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High-dimensional changepoint models

▶ The evolution of technology enables the collection of vast amounts of
time-ordered data:
– Healthcare devices
– Covid case numbers
– Network traffic data
– Trading data of financial instruments

▶ Changes in the dynamics of the data streams are frequently of interest,
leading to a renaissance of research on changepoint analysis.
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Changepoint in regression coefficients

▶ When data consist of covariate-response pairs, we are often interested in
changes in the regression function.

▶ Observations (Xt, Yt) ∈ Rp × R for t = 1, . . . , n generated from

Yt = X⊤
t βt + ϵt,

where ϵt
iid∼ N(0, σ2).

▶ Coefficients β1, . . . , βn piecewise constant with changepoints at z1, . . . , zν

βt = β(r) for zr−1 < t ≤ zr , 1 ≤ r ≤ ν + 1.

(Convention: z0 = 0, zν+1 = n)
▶ Goal: estimate the changepoint locations z1, . . . , zν .
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Classically . . .

▶ When p≪ n, least squares estimators work well (Bai, 1997; Bai and Perron
1998, Julious, 2001)

▶ For a fixed ν, find the optimal partition of {1, . . . , n} into ν + 1 segments
such that the sum of RSS of least squares fit within each segment is
minimised:

(ẑ1, . . . , ẑν) = argmin
z̃1<z̃2<···<z̃ν

ν+1∑
r=1

min
β̃

z̃r∑
t=z̃r−1+1

(Yt −X⊤
t β̃)

2.

▶ If ν is unknown, compare goodness-of-fit from different choices of ν, e.g.
using BIC.
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Challenges in high dimensions

▶ When p ≍ n, the above least squares approach no longer works.
▶ Several approaches were proposed to analyse changepoints in

high-dimensional regression problems (Lee et al., 2016; Kaul et al., 2019; Rinaldo
et al., 2021; Wang et al., 2021).
– These works impose the additional assumption that all regression

coefficients β(1), . . . , β(ν+1) are sparse.
– This allows reasonable estimation of β(r), 1 ≤ r ≤ ν + 1 given a

candidate set of changepoints
– Choose the best candidate set using goodness-of-fit statistics

▶ In contrast, we will only assume that the changes are sparse:

∥β(r+1) − β(r)∥0 ≤ k.
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Single changepoint setup

▶ We focus first on the single changepoint problem, i.e. ν = 1, we write
z = z1.

▶ Observations (Xt, Yt) ∈ Rp × R for t = 1, . . . , n generated from

Yt = X⊤
t (β

(1)
1{t≤z} + β(2)

1{t>z}) + ϵt,

where ϵt
iid∼ N(0, σ2).

▶ We assume ∥β(2) − β(1)∥0 ≤ k but allow β(1) and β(2) to be individually
dense.
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Real data examples

▶ Differential networks: find changepoints in the dynamics of Gaussian
graphical models over time.
– Brain connectivity network
– Gene-gene interaction network
– Financial network model between countries

▶ Central players in the network may have dense connection to other nodes,
but their changes may still be sparse.
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Dense nuisance parameters

▶ This problem is an example of high-dimensional inference in the presence
of dense nuisance parameters.

▶ True parameter of interest is β(2) − β(1), which is sparse. The dense
nuisance parameter β(1) + β(2) interferes with the inference.

▶ Relation to the literature
– The Neyman–Scott paradox (Neyman and Scott, 1948)
– High-dimensional change-point problems (e.g. Cho and Fryzlewicz, 2015;

Jirak, 2015; W. and Samworth, 2018; Enikeeva and Harchaoui, 2019)
– Matched-pair survival analysis (Battey and Cox, 2020)
– Single coefficient inference in high-dimensional regression (Battey and

Reid, 2023)
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Our method: complementary sketching



A complimentary sketching



Complementary sketching

▶ Assume n > p and definem := n− p, X := (X⊤
1 , . . . , X

⊤
n )

⊤ and write
X(s,e] for the submatrix of X using rows s+ 1, . . . , e.

▶ Procedure: Given data X ∈ Rn×p and Y ∈ Rn,
1. Construct A ∈ Rn×m such that A has orthonormal columns

orthogonal to the column space of X .
2. For each t ∈ {1, . . . , n− 1}, compute

Wt :=
(
A⊤

(0,t] −A⊤
(t,n]

)(
X(0,t]

X(t,n]

)
∈ Rm×p,

Z :=
(
A⊤

(0,t] A⊤
(t,n]

)(
Y(0,t]
Y(t,n]

)
∈ Rm.

▶ Similar to orthogonal sketching, but sketches the covariate matrix and the
response vector in opposite ways in the second block.
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Elimination of nuisance parameters

▶ Why does complementary sketching work?
▶ Write θ := (β(1) − β(2))/2 and ζ := (β(1) + β(2))/2.

Z = A⊤
(0,z]Y(0,z] +A⊤

(z,n]Y(z,n]

= A⊤
(0,z](X(0,z]β

(1) + ϵ(0,z]) +A⊤
(z,n](X(z,n]β

(2) + ϵ(z,n])

= A⊤
(0,z]X(0,z]θ +������

A⊤
(0,z]X(0,z]ζ −A⊤

(z,n]X(z,n]θ +������
A⊤

(z,n]X(z,n]ζ

+A(0,z]ϵ(0,z] +A(z,n]ϵ(z,n]

=Wzθ + ξ,

▶ We have eliminated the contribution of the nuisance parameter ζ in Z .
▶ This idea of complementary sketching was first used in a two-sample

testing problem (Gao and W. 2022).
▶ The changepoint problem is reduced to finding t such thatWt forms a ‘best

sparse linear approximation’ to Z .
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The charcoal algorithms

▶ Several different approaches are possible once we have eliminated the
nuisrance parameter, which we collectively call the charcoal (changepoint
in regression via a complementary-sketching algorithm) methdology.

▶ charcoalcorr: Qt := {diag(W⊤
t Wt)}−1/2W⊤

t Z ,

ẑcorr := argmax
t

∥soft(Qt, λ)∥22.
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The charcoal algorithms

▶ Several different approaches are possible once we have eliminated the
nuisrance parameter, which we collectively call the charcoal (changepoint
in regression via a complementary-sketching algorithm) methdology.

▶ charcoalcorr: Qt := {diag(W⊤
t Wt)}−1/2W⊤

t Z ,

ẑcorr := argmax
t

∥soft(Qt, λ)∥22.

▶ charcoalproj: let v̂ be the leading left singular vector of soft(Q,λ), estimate

ẑproj := argmax
t

(v̂⊤Qt).

▶ charcoallasso: simply run Lasso on (Wt, Z) to find the best fit

θ̂t(λt) := argmin
θ

{
1

2m
∥Z −Wtθ∥22 + λt∥θ∥1

}
ẑlasso := argmin

t
∥Z −Wtθ̂t(λt)∥22,
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Multiple changepoints

▶ The charcoal algorithms can be combined with any of the top-down
methods to recursively identify multilple changepoints.

▶ We use the narrowest-over-threshold method (Baranowski et al., 2019)
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Theoretical results



Theoretical analysis

▶ Test statistics are formed from

Qt = {diag(W⊤
t Wt)}−1/2

(
W⊤
t Wzθ +W⊤

t ξ
)

▶ Key step: show thatW⊤
t Wz is close to 4t(n− z)(n− p)n−2Ip in

k-operator norm uniformly over t.
▶ Difficult to control {diag(W⊤

t Wt)}−1/2 uniformly over t. For theoretical
analysis, we look at a slight variant where

Qt =

√
n

t(n− t)
W⊤
t Z =

√
n

t(n− t)

(
W⊤
t Wzθ +W⊤

t ξ
)
.
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Theoretical analysis of the variant

▶ Test statistics are formed from

Qt =

√
n

t(n− t)

(
W⊤
t Wzθ +W⊤

t ξ
)

▶ Key step: show thatW⊤
t Wz is close to 4t(n− z)(n− p)n−2Ip in

k-operator norm uniformly over t for t ≤ z.

▶ Hence Ht := ∥soft(Qt, λ)∥2 is close to H̃t :=
√

n
t(n−t)∥(W

⊤
t Wzθ)S∥2

▶ This is in turn approximately

ht :=
4(n− p)∥θ∥2

n

{√
t

n(n− t)
(n− z)1{t≤z} +

√
n− t

nt
z1{t>z}

}
.
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Theoretical analysis of the variant
▶ Graphical illustration of the proof sketch:
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Theoretical analysis of the variant
▶ Graphical illustration of the proof sketch:
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▶ To prove estimation accuracy:
1. Understand the sharpness of peak of (ht : 1 ≤ t ≤ n− 1)

— this turns out to be the same as the univariate CUSUM curve
2. Control |Ht − H̃t| and |H̃t − ht| uniformly over t.
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Theoretical guarantees

Assumptions
(A1) Random design: xt ∼ Np(0, Ip) independently for t = 1, . . . , n

(A2) Asymptotic regime: n, z, p satisfies p < n and z/n→ τ ∈ (0, 1) and
(n− p)/n→ η ∈ (0, 1) as n→ ∞.

Theorem. Assume Conditions (A1) and (A2). Suppose that ∥θ∥2 ≤ 1, k ≤ p/2.
There exists c, C > 0, depending only on τ, η, such that if λ > cσ log p, then
asymptotically with probability 1, for all but finitely many n’s, we have

sin∠(v̂proj, θ) ≤ Cλ
√
k√

n∥θ∥2
.

Hence, ẑproj satisfies
|ẑproj − z|

n
≤ Cλ2

√
k log p√

n∥θ∥22
.
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asymptotically with probability 1, for all but finitely many n’s, we have

sin∠(v̂proj, θ) ≤ Cλ
√
k√

n∥θ∥2
.

Hence, a sample-splitting variant of ẑproj satisfies

|ẑproj − z|
n

≤ Cλ
√
k log p√
n∥θ∥2

.
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Optimality of the estimator

▶ Consistent estimation is possible when ∥θ∥2/σ ≫
√

k log2 p
n .

▶ This is essentially the SNR required to test for a change even if the
location of changepoint z is known. Let PX

z,β(1),β(2) be the distribution of Y

conditional on X , changepoint z and parameters β(1) and β(2). We test

H0 : θ = 0 vs H1 : θ ∈ Θp,k(ρ) := {θ : ∥θ∥2/σ ≥ ρ, ∥θ∥0 ≤ k}

▶ Define theminimax risk of testing

MX(k, ρ) := inf
ψ

{
sup
β∈Rp

PXz,β,β(ψ ̸= 0) + sup
β1,β2∈Rp

(β1−β2)/2∈Θp,k(ρ)

PXz,β1,β2
(ψ ̸= 1)

}
,

Theorem. Assume (A1), (A2), and k ≤ pα for some α < 1/2. There exists a

universal constant c > 0 such that if ρ ≤
√

c(1−2α)k log p
n , then

MX(k, ρ)
a.s.−−→ 1.
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Numerical studies



Comparison of variants
▶ Gaussian Orthogonal Ensemble design matrices with a single changepoint

at z = 0.3n
▶ θ(1) sampled as a Gaussian vector, θ(2) − θ(1) randomly generated k-sparse

vector with ℓ2 norm ρ.
▶ charcoalcorr and charcoal′corr uses a burn-in parameter of 0.1.

n p k ρ corr corr′ proj proj′ lasso
600 200 3 1 7.16 8.67 7.17 11.05 12.95

2 2.04 3.22 1.95 2.81 3.04
4 0.93 2.35 1.24 2.16 1.47

14 1 16.75 18.14 19.69 34.44 82.36
2 3.22 3.76 3.19 4.03 6.94
4 1.62 2.29 2.20 2.65 2.00

1200 400 3 1 6.61 7.13 6.20 7.63 12.14
2 1.64 1.86 1.96 2.40 3.39
4 1.11 2.06 0.94 2.06 1.43

20 1 16.70 19.51 11.01 14.94 101.81
2 2.90 2.98 3.92 4.11 10.12
4 1.86 2.50 1.64 1.91 3.20

Table: E|ẑ − z| estimated over 100 Monte Carlo repetitions.Tengyao Wang 22/29



Comparisons with other methods

▶ Existing methods in literature require sparsity of θ(r) for all r.
▶ We compare with

– The VPBS algorithm of Rinaldo et al., 2021
– A two-sided Lasso-based approach of Lee et al. (2016) (LSS) and Leonardi

and Bühlmann (2016) (LB)
– a two-stage refinement approach of Kaul et al. (2019) (KJF)

▶ We compare the performance of various methods in a single changepoint
estimation task with n = 1200, z = 360.
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Comparisons with other methods
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Model misspecification
▶ We focused on GOE design and Gaussian noise to facilitate theoretical

analysis
▶ Our methodology can be applied in more general settings
▶ We vary design to have i) Np(0,Σ) rows with Σ = (0.7|i−j|)1≤i,j≤p, or ii)

Rademacher entries
▶ We vary noise distribution to t4, t6, centred Exp(1) or Rademacher

distributions.
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Figure: Robustness to varying design matrices and noise distributions.
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Multiple changepoints

▶ We use charcoal in conjunction with NOT (Baranowski et al. (2019) for
multiple changepoint estimation.

▶ We consider two simulation settings
(M1) n = 1200, p = 200, ν = 3,

(z1, z2, z3)/n = (0.2, 0.55, 0.75),
(∥θ(1)∥2, |θ(2)∥2, |θ(3)∥2) = ρmin × (1, 1.5, 2),
∥θ(1)∥0 = ∥θ(2)∥0 = ∥θ(3)∥0 = k.

(M2) n = 2400, p = 400, ν = 4,
(z1, z2, z3, z4)/n = (0.3, 0.55, 0.75, 0.9),
(∥θ(1)∥2, |θ(2)∥2, |θ(3)∥2, |θ(4)∥2) = ρmin × (1, 1.15, 1.45, 2.18),
∥θ(1)∥0 = ∥θ(2)∥0 = ∥θ(3)∥0 = ∥θ(4)∥0 = k.
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Multiple changepoint
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Multiple changepoint
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Figure: Histogram of estimated changepoint locations in four settings.
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Summary

▶ It is possible to estimate sparse changes in high-dimensional regression
coefficients, even if the coefficients themselves are dense.

▶ Use complementary sketching to eliminate nuisance parameter.
▶ Implementation available in github.com/gaofengnan/charcoal/

▶ Main references:

Gao, F. and Wang, T. (2022) Two-sample testing of high-dimensional linear
regression coefficients via complementary sketching. Ann. Statist., 50,
2950–2972.

Gao, F. and Wang, T. (2022+) Sparse change detection in high-dimensional
linear regression. Preprint, arxiv:2208.06326.
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Thank you!
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