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Figure: Trekking example: the beginning of the infinite tree, T
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Figure: Trekking example: the beginning of the infinite staged tree, T
Lorna Barclay DCEGs



DCEGs
References

DCEGs
DCEGs and Semi-Markov Processes

Example of a DCEG
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Figure: DCEG of T
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The Dynamic Chain Event Graph

Definition
A Dynamic Chain Event Graph (DCEG) D = (V (D),E(D)) of a
staged tree T is a directed coloured graph with vertex set
V (D) = W , the set of positions of the staged tree T , together
with a single sink vertex, w∞, comprising the leaf nodes of T , if
these exist.
The edge set E(D) is given as follows: Let v ∈ w be a single
representative vertex of the position w . Then there is an edge
from w to a position w

′ ∈W for each child v
′ ∈ ch(v), v

′ ∈ w
′

in the tree T . When two positions are also in the same stage
then these and their edges are coloured in the same colour as
the corresponding vertices and edges in the tree T .
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DGEGs and Markov Processes
Let {Xn : n ∈ N} be a discrete-time Markov process on the state
space {a,b, c} with transition matrix P given by

P =

 0.2 0.3 0.5
0.5 0.3 0.2
0.5 0.3 0.2

 ,

and with initial distribution α = (0.4,0.4,0.2).
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Figure: Example 2: State-transition
diagram of a Markov process
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Figure: Example 2: DCEG
representation of a Markov process
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DGEGs and Markov Processes

A coin is tossed independently, with probability P(H) = λ of throwing
heads and probability P(T ) = 1− λ = λ̄ of throwing tails. The coin is
tossed until three heads have appeared when the game terminates.

w0

P(T ) = λ̄
P(H) = λ

// w1

P(T ) = λ̄
P(H) = λ

// w2
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Figure: Example 3: DCEG representation of coin tossing example
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DCEG with Holding Times: Extended DCEG
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Figure: Variant of trekking example: infinite tree T ∗
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DCEG with Holding Times: Extended DCEG
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Figure: DCEG of T ∗
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Extended DCEG

Definition

An Extended DCEG D = (V (D),E(D)) is a DCEG with no
loops from a position into itself and with conditional holding
time distributions conditioned on the current stage, u, and the
next edge, euj , to be passed through:

Fuj(h) = P(Huj ≤ h),h ≥ 0,∀u ∈ U, j = 1, . . .mu. (1)

Hence Fuj(h) describes the time an individual stays in a
position w ∈ u before moving along the jth edge, ewj .
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Extended DCEG
Definition
An Extended DCEG is semi-Markov if

P(En,Hn ≤ h|W0,W1, . . . ,Wn,E0,E1, . . . ,En−1,H0,H1, . . . ,Hn−1)

= P(En,Hn ≤ h|Wn).

Hence, the joint probability of the nth holding time and the nth edge
passed along depends only on the current position of the individual.

As we are assuming a time-homogeneous DCEG we further have that

P(Hn ≤ h|Wn = w ,En = ewj ) = Fuj (h),w ∈ u,

and also
P(En = ewj |Wn = w) = πuj ,w ∈ u,

Therefore,

P(En = ewj ,Hn ≤ h|Wn = w) =

P(En = ewj |Wn = w)P(Hn ≤ h|Wn = w ,En = ewj ) = πujFuj (h).
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Learning the Parameters of a DCEG

We have associated with each stage u a CPV
πu = (πu1, πu2, .., πmu ) and we denote the full set of CPVs by π.

We can further attach a vector of conditional holding time
distributions (Fu1,Fu2, . . . ,Fumu ) to each stage u with parameters
λu = (λ1, λ2, . . . , λmu ). We call the full set of parameters λ.

We record the number of times the individuals pass along a
position w ∈ u and go along the jth edge, which we denote by
Nuj .

We let huj be the vector of conditional holding times for the
individuals which arrive at stage u and move along the jth edge
next and we let huji be the holding time of the ith pass along this
edge.

Lorna Barclay DCEGs



DCEGs
References

DCEGs
DCEGs and Semi-Markov Processes

Learning the Parameters of a DCEG

Then, immediately from the definition of a time-homogeneous
and semi-Markov Extended DCEG D, the likelihood
L(π, λ|N,h,D) of this random sample separates

L(π, λ|N,h,D) = L1(π|N,D)L2(λ|h,N,D).

∏
u∈U

Lu(πu|Nu,D) =
∏
u∈U

mu∏
j=1

πNuj
uj ,

∏
u∈U

Luj(λuj |huj ,Nuj ,D) =
∏
u∈U

Nuj∏
i=1

1
λuj

exp(− 1
λuj

huji).
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Learning the Parameters of a DCEG

It is immediate that if λ and π are believed to be a priori independent
so that

p(π, λ|D) = p1(π|D)p2(λ|D),

then the posterior density p(π, λ|h,N,D) separates into

p(π, λ|h,N,D) = p1(π|N,D)p2(λ|h,N,D)

and we can perform the updating of the CPVs, π, and the holding
time parameters, λ, without reference to the other.
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Figure: DCEG of trekking example

Description Holding time distribution Prior
Hrs until trek Hu01 ∼ Exp(λ0) λ0 ∼ IG(101

3 ,9
1
3)

Meet danger Nu1 ∼ Mult(πu1) πu1 ∼ Dir(101
3 ,101

3)

Hrs until danger met Hu11 ∼Weibull(λ1, k1) λk1
1 ∼ IG(101

3 ,9
1
3)

Hrs until finished trek/no danger met Hu12 ∼Weibull(λ3, k3) λk3
3 ∼ IG(101

3 ,9
1
3)

Avoid danger Nu3 ∼ Mult(πu3) πu3 ∼ Dir(4,4)

Hrs until avoids danger Hu31 ∼Weibull(λ2, k2) λk2
2 ∼ IG(4,3)

Hrs until injury Hu32 ∼ Exp(λ6) λ6 ∼ IG(4,3)

Happy to trek again Nu2 ∼ Mult(πu2) πu2 ∼ Dir(62
3 ,6

2
3)

Days until happy to trek Hu21 ∼ Exp(λ4) λ4 ∼ IG(62
3 ,5

2
3)

Hrs until decides to stop Hu22 ∼ Exp(λ5) λ5 ∼ IG(62
3 ,5

2
3)

Table: Prior distributions on CPVs and conditional holding times
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Figure: DCEG of trekking example
The paths are simulated by assuming that the individual meets
danger with probability 3

4 and avoids danger, if danger is met,
with probability 2

3 . The probability of trekking again is also 3
4 .

We simulate from Exp(5) to describe the time until trekking
We simulate from a Weibull(3,2) for the time until meeting
danger, from a Weibull(5, 2

3 ) for the time until the trek is finished
and from a Weibull(2, 1

2 ) to describe the time until danger is
avoided.
We choose Exp(10),Exp(3) and Exp(2) for the days until
trekking again again, the hours until deciding to stop and the
hours until injury.
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Figure: DCEG of trekking example

Description Posterior Mean
Hrs until trek λ0 ∼ IG(10101

2 ,5018.58) 4.97(4.67,5.29)

Meet danger πu1 ∼ Dir(7611
3 ,2591

3) 0.75(0.72,0.77)

Hrs until danger met λk1
1 ∼ IG(2591

3 ,2056.59) 2.50(2.35,2.66)

Hrs until finished trek/no danger met λk3
3 ∼ IG(7611

3 ,2128.16) 6.23(5.59,6.92)
Avoid danger πu3 ∼ Dir(176,81) 0.68(0.63,0.74)

Hrs until avoids danger λk2
2 ∼ IG(176,251.60) 4.16(3.10,5.60)

Hrs until injury λ6 ∼ IG(81,150.39) 1.88(1.51,2.34)

Happy to trek again πu2 ∼ Dir(7002
3 ,2342

3) 0.75(0.72,0.78)

Days until happy to trek λ4 ∼ IG(7012
3 ,7209.729) 10.29(9.56,11.08)

Hrs until decides to stop λ5 ∼ IG(2342
3 ,629.64) 2.69(2.37,3.06)

Table: Posterior distributions on CPVs and conditional holding times
with mean and standard deviationLorna Barclay DCEGs
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Semi-Markov Processes (Medhi, 1994)

Definition

Let {Yt , t ≥ 0} be a process with discrete state space and with
transitions occurring at times t0, t1, t2, . . . . Also, let {Xn,n ∈ N}
describe the state of the process at time tn and let Hn be the
holding time before transition to Xn. Hence Yt = Xn on
tn ≤ t < tn+1. If

P(Xn+1 = j ,Hn+1 ≤ t |X0,X1, ..,Xn,H1, ..,Hn) = P(Xn+1 = j ,Hn+1 ≤ t |Xn),

then {Xn,Hn} is called a Markov Renewal process and
{Yt , t ≥ 0} a semi-Markov process. Also, {Xn,n ∈ N} is the
embedded Markov chain with transition probability matrix
P = (pij), where pij = P(Xn+1 = j |Xn = i).
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Semi-Markov Processes (Medhi, 1994)

The semi-Markov kernel Q has ijth entry

Qij(t) = P(Xn+1 = j ,Hn+1 ≤ t |Xn = i).

We assume here that all Markov processes considered are
time-homogeneous and hence the above equations do not
depend on the index n. We write the semi-Markov kernel as

Qij(t) = pijFij(t),

where
Fij(t) = P(Hn+1 ≤ t |Xn+1 = j ,Xn = i).
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DCEGs and Semi-Markov Processes

Theorem

Let an Extended DCEG be simple and let no two children lead from
the same parent into the same child. Then the DCEG is a
semi-Markov process with state space W (the set of positions), with
conditional holding time distributions

Fwi wj (t) = P(Hwi j ≤ t),

whenever ewi j = e(wi ,wj ) exists and 0 otherwise, and with the entries
of the transition probability matrix of the embedded Markov Chain
{Xn,n ∈ N} given by

pwi wj = P(ewi j |wi ),

if the edge ewi j = e(wi ,wj ) exists and 0 otherwise. If the position w0 is
a source node then the state-transition diagram of the semi-Markov
process omits w0 and the initial distribution is given by πw0 . Otherwise
the initial distribution assigns probability 1 to w0.
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