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Motivation

H=10.3m

L =6m

® Internal waves flow between layers of density-varying water (mean depths hy, hy),
in a tank of length L and total depth H = hy + ho.
e KdV equation models the internal wave profile u(s, t) (deviations from rest):

Ot + auus + Busss + cus = 0.

e Can we synthesise this PDE with measurements y;., = (y1,...,Yn) obtained at
wave gauges (labelled above)?
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Motivation and Goals

However, the KdV equation,

Ol + s + Busss + cus = 0,

is an idealised model of reality, and may not match the data.

Parameters: « drives nonlinear advection, 8 drives dispersion, and c is latent
advection: well-known and able to be calculated!

How to use the data to correct for model mismatch?

Let u, = u(s,nA:) (the model at some discretised time n). To correct for this
mismatch we will estimate the posterior p(up | y1:n, ).

How can we construct this filtering distribution?

5/35



Underlying dynamical process
® Use stochastic dynamics. Take the KdV equation:
Oru + auus + Busss + cus = o,
we have u:=u(s,t), s€Q, t [0, T].
® Model uncertainty with a Gaussian process (with 6 known):
Eo(s,t) ~ GP(0,8(t — t') - ko(s,5")),  ko(s,s") = p” exp(—|ls — s'[|?/(2¢%)).

In practise we need to discretize: we use FEM.

e Construct a mesh, Qj, with mesh-size h: discrete
approximation to €.

® Use finite elements on the mesh €y,
u(s, nA¢) = > M1 uidi(s).
® Hat-functions = ¢i(s;) = Jj;.

® FEM coefficients u(t) = (u1(t),. .., un,(t)). FEM (from Bakka, H. (2019),
arXiv:1803.03765).
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Underlying dynamical process: an (implied) prior distribution

® Time discretization: let u, = (u1(nA;), ..., un,(nA¢)); use Crank-Nicolson for
stability.

® Important! We conduct inference over the basis function coefficients —
discrete representation of the process.

® So, on the basis function coefficients we have a Markov process:
M(up,up_1) =¢€", e" ~ N(0,A:G),

for Gjj = (@i, (ka(+, "), ¢j)). This is our discretized version of KdV!

® This provides the transition densities p(u, | u,—1, /), which in turn provides the
prior distribution p(u, | A).

This begs the question: how to embed data within this model structure?

7/35



Underlying dynamical process: an (implied) prior distribution

® Time discretization: let u, = (u1(nA;), ..., un,(nA¢)); use Crank-Nicolson for
stability.

® Important! We conduct inference over the basis function coefficients —
discrete representation of the process.

® So, on the basis function coefficients we have a Markov process:
M(up,up_1) =¢€", e" ~ N(0,A:G),

for Gjj = (@i, (ka(+, "), ¢j)). This is our discretized version of KdV!

® This provides the transition densities p(u, | u,—1, /), which in turn provides the
prior distribution p(u, | A).
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Model-data synthesis
With data y, € R, we write y, = Hu, + €.

® QObservation operator H : R — R"r.
® Noisy measurements &, ~ N (0, o2l).

And this gives the state-space model

M(up,up_1) =e€", e" ~N(0,A;G), (Transition)
yo=Hu,+e, €,~N(0,021). (Observation)

Compute the posterior p(up, | y1:n,/\) using nonlinear filtering methods: extended
Kalman filter (ExKF).
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Extended Kalman filtering
Let's start with p(us—1 | y1:n—1,A) = N(mp_1,C,_1). Then:

@ Prediction step:
m,, solves M(m,,m,_1) =0,

Co=3," (Jn1Crad] 1 + AG) I, T,

where J, = %(rﬁn, m,_1). So p(up | yi:n_1,A) = N (rir,, C,).

® Update step:
m, = fh, + (Hén)T (HEHT + 050,1 (yn — Hrn,)
C,=€,— (Hé,,)T (HénHT n aﬁl) T HE,.

Then P(Un | yl:m/\) = N(mna Cn)
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Aside: scaling to high dimensions

ExKF works for low-dimensional systems but is not scalable! How to scale the
method?

® To compute posterior p(up, | y1.n,/\) we use a low-rank Extended Kalman filter
(LR-ExKF).

® |dea: GP covariance matrices (typically) only need a few dominant modes
(eigenvector/value pairs) to describe the system. Leverage this inside of ExKF.

® LR-ExKF constructs approximate measure p(uy, | y1.n,A) = N(m,, L,L}),
m, € R™, L, € R™*k k < n,l.

e Low-rank approximation is optimal in the £? sense so UQ is sensible (not the case
with, e.g., EnKF).

!Connor Duffin et al. “Low-Rank Statistical Finite Elements for Scalable Model-Data Synthesis” .
Journal of Computational Physics (Aug. 2022).
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Case study: KdV experimental data
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Case study: experimental data

Recall the experimental setup introduced in the first slide:

H=10.3m

L =6m

Apply statFEM to compute posterior p(u, | y1:n, ) given the observations at each
timestep. Observations y, = (u)'¢1, u¥WVC2 W&s) taking each of the nt = 1001
timesteps for 0 < t < 300 s.
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Case Study: internal waves
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Case study: internal waves
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Case Study: Review and Conclusions

® Assimilated data with KdV equation: allows for physics-informed interpolator,
with an interpretable posterior distribution.

® Uncertainty quantification is sensible and enables the calibration of simpler
physical models with potentially sparse data.

® Next question: what if we don't know the observation operator?
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Extending statFEM to Unkown Observation
Operators
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Known Observation

Operator

Phenomena Mechanistic Model
0 = Hun(nA0) + 1, ® We know that statFEM gives us
transition densities of the form
: P(Un | un—lv/\)-
. Lo ® These are derived from mechanistic
e descriptions (PDEs).
Known observation operator for KdV
- WG; WG, WG;
e Classical. known Observation Model | | |
observation model. uxt) | 3 L m
_ p(xnlun) = N(Hu,,R), ety
® Can synthesise -
. hy
observed data with H:R™ — R™,
physical model
L =6m
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Unknown Indirect Observation Operator

What if observation operator is unknown?

® That is, what if y, = Gg(u,) + &5, for some learnable function Gy(-).

® Use neural nets to learn this embedding from unstructured data into known
mechanistic description.

® Mechanistic information used to identify the embedding: not to learn
approximations to solution fields.

® Example: process is recorded with video camera, multi-channel recordings are
taken (e.g., audio data).
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Unknown Indirect Observation Operator

What if observation operator is unknown?

® That is, what if y, = Gg(u,) + &5, for some learnable function Gy(-).

® Use neural nets to learn this embedding from unstructured data into known
mechanistic description.

® Mechanistic information used to identify the embedding: not to learn
approximations to solution fields.

® Example: process is recorded with video camera, multi-channel recordings are
taken (e.g., audio data).

How can we synthesise the phenomena with the mechanistic representation when we
do not have an observation model?
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Unknown observation operator: some examples

Measurement Phenomena Mechanistic Representation

WG WG, WGs

Example: Korteweg-de Vries equation:

[ T Ort + quus + Busss + cus = 0.

Observed internal wave.

Example: Gray-Scott equation:

Oru = D,V2u — wv® + F(1 — u),
drv = D,V2v + uv® — (F + k)v.

Observed species
concentrations. 19/35



Unknown Observation Operator

Phenomena Mechanistic
Representation

KdV equation:

Orutauus+Pusss+cus = 0.

® Observation operator can be approximated with deep neural networks.
® We posit an observation operator of the form:

p(yn’un) = ./\/'(Qd)(u,,), R)7 G:R™ — RXne,

® | earn this embedding of the data to observations of the mechanistic system in a

variational inference framework.
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®-DVAE

® Phenomenological data received through time: y;.n (e.g., video feeds).

® Encoded to latent mechanistic observations x;.p using a variational autoencoder

(VAE).

® Mechanistic representation embedded into latent space, driving latent stochastic

dynamics with statFEM.

Encoder
4o (-|y1:n)

t Pseudo-observations
Pu(Xn|un)
" Latent Dynamics
p(upUp—1,
Dynamic Parameters

p(A)
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®-DVAE: Probabilistic Model Structure

We propose the following hierarchical probabilistic model:

® Parameter prior: A ~ p(A).

® Transition density: u, |up—1,A ~ p(u, |us—1,\) (assumed known form).

® Pseudo-observations: x, | u, ~ p(x, | u,) (assumed known form).
® Decoder distribution: y, | x, ~ py(yn | Xn)-

Following VAEs, we also introduce the “encoder” variational approximation,
9o (x1:nly1:n) = N (g, 04), and the parameter posterior p(A | y1:n) = gr(A).
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®-DVAE: Probabilistic Model Structure

We propose the following hierarchical probabilistic model:

® Parameter prior: A ~ p(A).

® Transition density: u, |up—1,A ~ p(u, |us—1,\) (assumed known form).

® Pseudo-observations: x,, | u, ~ p(x, | u,) (assumed known form).

® Decoder distribution: y, | x, ~ py(yn | Xn)-
Following VAEs, we also introduce the “encoder” variational approximation,
9o (x1:nly1:n) = N (g, 04), and the parameter posterior p(A | y1:n) = gr(A).

How can we conduct joint parameter inference over {A, 6, ¢}?
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®-DVAE: Variational Lower Bound

® Encoding, decoding, and model parameters are all jointly learnt through
optimising a variational lower bound.

® Evidence lower bound provides a tractable target for optimisation:

PG(Y1:N!X1:N)

lo ) > E lo
8 Py1w) = Eayaniyin) { s qe(X1:n]y1:n)

ar(N)

+ Eq, [mgp(xm A) + log 2O ” .

® First term: encoder/decoder. Second term: pseudo-observations

p(xlzN | /\) = /p(ul:Naxl:N | /\) dul:N-

Marginalising over the dynamics acts as a “physics informed regulariser”. Third
term: variational parameter posterior KL divergence.
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®-DVAE: Case studies



®-DVAE: Simulation Studies

® We now go through a selection of simulation studies using ®-DVAE.
® We look at (variational) parameter inference and filtering inference, p(ui.p|X1:n)-

® We look at 2 particular systems: the classic Lorenz-63 system, and the (hopefully,
now-familiar) KdV equation.

® We simulate synthetic data consisting of velocity fields, for the Lorenz-63 case,
and video data, for the KdV case. These are our yi.pn.

® We aim to learn the mapping from y1.;y — X1.n, thus inferring the latent state up,
conditioned on yi.,.
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Lorenz-63 Dynamical System: lllustrative Example

Data yj.)y are simulated velocity field measurements, which are modulated by the first
dimension of a latent stochastic Lorenz-63 system:

duy = —ouy +our +dwy, dupy = —uiuz + rup — up + dwo,  dus = uiup — bus + dws,
so now A = o, p(N) = N(30,5%), and gr(A) = N (pr, 03%).

Latent Dynamics: uy.y Pseudo-Observations: X1-N Velocity Field: yx

. X

Uy
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Lorenz-63: State and Parameter Inference
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Left: “trace plot” of parameter variational distribution gx(A) = N(ux,03), with mean (blue)
and +2 standard deviations (blue fill). Right: filtering inference for latent states uy.p, where
the filtering distribution p(u,|x1.,) is plotted with the ground truth ut™e.
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Lorenz-63:

Rolling Out Beyond Training
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“Rollout”: training time indicated with grey-fill, with (left) showing samples generated with the
prior (left), and the posterior (right) variational distribution g(+).
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KdV: Learning the Observation Operator and Drag Coefficient

® In this final example we return to KdV: we generate synthetic video data (a
sequence of images), giving our y1.p, from a governing KdV equation:

Ot + auuy + Busx + vu = .

We jointly estimate the embedding and the drag coefficient v, so A = v,
p(A) = LN(2,0.52), qA(A) = LN (115, 02).
® Weakly-informative log-normal prior for the drag coefficient as v > 0.
® Encoding and decoding networks are MLPs with 3 hidden layers of width 128.
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KdV: Learning the Observation Operator and Drag Coefficient

i Pseudo-observations
Po(Xn|un)
’ Latent Dynamics
T’(Un\unfu
Dynamic Parameters
p(A)
A reminder: video frames y;.y are encoded to pseudo-observations x;.n of a latent dynamical
system with a known transition density p(u, | u,—1,A). ®-DVAE infers the encoder g(-), the

decoder py(- | y1:n), and parameters g (-).
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KdV: Results with drag coefficient estimation
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Results for KdV with drag: (left) comparison of prior and variational posterior for model
parameter v = 1. Right: latent filtering distribution for prior and posterior parameter estimates.
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Conclusions

Statistical FEM construction allows for the construction of physics-informed
interpolators which naturally include nonstationarity.

Enables interpolation and inference in sparse data settings.

Interpretable and relatively robust framework to conduct inference with some
latent dynamical process.

®-DVAE enables the use of such methods when the mapping to observations is
not known, and, when the parameters may be uncertain.

Additional work on Langevin dynamics samplers for static problems (Akyildiz
et al.).

Current work focusses on applications (shallow water flows) and on generalising
the framework to enable parameter estimation.
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Thanks!
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