W_t^\top \xi \big)$$

- ▶ **Key step**: show that  $W_t^\top W_z$  is close to  $4t(n-z)(n-p)n^{-2}I_p$  in k-operator norm uniformly over t for  $t \leq z$ .
- ► Hence  $H_t := \|\mathbf{soft}(Q_t, \lambda)\|_2$  is close to  $\tilde{H}_t := \sqrt{\frac{n}{t(n-t)}} \|(W_t^\top W_z \theta)_S\|_2$

Tengyao Wang 17/29



Test statistics are formed from

$$Q_t = \sqrt{\frac{n}{t(n-t)}} \big( W_t^\top W_z \theta + W_t^\top \xi \big)$$

- ▶ **Key step**: show that  $W_t^\top W_z$  is close to  $4t(n-z)(n-p)n^{-2}I_p$  in k-operator norm uniformly over t for  $t \leq z$ .
- ▶ Hence  $H_t := \|\mathbf{soft}(Q_t, \lambda)\|_2$  is close to  $\tilde{H}_t := \sqrt{\frac{n}{t(n-t)}} \|(W_t^\top W_z \theta)_S\|_2$
- This is in turn approximately

$$h_t := \frac{4(n-p)\|\theta\|_2}{n} \left\{ \sqrt{\frac{t}{n(n-t)}} (n-z) \mathbb{1}_{\{t \le z\}} + \sqrt{\frac{n-t}{nt}} z \mathbb{1}_{\{t > z\}} \right\}.$$

Tengyao Wang 17/29



► Graphical illustration of the proof sketch:





► Graphical illustration of the proof sketch:





Graphical illustration of the proof sketch:



- ▶ To prove estimation accuracy:
  - 1. Understand the sharpness of peak of  $(h_t: 1 \le t \le n-1)$  this turns out to be the same as the univariate CUSUM curve
  - 2. Control  $|H_t \tilde{H}_t|$  and  $|\tilde{H}_t h_t|$  uniformly over t.

Tengyao Wang 18/29

#### **Theoretical guarantees**



#### Assumptions

- (A1) Random design:  $x_t \sim N_p(0, I_p)$  independently for  $t = 1, \dots, n$
- (A2) Asymptotic regime: n,z,p satisfies p< n and  $z/n \to \tau \in (0,1)$  and  $(n-p)/n \to \eta \in (0,1)$  as  $n \to \infty$ .

Theorem. Assume Conditions (A1) and (A2). Suppose that  $\|\theta\|_2 \leq 1, k \leq p/2$ . There exists c, C > 0, depending only on  $\tau, \eta$ , such that if  $\lambda > c\sigma \log p$ , then asymptotically with probability 1, for all but finitely many n's, we have

$$\sin \angle (\hat{v}^{\text{proj}}, \theta) \le \frac{C\lambda\sqrt{k}}{\sqrt{n}\|\theta\|_2}.$$

Hence,  $\hat{z}^{\text{proj}}$  satisfies

$$\frac{|\hat{z}^{\text{proj}} - z|}{n} \leq \frac{C\lambda^2 \sqrt{k} \log p}{\sqrt{n} \|\theta\|_2^2}.$$

### **Theoretical guarantees**



#### **Assumptions**

- (A1) Random design:  $x_t \sim N_p(0, I_p)$  independently for  $t=1,\dots,n$
- (A2) Asymptotic regime: n,z,p satisfies p< n and  $z/n \to \tau \in (0,1)$  and  $(n-p)/n \to \eta \in (0,1)$  as  $n \to \infty$ .

Theorem. Assume Conditions (A1) and (A2). Suppose that  $\|\theta\|_2 \leq 1, k \leq p/2$ . There exists c, C>0, depending only on  $\tau, \eta$ , such that if  $\lambda>c\sigma\log p$ , then asymptotically with probability 1, for all but finitely many n's, we have

$$\sin \angle (\hat{v}^{\text{proj}}, \theta) \le \frac{C\lambda\sqrt{k}}{\sqrt{n}\|\theta\|_2}.$$

Hence, a sample-splitting variant of  $\hat{z}^{\text{proj}}$  satisfies

$$\frac{|\hat{z}^{\text{proj}} - z|}{n} \leq \frac{C\lambda\sqrt{k}\log p}{\sqrt{n}\|\theta\|_2}.$$

#### **Optimality of the estimator**



- ► Consistent estimation is possible when  $\|\theta\|_2/\sigma \gg \sqrt{\frac{k \log^2 p}{n}}$ .
- ▶ This is essentially the SNR required to **test for a change** even if the location of changepoint z is known. Let  $P^X_{z,\beta^{(1)},\beta^{(2)}}$  be the distribution of Y conditional on X, changepoint z and parameters  $\beta^{(1)}$  and  $\beta^{(2)}$ . We test

$$H_0: \theta = 0 \text{ vs } H_1: \theta \in \Theta_{p,k}(\rho) := \{\theta: \|\theta\|_2/\sigma \ge \rho, \|\theta\|_0 \le k\}$$

Define the minimax risk of testing

$$\mathcal{M}_X(k,\rho) := \inf_{\psi} \left\{ \sup_{\beta \in \mathbb{R}^p} P_{z,\beta,\beta}^X(\psi \neq 0) + \sup_{\substack{\beta_1,\beta_2 \in \mathbb{R}^p \\ (\beta_1 - \beta_2)/2 \in \Theta_{p,k}(\rho)}} P_{z,\beta_1,\beta_2}^X(\psi \neq 1) \right\},\,$$

Theorem. Assume (A1), (A2), and  $k \leq p^{\alpha}$  for some  $\alpha < 1/2$ . There exists a universal constant c>0 such that if  $\rho \leq \sqrt{\frac{c(1-2\alpha)k\log p}{n}}$ , then

$$\mathcal{M}_X(k,\rho) \xrightarrow{\text{a.s.}} 1.$$

Tengyao Wang 20/29

#### **Numerical studies**

#### **Comparison of variants**



- ▶ Gaussian Orthogonal Ensemble design matrices with a single changepoint at z=0.3n
- $m{ heta}(1)$  sampled as a Gaussian vector,  $m{ heta}(2) m{ heta}(1)$  randomly generated k-sparse vector with  $\ell_2$  norm  $\rho$ .
- **charcoal**<sub>corr</sub> and **charcoal**'<sub>corr</sub> uses a burn-in parameter of 0.1.

|      |     | 7  |        |       | ,     |       | ./    | -      |
|------|-----|----|--------|-------|-------|-------|-------|--------|
| n    | p   | k  | $\rho$ | corr  | corr' | proj  | proj' | lasso  |
| 600  | 200 | 3  | 1      | 7.16  | 8.67  | 7.17  | 11.05 | 12.95  |
|      |     |    | 2      | 2.04  | 3.22  | 1.95  | 2.81  | 3.04   |
|      |     |    | 4      | 0.93  | 2.35  | 1.24  | 2.16  | 1.47   |
|      |     | 14 | 1      | 16.75 | 18.14 | 19.69 | 34.44 | 82.36  |
|      |     |    | $^{2}$ | 3.22  | 3.76  | 3.19  | 4.03  | 6.94   |
|      |     |    | 4      | 1.62  | 2.29  | 2.20  | 2.65  | 2.00   |
| 1200 | 400 | 3  | 1      | 6.61  | 7.13  | 6.20  | 7.63  | 12.14  |
|      |     |    | 2      | 1.64  | 1.86  | 1.96  | 2.40  | 3.39   |
|      |     |    | 4      | 1.11  | 2.06  | 0.94  | 2.06  | 1.43   |
|      |     | 20 | 1      | 16.70 | 19.51 | 11.01 | 14.94 | 101.81 |
|      |     |    | 2      | 2.90  | 2.98  | 3.92  | 4.11  | 10.12  |
|      |     |    | 4      | 1.86  | 2.50  | 1.64  | 1.91  | 3.20   |

Table:  $\mathbb{E}|\hat{z}-z|$  estimated over 100 Monte Carlo repetitions.

#### Comparisons with other methods



- Existing methods in literature require sparsity of  $\theta^{(r)}$  for all r.
- ▶ We compare with
  - The VPBS algorithm of Rinaldo et al., 2021
  - A two-sided Lasso-based approach of Lee et al. (2016) (LSS) and Leonardi and Bühlmann (2016) (LB)
  - a two-stage refinement approach of Kaul et al. (2019) (KJF)
- We compare the performance of various methods in a single changepoint estimation task with n=1200, z=360.

Tengyao Wang 23/29

# Comparisons with other methods



| p    | k    | $\rho$ | $charcoal_{proj}$ | $charcoal_{lasso}$ | VPBS  | $_{ m LB}$ | KJF   | LSS   |
|------|------|--------|-------------------|--------------------|-------|------------|-------|-------|
| 400  | 3    | 1      | 7.2               | 13.2               | 452.4 | 556.1      | 238.8 | 472.2 |
|      |      | 2      | 2.2               | 3.5                | 476.3 | 569.2      | 239.3 | 364.1 |
|      |      | 4      | 1.1               | 1.5                | 434.2 | 532.8      | 239.1 | 272.1 |
|      |      | 8      | 0.7               | 0.8                | 326.3 | 496.8      | 239.1 | 310.8 |
|      | 20   | 1      | 12.4              | 85.4               | 422.7 | 528.8      | 238.9 | 479.5 |
|      |      | 2      | 3.0               | 9.2                | 494.9 | 546.8      | 238.9 | 284.5 |
|      |      | 4      | 2.0               | 2.6                | 431.9 | 553.1      | 239.1 | 268.5 |
|      |      | 8      | 1.9               | 0.8                | 356.2 | 513.3      | 239.3 | 261.5 |
|      | 400  | 1      | 162.2             | 344.2              | 477.8 | 569.8      | 238.8 | 429.9 |
|      |      | 2      | 46.3              | 338.4              | 504.0 | 583.2      | 238.8 | 252.4 |
|      |      | 4      | 25.3              | 13.3               | 446.3 | 554.1      | 238.9 | 285.6 |
|      |      | 8      | 20.7              | 3.0                | 355.6 | 487.6      | 239.1 | 250.1 |
| 1000 | 3    | 1      | 60.7              | 113.3              | 241.6 | 429.5      | 237.2 | 227.3 |
|      |      | 2      | 8.3               | 11.8               | 243.4 | 441.4      | 239.0 | 228.2 |
|      |      | 4      | 2.9               | 4.0                | 239.5 | 366.9      | 243.9 | 230.6 |
|      |      | 8      | 2.4               | 1.4                | 235.1 | 245.1      | 262.2 | 230.7 |
|      | 31   | 1      | 300.3             | 364.9              | 233.4 | 440.1      | 238.8 | 227.4 |
|      |      | 2      | 71.7              | 140.9              | 242.5 | 469.5      | 238.9 | 228.3 |
|      |      | 4      | 16.0              | 12.5               | 251.3 | 358.4      | 238.9 | 224.5 |
|      |      | 8      | 13.7              | 4.6                | 244.5 | 249.0      | 238.2 | 230.1 |
|      | 1000 | 1      | 275.5             | 359.8              | 232.6 | 483.0      | 239.3 | 231.8 |
|      |      | 2      | 256.9             | 320.8              | 238.4 | 447.4      | 238.9 | 229.2 |
|      |      | 4      | 224.1             | 91.0               | 242.7 | 378.2      | 239.1 | 228.0 |
|      |      | 8      | 194.5             | 39.6               | 246.4 | 253.5      | 242.4 | 226.7 |

#### **Model misspecification**



- We focused on GOE design and Gaussian noise to facilitate theoretical analysis
- Our methodology can be applied in more general settings
- We vary design to have i)  $N_p(0,\Sigma)$  rows with  $\Sigma=(0.7^{|i-j|})_{1\leq i,j\leq p},$  or ii) Rademacher entries
- ▶ We vary noise distribution to  $t_4$ ,  $t_6$ , centred Exp(1) or Rademacher distributions.



Figure: Robustness to varying design matrices and noise distributions.

Tengyao Wang 25/29



- We use charcoal in conjunction with NOT (Baranowski et al. (2019) for multiple changepoint estimation.
- We consider two simulation settings

(M1) 
$$n = 1200, p = 200, \nu = 3,$$
  
 $(z_1, z_2, z_3)/n = (0.2, 0.55, 0.75),$   
 $(\|\theta^{(1)}\|_2, |\theta^{(2)}\|_2, |\theta^{(3)}\|_2) = \rho_{\min} \times (1, 1.5, 2),$   
 $\|\theta^{(1)}\|_0 = \|\theta^{(2)}\|_0 = \|\theta^{(3)}\|_0 = k.$ 

(M2) 
$$n = 2400, p = 400, \nu = 4,$$
  
 $(z_1, z_2, z_3, z_4)/n = (0.3, 0.55, 0.75, 0.9),$   
 $(\|\theta^{(1)}\|_2, |\theta^{(2)}\|_2, |\theta^{(3)}\|_2, |\theta^{(4)}\|_2) = \rho_{\min} \times (1, 1.15, 1.45, 2.18),$   
 $\|\theta^{(1)}\|_0 = \|\theta^{(2)}\|_0 = \|\theta^{(3)}\|_0 = \|\theta^{(4)}\|_0 = k.$ 

Tengvao Wang 26/29



| n    | p   | k   | $ ho_{ m min}$ | $\hat{\nu} - \nu$ value |    |    |     |   | $_{ m Haus}$ | ARI   |
|------|-----|-----|----------------|-------------------------|----|----|-----|---|--------------|-------|
|      |     |     |                | -3                      | -2 | -1 | 0   | 1 |              |       |
| 1200 | 200 | 3   | 0.8            | 0                       | 0  | 96 | 4   | 0 | 292.8        | 0.742 |
|      |     |     | 1.2            | 0                       | 0  | 22 | 78  | 0 | 75.4         | 0.918 |
|      |     |     | 1.6            | 0                       | 0  | 0  | 98  | 2 | 8.8          | 0.978 |
|      |     | 10  | 0.8            | 0                       | 2  | 97 | 1   | 0 | 304.9        | 0.71  |
|      |     |     | 1.2            | 0                       | 0  | 42 | 55  | 3 | 141.1        | 0.856 |
|      |     |     | 1.6            | 0                       | 0  | 1  | 96  | 3 | 18           | 0.96  |
|      |     | 100 | 0.8            | 3                       | 67 | 30 | 0   | 0 | 591.7        | 0.303 |
|      |     |     | 1.2            | 0                       | 4  | 88 | 8   | 0 | 319.3        | 0.611 |
|      |     |     | 1.6            | 0                       | 0  | 52 | 46  | 2 | 217.1        | 0.759 |
| 2400 | 400 | 3   | 0.8            | 0                       | 0  | 25 | 75  | 0 | 155.3        | 0.881 |
|      |     |     | 1.2            | 0                       | 0  | 0  | 100 | 0 | 14.3         | 0.975 |
|      |     |     | 1.6            | 0                       | 0  | 0  | 100 | 0 | 10.1         | 0.983 |
|      |     | 10  | 0.8            | 0                       | 15 | 53 | 32  | 0 | 376.9        | 0.72  |
|      |     |     | 1.2            | 0                       | 0  | 2  | 98  | 0 | 37.3         | 0.945 |
|      |     |     | 1.6            | 0                       | 0  | 1  | 99  | 0 | 21           | 0.97  |
|      |     | 100 | 0.8            | 42                      | 57 | 1  | 0   | 0 | 1154.9       | 0.184 |
|      |     |     | 1.2            | 0                       | 32 | 54 | 14  | 0 | 647          | 0.457 |
|      |     |     | 1.6            | 0                       | 0  | 14 | 84  | 2 | 376.9        | 0.658 |

Tengyao Wang 27/29





 $n = 2400, p = 400, k = 10, \rho_{\min} = 0.8 \quad \ n = 2400, p = 400, k = 10, \rho_{\min} = 1.6$ 

Figure: Histogram of estimated changepoint locations in four settings.

28/29

#### **Summary**



- ▶ It is possible to estimate sparse changes in high-dimensional regression coefficients, even if the coefficients themselves are dense.
- Use complementary sketching to eliminate nuisance parameter.
- Implementation available in github.com/gaofengnan/charcoal/

Tengyao Wang 29/29

#### **Summary**



- ▶ It is possible to estimate sparse changes in high-dimensional regression coefficients, even if the coefficients themselves are dense.
- Use complementary sketching to eliminate nuisance parameter.
- ▶ Implementation available in github.com/gaofengnan/charcoal/

#### Main references:

Gao, F. and Wang, T. (2022) Two-sample testing of high-dimensional linear regression coefficients via complementary sketching. *Ann. Statist.*, **50**, 2950–2972.

Gao, F. and Wang, T. (2022+) Sparse change detection in high-dimensional linear regression. *Preprint*, arxiv:2208.06326.

Tengyao Wang 29/29

Thank you!

#### References



- Bai, J. (1997) Estimation of a change point in multiple regression models. Review of Economics and Statistics, 79, 551-563.
- Bai, J. and Perron, P. (1998) Estimating and testing linear models with multiple structural changes. *Econometrica*, 66, 47–78.
- Baranowski, R., Chen, Y. and Fryzlewicz, P. (2019) Narrowest-over-threshold detection of multiple change points and change-point-like features. *J. Roy. Statist. Soc., Ser. B*, 81, 649–672.
- Battey, H. S. and Cox, D. R. (2020) High dimensional nuisance parameters: an example from parametric survival analysis. *Information Geometry*, 3, 119–148.
- Cho, H. and Fryzlewicz, P. (2015) Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. J. Roy. Statist. Soc., Ser. B, 77, 475–507.
- Enikeeva, F. and Harchaoui, Z. (2019) High-dimensional change-point detection under sparse alternatives. *Ann. Statist.*, 47, 2051–2079.
- Jirak, M. (2015) Uniform change point tests in high dimension. Ann. Statist., 43, 2451–2483.

Tengyao Wang 29/29

#### References



- Julious, S. A. (2001) Inference and estimation in a changepoint regression problem. J. Roy. Statist. Soc., Ser. D, 50, 51–61.
- ▶ Kaul, A., Jandhyala, V. K. and Fotopoulos, S. B. (2019) An efficient two step algorithm for high dimensional change point regression models without grid search. *J. Mach. Learn. Res.*, **20**, (111), 1–40.
- Lee, S., Seo, M. H. and Shin, Y. (2016) The lasso for high dimensional regression with a possible change point. *J. Roy. Statist. Soc., Ser. B*, **78**, 193–210.
- Leonardi, F. and Bühlmann, P. (2016) Computationally efficient change point detection for high-dimensional regression. arXiv preprint, arXiv:1601.03704.
- ▶ Neyman, J. and Scott, E. L. (1948) Consistent estimates based on partially consistent observations. *Econometrica*, **16**, 1–32.
- Rinaldo, A., Wang, D., Wen, Q., Willett, R. and Yu, Y. (2021) Localizing changes in high-dimensional regression models. *Proc. Mach. Learn. Res.*, 130.
- Wang, D., Yu, Y. and Rinaldo, A. (2021) Optimal covariance change point localization in high dimensions. *Bernoulli*, 27, 554–575.
- Wang, T. and Samworth, R. J. (2018) High dimensional change point estimation via sparse projection. J. Roy. Statist. Soc., Ser., B, 80, 57–83.

Tengyao Wang 29/29