Ensemble Kalman inversion ABC

Richard Everitt

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Animal populations

Natural Environment Research Council

Electroencephalogram (EEG) time-series

Individual-based models (IBMs)

ABC-MCMC

• Approximate Bayesian computation

 \bullet For the case where f cannot be evaluated pointwise at θ , use the ABC likelihood

$$l_{\text{ABC}}(y|\theta) = \int_{y} f(y|\theta) K_{\epsilon}(S(y_{\text{obs}})|S(y)) dy$$

- l_{ABC} is estimated, $\hat{l}_{ABC}(y | \theta)$, through using simulations $y \sim f(\cdot | \theta)$.
- **ABC-MCMC**. At iteration *i*:
 - $\theta^* \sim q\left(\cdot \mid \theta_i\right)$, and for $j = 1: M, y_{i+1,j}^* \sim f\left(\cdot \mid \theta^*\right)$
 - With probability

$$1 \wedge \frac{p(\theta^*) \frac{1}{M} \sum_{j=1}^{M} K_{\epsilon} \left(S(y) \mid S(y_{i+1,j}^*) \right)}{p(\theta_i) \frac{1}{M} \sum_{j=1}^{M} K_{\epsilon} \left(S(y) \mid S(y_{i,j}^*) \right)}$$

- let $\theta_{i+1} = \theta^*$ and for j = 1 : M, $y_{i+1,j} = y_{i+1,j}^*$.
- otherwise let let $\theta_{i+1} = \theta_i$ and for j = 1: M, $y_{i+1,j} = y_{i,j}$.

ABC-MCMC properties

- Efficiency of ABC-MCMC depends on controlling the variance of the likelihood estimator.
- Theory suggests to ensure $\mathbb{V}\left[\log \hat{l}_{ABC}\left(y \mid \theta\right)\right] \approx 3$.
- To achieve this, with $d_S = \dim S(y)$ and small ϵ , we need the number of simulations M to be exponential in d_S .

$$l_{\text{ABC}}(y|\theta) = \int_{y} f(y|\theta) K_{\epsilon} \left(S(y_{\text{obs}})|S(y)\right) dy$$

Prangle, Everitt and Kypraios, A rare event approach to high dimensional Approximate Bayesian computation, 2018.

Sherlock, Thiery, Roberts and Rosenthal, On the efficiency of pseudo-marginal random walk Metropolis algorithms, 2015.

Rare event ABC

- Rare event ABC (Prangle, Everitt and Kypraios, 2018)
 - reparameterise the simulator
 - instead of using $y \sim f(\cdot \mid \theta)$
 - call $u \sim \phi$ then take $y = G(\theta, u)$, where we can evaluate ϕ pointwise and G is a deterministic function.
 - Estimate $l_{ABC}(y|\theta)$ with an SMC sampler with a decreasing sequence of tolerances $\infty = \epsilon_0 > \ldots > \epsilon_T = \epsilon$.
 - Cost of stabilising the variance of the likelihood estimator changes to $O\left(d_s^2\right)$.
 - Requires MCMC moves for exploring *u*-space.
 - Not possible for IBMs.

$$l_{\text{ABC}}(y|\theta) = \int_{y} f(y|\theta) K_{\epsilon} \left(S(y_{\text{obs}})|S(y)\right) dy$$

SMC samplers recap

• SMC sampler with annealing:

- p is a prior and l a likelihood
- iterate from t = 0: T with target distribution at iteration t $\pi_t(x) \propto p(x) \, l^{\alpha_t}(x)$ with $0 = \alpha_0 < \ldots < \alpha_T = 1$
- a collection of importance points is iteratively reweighted, resampled and moved, as α_t changes.

Iterative ensemble Kalman inversion

Assume that

$$l(x) = (2\pi)^{-d_x/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2} \left(y_{\text{obs}} - H(x)\right)^T \Sigma^{-1} \left(y_{\text{obs}} - H(x)\right)\right)$$

Use the sequence of targets

$$\pi_t(x) = p(x) l^{\alpha_t}(x).$$

• We have

$$l^{\alpha_t}(x) = (2\pi)^{-\alpha_t d/2} \det(\Sigma)^{-\alpha_t d/2} \exp\left(-\frac{1}{2} \left(y_{\text{obs}} - H(x)\right)^T \left(\Sigma/\alpha_t\right)^{-1} \left(y_{\text{obs}} - H(x)\right)\right)$$

Iterative ensemble Kalman inversion

• Like an SMC sampler, iterative EnKI performs iterative updates to move from target t to t+1. We use

$$\pi_{t+1}(x) \propto \pi_t(x) l^{\alpha_{t+1}-\alpha_t}(x)$$

At each iteration an update is performed using the likelihood

$$l^{\alpha_{t+1}-\alpha_t}(x) \propto \exp\left(-\frac{1}{2}\left(y_{\text{obs}} - H(x)\right)^T \left(\Sigma/\left(\alpha_{t+1} - \alpha_t\right)\right)^{-1} \left(y_{\text{obs}} - H(x)\right)\right)$$

- The "ensemble Kalman" idea is to:
 - suppose that $\pi_t(x)$ is Gaussian;
 - suppose that l(x) (and hence that $l^{\alpha_{t+1}-\alpha_t}(x)$) is linear-Gaussian;
 - use conjugate Bayesian analysis to work out what the mean and covariance of $\pi_{t+1}(x)$ would be when the Gaussian $\pi_t(x)$ is updated with the linear-Gaussian $l^{\alpha_{t+1}-\alpha_t}(x)$;
 - represent $\pi_t(x)$ and $\pi_{t+1}(x)$ with Monte Carlo points, and construct updates such that their sample means and covariances match the analytic versions.

Iterative ensemble Kalman inversion

• Begin by simulating points from the prior. For j = 1:M

$$x^{(j)} \sim p$$
.

- Perform an ensemble Kalman update of these points at each iteration.
- At iteration t + 1, for j = 1 : M

$$x_{t+1}^{(j)} = x_t^{(j)} + \hat{K}_{t+1} \left(y_{\text{obs}} - \tilde{y}_{t+1}^{(j)} \right)$$

with

$$\tilde{y}_{t+1}^{(j)} \sim \mathcal{N}\left(h_t^{(j)}, \left(\alpha_{t+1} - \alpha_t\right)^{-1} \Sigma\right)$$

where $h_t^{(j)} = H\left(x_t^{(j)}\right)$ and

$$\begin{split} \hat{K}_{t+1} &= \hat{C}_t^{x_t h_t} \left(\hat{C}_t^{h_t h_t} + \left(\alpha_{t+1} - \alpha_t \right)^{-1} \Sigma \right)^{-1} \\ \hat{C}_t^{y_t h_t} &= \frac{1}{M-1} \sum_{j=1}^M \left(x_t^{(j)} - \frac{1}{M} \sum_{k=1}^M x_t^{(j)} \right) \left(h_t^{(j)} - \frac{1}{M} \sum_{k=1}^M h_t^{(j)} \right)^T \\ & \hat{C}_t^{h_t h_t} \frac{1}{M-1} \sum_{j=1}^M \left(h_t^{(j)} - \frac{1}{M} \sum_{k=1}^M h_t^{(j)} \right) \left(h_t^{(j)} - \frac{1}{M} \sum_{k=1}^M h_t^{(j)} \right)^T \end{split}$$

Normalising constants from IEnKI

• To obtain an estimate of $Z = \int_{X} p(x) l(x) dx$ we could use

$$\hat{Z} = \prod_{t=0}^{T-1} \frac{\widehat{Z_{t+1}}}{Z_t} \quad \text{where} \quad \frac{Z_{t+1}}{Z_t} = \int_{\mathcal{X}} p(x) \, l^{(\alpha_{t+1} - \alpha_t)}(x) \, dx$$

• Observation: the sequence of distributions used in IEnKI is not

$$p(x) \left(\mathcal{N} \left(y_{\text{obs}} \mid x, \Sigma \right) \right)^{\alpha_t}$$

it is

$$p(x)\left(\mathcal{N}\left(y_{\text{obs}} \mid x, \alpha_t \Sigma\right)\right).$$

- Approach:
 - use an ensemble-Kalman approximation of the ratio of normalising constants for the latter sequence of targets;
 - apply a correction to obtain an estimate of Z_{t+1}/Z_t .

Use in ABC

$$l_{\text{ABC}}(y|\theta) = \int_{y} f(y|\theta) K_{\epsilon}(S(y_{\text{obs}})|S(y)) dy$$

• Let

$$K_{\epsilon}\left(S(y_{\text{obs}}) \mid S(y)\right) = \mathcal{N}\left(S(y_{\text{obs}}) \mid S(y), \epsilon \mathbf{I}_{d_{S}}\right).$$

• Recall we set up IEnKI to estimate

$$Z = \int_{x} p(x) l(x) dx$$

- To estimate $l_{ABC}(y | \theta)$, we can use IEnKI:
 - simulate M points $f(y|\theta)$, then find S(y) for each;
 - perform IEnKI steps on each S(y) until we reach the desired target.
- Note:
 - \bullet we only need to simulate from f the same number of times as in standard ABC;
 - the IEnKI moves on the summary statistics.

IEnKI-ABC

- For each θ ...
- Simulate points from the model and take the summary for each. For j=1:M $y^{(j)} \sim f(\cdot \mid \theta) \qquad s^{(j)} = S(y^{(j)}).$
- Perform an ensemble Kalman update of these points for t = 0 : T 1.
- At iteration t + 1, for j = 1 : M

$$s_{t+1}^{(j)} = s_t^{(j)} + \hat{K}_{t+1} \left(s_{\text{obs}} - \tilde{s}_{t+1}^{(j)} \right)$$

where

$$\tilde{s}_{t+1}^{(j)} \sim \mathcal{N}\left(s_t^{(j)}, \left(\alpha_{t+1} - \alpha_t\right)^{-1} \epsilon \mathbf{I}_{d_S}\right)$$

and

$$\hat{K}_{t+1} = \hat{C}_t^{s_t s_t} \left(\hat{C}_t^{s_t s_t} + \left(\alpha_{t+1} - \alpha_t \right)^{-1} \epsilon \mathbf{I}_{d_s} \right)^{-1}$$

$$\hat{C}_t^{s_t s_t} \frac{1}{M - 1} \sum_{j=1}^{M} \left(s_t^{(j)} - \frac{1}{M} \sum_{k=1}^{M} s_t^{(j)} \right) \left(s_t^{(j)} - \frac{1}{M} \sum_{k=1}^{M} s_t^{(j)} \right)^{T}$$

Modelling animal populations

ABC simulation

IEnKI-ABC simulation

ABC simulation

IEnKI-ABC simulation

ABC-MCMC results

IEnKI-ABC-MCMC results

Conclusions

- An improved pseudo-marginal-style ABC-MCMC
 - scales to higher dimensions than ABC;
 - uses an IEnKI "correction" on simulations from the model IEnKI runs on the observation/summary statistic space (contrast to particle filter);
 - IEnKI can choose the sequence of targets adaptively only one additional parameter to ABC.
- Software: ilike, ggsmc.