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Figure: Trekking example: the beginning of the infinite tree, T
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Figure: Trekking example: the beginning of the infinite staged tree, T
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Example of a DCEG
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Figure: DCEG of T
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The Dynamic Chain Event Graph

Definition
A Dynamic Chain Event Graph (DCEG) D = (V (D),E(D)) of a
staged tree T is a directed coloured graph with vertex set
V (D) = W , the set of positions of the staged tree T , together
with a single sink vertex, w∞, comprising the leaf nodes of T , if
these exist.
The edge set E(D) is given as follows: Let v ∈ w be a single
representative vertex of the position w . Then there is an edge
from w to a position w

′ ∈W for each child v
′ ∈ ch(v), v

′ ∈ w
′

in the tree T . When two positions are also in the same stage
then these and their edges are coloured in the same colour as
the corresponding vertices and edges in the tree T .
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DGEGs and Markov Processes
Let {Xn : n ∈ N} be a discrete-time Markov process on the state
space {a,b, c} with transition matrix P given by

P =

 0.2 0.3 0.5
0.5 0.3 0.2
0.5 0.3 0.2

 ,

and with initial distribution α = (0.4,0.4,0.2).
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Figure: Example 2: State-transition
diagram of a Markov process
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Figure: Example 2: DCEG
representation of a Markov process
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DGEGs and Markov Processes

A coin is tossed independently, with probability P(H) = λ of throwing
heads and probability P(T ) = 1− λ = λ̄ of throwing tails. The coin is
tossed until three heads have appeared when the game terminates.
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Figure: Example 3: DCEG representation of coin tossing example
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DCEG with Holding Times: Extended DCEG
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Figure: Variant of trekking example: infinite tree T ∗
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DCEG with Holding Times: Extended DCEG
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Figure: DCEG of T ∗
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Extended DCEG

Definition

An Extended DCEG D = (V (D),E(D)) is a DCEG with no
loops from a position into itself and with conditional holding
time distributions conditioned on the current stage, u, and the
next edge, euj , to be passed through:

Fuj(h) = P(Huj ≤ h),h ≥ 0,∀u ∈ U, j = 1, . . .mu. (1)

Hence Fuj(h) describes the time an individual stays in a
position w ∈ u before moving along the jth edge, ewj .

Lorna Barclay DCEGs



DCEGs
References

DCEGs
DCEGs and Semi-Markov Processes

Extended DCEG
Definition
An Extended DCEG is semi-Markov if

P(En,Hn ≤ h|W0,W1, . . . ,Wn,E0,E1, . . . ,En−1,H0,H1, . . . ,Hn−1)

= P(En,Hn ≤ h|Wn).

Hence, the joint probability of the nth holding time and the nth edge
passed along depends only on the current position of the individual.

As we are assuming a time-homogeneous DCEG we further have that

P(Hn ≤ h|Wn = w ,En = ewj ) = Fuj (h),w ∈ u,

and also
P(En = ewj |Wn = w) = πuj ,w ∈ u,

Therefore,

P(En = ewj ,Hn ≤ h|Wn = w) =

P(En = ewj |Wn = w)P(Hn ≤ h|Wn = w ,En = ewj ) = πujFuj (h).
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Learning the Parameters of a DCEG

We have associated with each stage u a CPV
πu = (πu1, πu2, .., πmu ) and we denote the full set of CPVs by π.

We can further attach a vector of conditional holding time
distributions (Fu1,Fu2, . . . ,Fumu ) to each stage u with parameters
λu = (λ1, λ2, . . . , λmu ). We call the full set of parameters λ.

We record the number of times the individuals pass along a
position w ∈ u and go along the jth edge, which we denote by
Nuj .

We let huj be the vector of conditional holding times for the
individuals which arrive at stage u and move along the jth edge
next and we let huji be the holding time of the ith pass along this
edge.
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Learning the Parameters of a DCEG

Then, immediately from the definition of a time-homogeneous
and semi-Markov Extended DCEG D, the likelihood
L(π, λ|N,h,D) of this random sample separates

L(π, λ|N,h,D) = L1(π|N,D)L2(λ|h,N,D).

∏
u∈U

Lu(πu|Nu,D) =
∏
u∈U

mu∏
j=1

πNuj
uj ,

∏
u∈U

Luj(λuj |huj ,Nuj ,D) =
∏
u∈U

Nuj∏
i=1

1
λuj

exp(− 1
λuj

huji).
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Learning the Parameters of a DCEG

It is immediate that if λ and π are believed to be a priori independent
so that

p(π, λ|D) = p1(π|D)p2(λ|D),

then the posterior density p(π, λ|h,N,D) separates into

p(π, λ|h,N,D) = p1(π|N,D)p2(λ|h,N,D)

and we can perform the updating of the CPVs, π, and the holding
time parameters, λ, without reference to the other.
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Figure: DCEG of trekking example

Description Holding time distribution Prior
Hrs until trek Hu01 ∼ Exp(λ0) λ0 ∼ IG(101

3 ,9
1
3)

Meet danger Nu1 ∼ Mult(πu1) πu1 ∼ Dir(101
3 ,101

3)

Hrs until danger met Hu11 ∼Weibull(λ1, k1) λk1
1 ∼ IG(101

3 ,9
1
3)

Hrs until finished trek/no danger met Hu12 ∼Weibull(λ3, k3) λk3
3 ∼ IG(101

3 ,9
1
3)

Avoid danger Nu3 ∼ Mult(πu3) πu3 ∼ Dir(4,4)

Hrs until avoids danger Hu31 ∼Weibull(λ2, k2) λk2
2 ∼ IG(4,3)

Hrs until injury Hu32 ∼ Exp(λ6) λ6 ∼ IG(4,3)

Happy to trek again Nu2 ∼ Mult(πu2) πu2 ∼ Dir(62
3 ,6

2
3)

Days until happy to trek Hu21 ∼ Exp(λ4) λ4 ∼ IG(62
3 ,5

2
3)

Hrs until decides to stop Hu22 ∼ Exp(λ5) λ5 ∼ IG(62
3 ,5

2
3)

Table: Prior distributions on CPVs and conditional holding times
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Figure: DCEG of trekking example
The paths are simulated by assuming that the individual meets
danger with probability 3

4 and avoids danger, if danger is met,
with probability 2

3 . The probability of trekking again is also 3
4 .

We simulate from Exp(5) to describe the time until trekking
We simulate from a Weibull(3,2) for the time until meeting
danger, from a Weibull(5, 2

3 ) for the time until the trek is finished
and from a Weibull(2, 1

2 ) to describe the time until danger is
avoided.
We choose Exp(10),Exp(3) and Exp(2) for the days until
trekking again again, the hours until deciding to stop and the
hours until injury.
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Figure: DCEG of trekking example

Description Posterior Mean
Hrs until trek λ0 ∼ IG(10101

2 ,5018.58) 4.97(4.67,5.29)

Meet danger πu1 ∼ Dir(7611
3 ,2591

3) 0.75(0.72,0.77)

Hrs until danger met λk1
1 ∼ IG(2591

3 ,2056.59) 2.50(2.35,2.66)

Hrs until finished trek/no danger met λk3
3 ∼ IG(7611

3 ,2128.16) 6.23(5.59,6.92)
Avoid danger πu3 ∼ Dir(176,81) 0.68(0.63,0.74)

Hrs until avoids danger λk2
2 ∼ IG(176,251.60) 4.16(3.10,5.60)

Hrs until injury λ6 ∼ IG(81,150.39) 1.88(1.51,2.34)

Happy to trek again πu2 ∼ Dir(7002
3 ,2342

3) 0.75(0.72,0.78)

Days until happy to trek λ4 ∼ IG(7012
3 ,7209.729) 10.29(9.56,11.08)

Hrs until decides to stop λ5 ∼ IG(2342
3 ,629.64) 2.69(2.37,3.06)

Table: Posterior distributions on CPVs and conditional holding times
with mean and standard deviationLorna Barclay DCEGs
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Semi-Markov Processes (Medhi, 1994)

Definition

Let {Yt , t ≥ 0} be a process with discrete state space and with
transitions occurring at times t0, t1, t2, . . . . Also, let {Xn,n ∈ N}
describe the state of the process at time tn and let Hn be the
holding time before transition to Xn. Hence Yt = Xn on
tn ≤ t < tn+1. If

P(Xn+1 = j ,Hn+1 ≤ t |X0,X1, ..,Xn,H1, ..,Hn) = P(Xn+1 = j ,Hn+1 ≤ t |Xn),

then {Xn,Hn} is called a Markov Renewal process and
{Yt , t ≥ 0} a semi-Markov process. Also, {Xn,n ∈ N} is the
embedded Markov chain with transition probability matrix
P = (pij), where pij = P(Xn+1 = j |Xn = i).
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Semi-Markov Processes (Medhi, 1994)

The semi-Markov kernel Q has ijth entry

Qij(t) = P(Xn+1 = j ,Hn+1 ≤ t |Xn = i).

We assume here that all Markov processes considered are
time-homogeneous and hence the above equations do not
depend on the index n. We write the semi-Markov kernel as

Qij(t) = pijFij(t),

where
Fij(t) = P(Hn+1 ≤ t |Xn+1 = j ,Xn = i).
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DCEGs and Semi-Markov Processes

Theorem

Let an Extended DCEG be simple and let no two children lead from
the same parent into the same child. Then the DCEG is a
semi-Markov process with state space W (the set of positions), with
conditional holding time distributions

Fwi wj (t) = P(Hwi j ≤ t),

whenever ewi j = e(wi ,wj ) exists and 0 otherwise, and with the entries
of the transition probability matrix of the embedded Markov Chain
{Xn,n ∈ N} given by

pwi wj = P(ewi j |wi ),

if the edge ewi j = e(wi ,wj ) exists and 0 otherwise. If the position w0 is
a source node then the state-transition diagram of the semi-Markov
process omits w0 and the initial distribution is given by πw0 . Otherwise
the initial distribution assigns probability 1 to w0.
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