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Abstract In the Seel-Strack contest (Seel and Strack, 2013), n agents each
privately observe an independent copy of a drifting Brownian motion which
starts above zero, and is absorbed at zero. Each agent chooses when to stop
the process she observes, and the winner of the contest is the agent who stops
her Brownian motion at the highest value. The objective of each agent is to
maximise her probability of winning the contest. Seel & Strack derived a Nash
equilibrium under a joint feasibility condition on the drift and the number of
players.

We consider a generalisation of the Seel-Strack contest in which the ob-
served processes are independent copies of some time-homogeneous diffusion.
This naturally leads us to consider the problem in cases where the analogue
of the feasibility condition is violated. We solve the problem via a change of
scale and a Lagrangian method. Unlike in the Seel-Strack problem it turns
out that the optimal strategy may involve a target distribution which has an
atom, and the rule used for breaking ties becomes important.

Keywords Seel-Strack contest; Nash equilibrium; Randomized strategies;
Lagrangian method; Diffusions; Skorokhod embedding problem

1 Introduction

Motivated by casino tournaments, Seel and Strack (2013) introduced a model
of a gambling contest between agents in which the aim of each agent is to
maximise the probability that her return is highest amongst the set of all
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agents. This problem provides a stylised model for a competition between
fund managers, the most successful of whom will be given funds to invest over
the next period or will get a bonus. The problem described in Seel and Strack
(2013) is simple to state but has very rich and subtle solutions.

In the Seel & Strack paper each agent privately observes an independent
copy of a process Y = (Yt)t≥0, where Y is a drifting Brownian motion absorbed
at zero with initial value y0 > 0, constant drift µ and constant diffusion co-
efficient σ > 0. The agent chooses a stopping time τ , and the stopped value
Yτ forms her entry into the contest. The agent who stops at the highest value
wins the contest, and the objective of each agent is to maximise the probability
of winning. In a contest between n agents, Seel & Strack imposed a feasibility
condition

µ < log

(
1 +

1

n− 1

)
σ2

2y0
. (1)

With this condition in force, they showed that there exists a Nash equilibrium
within the class of bounded stopping rules. A feature of the Nash equilibrium
is that it involves a randomised strategy, and the aim of each agent is to
choose a stopping time τ such that the final value of the stopped process
Yτ has distribution F . The Nash equilibrium is unique in the sense that the
target distribution F is unique, but in general there are many stopping times
τ such that Yτ has law F . (One of the insights of Seel and Strack (2013)
is that the problem can be reduced to a search over distributions, and then
that optimal stopping times can be identified as solutions of the Skorokhod
embedding problem (Skorokhod, 1965).) It turns out that F is the distribution
function of a continuous random variable (in particular it is atom-free) and
has a density which is strictly positive on a bounded interval, and is zero
elsewhere.

Seel and Strack (2013) solved the problem by giving a unique candidate
value function for the problem, and then proving this candidate is a martingale
under an optimal stopping rule for each agent. We adopt a different method
of proof based on a Lagrangian sufficiency theorem. Moreover, our first step is
to transform the problem into natural scale. This allows us to consider more
general models for the observed process, beyond drifting Brownian motion,
such that Y is a time-homogeneous diffusion. The change of scale method
explains the origin of the condition (1) and motivates us to study the problem
in which (1) fails.

The effect of using the scale function is to transform the original contest
into a simpler contest in which the observed processes are martingales. To
illustrate this procedure, consider the model used in Seel and Strack (2013). Let
Y be a drifting Brownian motion with non-zero drift µ and diffusion coefficient
σ, started at y0 > 0 and such that if Y hits zero then it is absorbed there. Then

the scale function is s(y) = σ2

2µ −
σ2

2µe
−2µy/σ2

(we have chosen a normalisation

such that s(0) = 0) and X = s(Y ) is a martingale diffusion with starting value
x0 = s(y0) which solves dXt = σ(1− 2µXt

σ2 )dWt, at least until it first hits zero,
which is an absorbing point. Observe that the state space of X is [0, s(∞)).
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Then it is easy to check that the condition (1) imposed by Seel & Strack is
equivalent to s(∞) > nx0. We are interested in the cases where s(∞) < nx0,
which are not covered in Seel and Strack (2013).

We introduce the mathematical model of this contest in Section 2. We
start with a contest in which the observed process is any non-negative time-
homogeneous diffusion. Then we explain how this contest is equivalent to a
contest in which the observed process is a diffusion in natural scale. In Section
3, we derive the Nash equilibrium using a technique based on the Lagrangian
sufficiency theorem. We will see that the choice of method used to break ties
matters. We solve the problem for two canonical ways of breaking ties. Finally,
in Section 4, we discuss two examples of Y and give explicit expressions for
the Nash equilibrium and an optimal stopping rule in each case.

Our results show that the strategy which the agent should use in a Nash
equilibrium is determined by both the mechanism for the breaking of ties and
the value of the upper bound of the state space of the diffusion in natural
scale. Moreover, there exist multiple Nash equilibria if the way to break the
ties has been improperly chosen. There are close links between the problem
and an all-pay auction with a bid cap (Che and Gale (1998)).

Acknowledgement: The authors would like to thank an anonymous referee,
in particular for his advice on relating this work to extant economic literature.

2 The model

In the contest, there are n participants with labels i ∈ I = {1, 2, . . . , n}.
Agent i privately observes an independent copy Y i of a non-negative time-
homogeneous diffusion process Y = (Yt)t≥0 with constant initial value Y0 = y0.
Assume the state space of Y is an interval J with endpoints {0, r ∈ (y0,∞]}.

If Y can reach an endpoint in finite time then we assume that the endpoint
is absorbing. Further, to exclude degeneracies, we assume that limt↑∞ Yt exists,
almost surely (and then limt↑∞ Yt ∈ {0, r}) and that P(limt↑∞ Yt = 0) > 0.
(We return to this point in Remark 1 below.) Examples include Brownian mo-
tion with drift, absorbed at zero, and exponential Brownian motion, provided
that the parameters are such that the process does not diverge to infinity, see
Example 2.

Let FY it = σ({Y is : s < t}) and set FY i = (FY it )t≥0. The space of strategies

for agent i is the space of FY i -stopping times τ i. Without loss of generality
we restrict attention to τ i ≤ Hi

0 = inf{t ≥ 0 : Y it = 0}. Note that τ i is not
necessarily assumed to be finite, that is, agent i may choose to never stop the
process Y i, in which case her entry is taken to be limt↑∞ Yt. Note also that
agent i observes her own process Y i, but not Y j for j 6= i; nor does she observe
the stopping times chosen by the other agents.

The winner of the contest is the one who stops at the highest value and
she wins unit reward, that is, ∀i ∈ I, agent i wins 1 if she stops at a time
τ i such that Y iτ i > Y jτj ∀j 6= i. If there are k agents who stop at the equal
highest value then these agents each win θ(k), where θ(·) : {1, 2, . . . , n} 7→ [0, 1]
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is some decreasing (deterministic) function with θ(1) = 1. Therefore agent i
with stopping value Y iτ i receives payoff

θ(k) · 1{Y i
τi

=maxj∈I Y
j

τj
},

where k =
∣∣∣{i ∈ I : Y iτ i = maxj∈I Y

j
τj

}∣∣∣.
In general, there are two canonical choices of the ways to break the ties. One

choice is to divide the prize evenly, that is, to set θ(k) = 1/k. This is equivalent
to randomly breaking ties. Another choice is to reward only outright wins, so
that no one wins if there is more than one player who stops at the highest
value and θ(k) = 1{k=1}. (There is a third, less natural choice which is to
set θ(k) = 1, or equivalently to reward joint winners with the full prize. In
this case the problem is degenerate, and a Nash equilibrium is obtained by all
agents stopping immediately, τ i = 0.) We will give explicit solutions for the
first two cases in Section 3.

Suppose that Y is a solution of the stochastic differential equation (Sde)
dYt = a(Yt)dWt + b(Yt)dt where b is continuous and a is continuous and
positive on the interior of J . Let s = s(y) be the scale function of Y . Then s is
a strictly increasing solution of a(y)2s′′(y) + 2b(y)s′(y) = 0. In general, s(J) is
an interval with endpoints {L,U} with −∞ ≤ L < U ≤ ∞ and there are four
sub-cases depending on whether either L or U is finite or not. In fact, by the
Rogozin trichotomy, our assumption that limYt exists rules out the case that
s(J) = R, and the assumption that P(limt↑∞ Yt = 0) > 0 rules out the case
that L = −∞. Since s is only determined up to affine transformation we may
set s(0) = 0, and then s(J) is an interval with endpoints {0, U} where U may
be finite or infinite. We could also insist that s(y0) = 1 but we do not choose
to do so.

Let X = s(Y ). Then X is a diffusion in natural scale on s(J) with starting
value x0 = s(y0), see Rogers and Williams (2000, Chapter V.7) or Karatzas
and Shreve (1991, Section 5.5). Set FX to be the natural filtration of X (and

by extension FXi to be the natural filtration of Xi = s(Y i)). Clearly τ is a
FY -stopping time if and only if τ is an FX stopping time.

Since s(·) is a continuous, strictly increasing function, the payoff of agent
i with stopping value Y iτ i can be rewritten as θ(k) · 1{Xi

τi
=maxj∈I X

j

τj
}, where

Xi
τ i = s(Y iτ i) and k =

∣∣∣{i ∈ I : Xi
τ i = maxj∈I X

j
τj

}∣∣∣ . This implies the equiv-

alence between the two contests in which players privately observe Y i and Xi

respectively, and the optimal stopping rule τ i is the same for both contests.
In particular, if we have a Nash equilibrium for which τ i is optimal for the
process Xi, then we also have a Nash equilibrium for the processes Y i. Hence,
without loss of generality we may reduce the problem to the case in which the
observed process is a copy of a local martingale diffusion.

One of the insights of Seel and Strack (2013) is that since the payoffs to
the agents are determined by the distribution of Xi

τ i rather than the stopping
time τ i itself, the problem of choosing the optimal stopping time τ i can be
reduced to a problem of finding the optimal distribution F iX ≡ F i of Xi

τ i .
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Then, once we have found the optimal target distribution F i, the remaining
work is to verify that there exists τ i such that Xi

τ i has law F iX . It follows that
Y iτ i has law F iY = F iX ◦ s.

The problem of finding τ i such that Xi
τ i has distribution F iX is related to

the classical Skorokhod embedding problem (Skorokhod, 1965).

Since X is a diffusion in natural scale, by the Dambis-Dubins-Schwarz
Theorem (e.g. Rogers and Williams (2000), Theorem 34.1, p. 64) X can be
expressed as a time change of Brownian motion. Then Xt = BΓt for some
Brownian motion B with B0 = x0 and an increasing functional Γt = [X]t.
Then, if F is the distribution function of any random variable on [0, U ] with
mean x0, there exists a FB-stopping time ρ such that ρ ≤ inf{v : Bv =
0 or Bv = U} and Bρ has distribution F . Such a ρ is known as a solution of
the Skorokhod embedding problem. In general there are many such solutions.
Then if we take τ = Γ−1 ◦ρ we find Xτ = Bρ ∼ F and τ is also an embedding
of FY = FX ◦ s in Y . Moreover τ is a FY -stopping time. If ρ < inf{v :
Bv = 0 or Bv = U} then it follows that τ is finite, and more generally
τ ≤ inf{v : Xv = 0 or Xv = U} = inf{v : Yv = 0 or Yv = r} ≤ ∞.

If U <∞ then (Xt∧inf{v:Xv=0 or Xv=U})t≥0 is a martingale and every candi-
date target distribution FX forX must have mean x0. However, (Xt∧inf{v:Xv=0 or Xv=U})t≥0
is a priori only a local martingale if U = ∞. Nonetheless, it is a super-
martingale, and hence cannot explode to U = ∞, and limtXt = 0 = limt Yt
almost surely. In this case, for any distribution F̃ with mean strictly less than
x0 with associated embedding τ̃ , there exists (F, τ) such that F has mean x0,
F ≤ F̃ and Xτ ∼ F . Clearly τ dominates τ̃ as a strategy, which means such
(F̃ , τ̃) must not be optimal.

Remark 1 For the duration of this remark relax the assumptions that limt↑∞ Yt
exists and that P(limt↑∞ Yt = 0) > 0. If limt↑∞ Yt does not exist then s(J) = R.
If limt↑∞ Yt exists and is equal to zero almost surely, then s(0) = −∞. In either
case lim supt↑∞ Yt = r with probability 1, and then any stopping rule which
involves stopping at Yt = ŷ for ŷ < r can be improved upon by waiting until
Y hits (ŷ + r)/2. Hence, either the optimal strategy is to wait until Y hits r
(either in finite time, or in the limit) or there is no optimal strategy.

In terms of the process in natural scale lim supt↑∞ Yt = r is equivalent to
lim supt↑∞Xt = U which is the case if and only if L = −∞. This is why we
have excluded the case.

Example 1 (Drifting Brownian motion.) Let Ỹ be a drifting Brownian motion
so that Ỹt = y0 + µt+ σWt, where y0 > 0, µ 6= 0 and σ > 0 are all constants.
Let H̃0 = inf{u : Ỹu = 0} and let Yt = Ỹt∧H̃0

. Then Y = (Yt)t≥0 is a drifting
Brownian motion absorbed at zero, and has state space J = [0,∞). The scale

function of both Ỹ and Y is s(y) = σ2

2µ −
σ2

2µe
−2µy/σ2

. Since s(0) = 0 and

s(∞) ≤ ∞, limt↑∞ Yt exists and P(limt↑∞ Yt = 0) > 0. In particular, if µ > 0

then s(∞) = σ2

2µ < ∞ and P(limt↑∞ Yt = 0) = 1 − s(y0)/s(∞) = e−2µy0/σ
2

,

whereas if µ < 0 then s(∞) =∞ and thus P(limt↑∞ Yt = 0) = 1.
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Drifting Brownian motion absorbed at zero is the process considered in the
original Seel and Strack paper, although they do not map it into natural scale.

Example 2 (Exponential Brownian motion.) Now suppose Y is an exponential
Brownian motion, so that Y solves dYt = µYtdt + σYtdWt, subject to Y0 =
y0 > 0, where y0, µ and σ are all constants. Y has state space (0,∞) and
scale function s(y) = yκ/κ for κ 6= 0 and s(y) = ln y for κ = 0, where
κ = 1−2µ/σ2. We assume κ > 0 to ensure that s(0) is finite so that limt↑∞ Yt
exists and P(limt↑∞ Yt = 0) > 0. If κ ≤ 0 then P(lim supt↑∞ Yt =∞) = 1 and
this example is degenerate.

The remainder of the paper is devoted to finding a Nash equilibrium for the
problem in the sense of a family of the optimal target distributions (F i)i∈I of
(Xi

τ i)i∈I . The family (F i)i∈I is a Nash equilibrium, if for each i ∈ I, given the

other agents choose to stop at τ j such that Xj
τj ∼ F j , the optimal stopping

rule of agent i is to choose any τ i such that Xi
τ i ∼ F i. We will say a Nash

equilibrium is symmetric if F i does not depend on i, and we will say that a
Nash equilibrium has no atoms in [0, U) if each F i has no atoms in [0, U).

Given that the contest is symmetric in the sense that each agent observes
a martingale process started from the same level x0, it seems natural to search
for Nash equilibria which are symmetric. Then, a simple argument over rear-
ranging mass show that provided θ(k) < 1 for some k ≥ 2 it is never optimal
for k agents to put mass at a same point x ∈ (0, U) — any of them could
benefit by modifying the target distribution to put a proportion N/(N + 1)
of this mass at (x + N−2) and a proportion 1/(N + 1) at (x − N−1) (where
N is a sufficiently large number) — and thus it is possible to deduce that any
optimal solution puts no mass at any point which belongs to (0, U). Notice
that this argument does not apply to the case where the mass point is U . In
fact, in Section 3 we will see that in some cases it is indeed optimal to put
mass at the upper bound U .

Remark 2 The fact that the Nash equilibrium has no atom at zero relies on the
fact that the situation is symmetric. If the observed processes have different
starting points, then the Nash equilibrium may have masses at zero for some
agents. In that case, for a Nash equilibrium, at least one agent must put no
mass at zero. We will only consider the symmetric case.

Remark 3 When U ≥ nx0 (for example when U = ∞) the solution to our
problem can be identified with the solution provided in Seel and Strack (2013).
In this case there exists a unique symmetric, atom-free Nash equilibrium.
Moreover, Seel & Strack proved that in this case any Nash equilibrium has
the property that it is symmetric and atom-free. Thus the Nash equilibrium
that has been found is the unique Nash equilibrium for our problem.

The novel part of our solution, beyond the fact that we consider general
diffusion processes, is that in the case U < nx0 we identify a Nash equilibrium.
This equilibrium may depend on the method used to break ties, but provided
this method has been chosen sensibly then there is a symmetric Nash equi-
librium, which may involve an atom at U . By analogy with the case studied
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in Seel and Strack we expect this to be the unique Nash equilibrium, but our
focus is on proving that such equilibria exist.

3 Equilibrium distribution

From Section 2, we know that the original contest can be reduced to a new
contest in which each agent i privately observes an independent copy Xi of a
continuous martingale diffusion process X = (Xt)t≥0 where X0 = x0 > 0 is a
constant. The process X is defined on [0, U ], where x0 < U ≤ ∞. Agent i who
stops at Xi

τ i receives payoff

θ(k) · 1{Xi
τi

=maxj∈I X
j

τj
},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I X
j
τj

}∣∣∣.
In this section we explicitly discuss the two canonical choices of θ(·), θ(k) =

1/k and θ(k) = 1{k=1} (and briefly, θ(k) = 1 in Remark 9). These correspond
to the cases where ties are broken randomly, and only outright wins earn the
prize respectively (and thirdly the case where all joint winners are rewarded
with the full prize). We give the candidate Nash equilibrium solution and
then verify the candidate Nash equilibrium using the Lagrangian sufficiency
theorem. We will see that the two different choices of θ(·) give us different
results.

Theorem 1 1) Suppose U ≥ nx0, and recall θ(k) ≤ 1 for all k. Then there
exists a symmetric Nash equilibrium for the problem that is atom-free and Xi

τ i

has law F (x), where for x ≥ 0

F (x) = min

{
n−1

√
x

nx0
, 1

}
.

2) Suppose x0 < U < nx0.
i) If θ(k) = 1{k=1} then there exists a symmetric Nash equilibrium for the

problem that has no atoms in [0, U) but an atom at U of size nx0−U
(n−1)U , and X

i
τ i

has law F such that for 0 ≤ x < U

F (x) =
n(U − x0)

(n− 1)U
n−1

√
x

U
.

ii) If θ(k) = 1/k then there exists a symmetric Nash equilibrium for the prob-
lem that has no atoms in [0, U) but an atom at U of size p = 1 − φ, where
φ ∈

(
0, n−1

√
U/(nx0)

)
solves Φ(ϕ) = 0. Here Φ(ϕ) = x0 (1− ϕn)− U(1− ϕ).

Further, Xi
τ i has law F such that for 0 ≤ x < U

F (x) = min

{
n−1

√
x

nx0
, φ

}
.
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Proof Let A be the set of pairs (F, p) where F : [0, U) 7→ [0,∞) is a non-
decreasing function null at 0, and p ∈ R+. An element of A is identified with a
measure ν on [0, U ] such that F (x) = ν ([0, x]) and p = ν ({U}). Let A(1, x0)
be the subset of A identified with probability measures with mean x0. Then
A(1, x0) is given by

A(1, x0) =

{
(F, p) ∈ A : lim

x↑U
F (x) + p = 1 and

ˆ
[0,U)

xF (dx) + Up = x0.

}

We seek a symmetric Nash equilibrium that has no atoms in [0, U). Since
there are no atoms in [0, U), a Nash equilibrium is identified with a pair
(G∗, q∗) ∈ A(1, x0) such that ∀(G, q) ∈ A(1, x0)

ˆ
[0,U)

G∗(x)n−1G∗(dx) +

[
n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k
]
q∗

≥
ˆ
[0,U)

G∗(x)n−1G(dx) +

[
n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k
]
q.

Fix agent i. Suppose that the other players all choose (F, p) as their target
measure. Then agent i aims to choose a feasible law of Xi

τ i , which corresponds
to a pair (G, q) ∈ A(1, x0), to solve

max
(G,q)∈A

ˆ
[0,U)

F (x)n−1G(dx) +

[
n∑
k=1

θ(k)Ck−1n−1p
k−1(1− p)n−k

]
q (2)

subject to
´
[0,U)

xG(dx) + Uq = x0 and
´
[0,U)

G(dx) + q = 1. Introducing

multipliers λ and γ for the two constraints, the Lagrangian for the optimisation
problem (2) is then

LF,p(G, q;λ, γ) =

ˆ
[0,U)

[
F (x)n−1 − λx− γ

]
G(dx) (3)

+

[
n∑
k=1

θ(k)Ck−1n−1p
k−1(1− p)n−k − λU − γ

]
q + λx0 + γ.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 1 If there exist G∗, q∗, λ∗ and γ∗ such that (G∗, q∗) ∈ A(1, x0),
G∗ is continuous on [0, U) and

LG∗,q∗(G∗, q∗;λ∗, γ∗) ≥ LG∗,q∗(G, q;λ∗, γ∗) (4)

for all (G, q) ∈ A, then (G∗, q∗) is a symmetric Nash equilibrium that has no
atoms in [0, U).
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Proof If (G, q) ∈ A(1, x0) then using the definition of the Lagrangian,

ˆ
[0,U)

G∗(x)n−1G(dx)+

[
n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k
]
q = LG∗,q∗(G, q;λ∗, γ∗).

Then, under the hypotheses of the proposition,

ˆ
[0,U)

G∗(x)n−1G∗(dx) +

[
n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k
]
q∗ = LG∗,q∗(G∗, q∗;λ∗, γ∗)

≥LG∗,q∗(G, q;λ∗, γ∗) =

ˆ
[0,U)

G∗(x)n−1G(dx) +

[
n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k
]
q.

Return to the proof of Theorem 1.

1) Suppose U ≥ nx0. On [0,∞) let G∗(x) = min
{

n−1
√
x/(nx0), 1

}
, q∗ =

0, λ∗ = 1/(nx0) and γ∗ = 0. It is immediate that (G∗, q∗) correspond to
a distribution with mean x0, and so it remains to verify (4) for the given
multipliers.

Since θ(k) ≤ 1 for all k we have that

n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1−q∗)n−k ≤
n∑
k=1

Ck−1n−1(q∗)k−1(1−q∗)n−k = (q + (1− q))n = 1,

and then

LG∗,q∗(G, q;λ∗, γ∗) ≤
ˆ
[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) + (1− λ∗U − γ∗)q + λ∗x0 + γ∗

=

ˆ
(nx0,U)

(
1− x

nx0

)
G(dx) +

(
1− U

nx0

)
q +

1

n
≤ 1

n
= LG∗,q∗(G∗, q∗;λ∗, γ∗).

Thus there exists a symmetric, atom-free Nash equilibrium.
2) Suppose x0 < U < nx0.

i) Set θ(k) = 1{k=1}. On [0,∞) let G∗(x) =
[
n(U−x0)
(n−1)U

n−1
√

x
U

]
· 1{x<U} +

1{x≥U}, q
∗ = nx0−U

(n−1)U , λ∗ =
[
n(U−x0)
(n−1)U

]n−1
U−1 and γ∗ = 0. Now we verify

that for these multipliers (4) holds and that (G∗, q∗) ∈ A(1, x0). The latter
property follows from the explicit form of G∗ and q∗. For the former, since
θ(k) = 1{k=1},

LG∗,q∗(G, q;λ∗, γ∗)

=

ˆ
[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) +

[
(1− q∗)n−1 − λ∗U − γ∗

]
q + λ∗x0 + γ∗

=

[
n(U − x0)

(n− 1)U

]n−1
x0
U

= LG∗,q∗(G∗, q∗;λ∗, γ∗).

Thus there exists a symmetric Nash equilibrium that has no atoms in [0, U).
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ii) Set θ(k) = 1/k. On [0,∞) let G∗(x) = min
{

n−1
√
x/(nx0), φ

}
·1{x<U}+

1{x≥U}, q
∗ = 1 − φ, λ∗ = 1/(nx0) and γ∗ = 0, where φ ∈ (0, 1) solves

Φ(ϕ) = 0 and Φ(ϕ) = x0ϕ
n − Uϕ + U − x0. Because Φ(0) = U − x0 > 0,

Φ(1) = 0, Φ′(0) = −U < 0, Φ′(1) = nx0 − U > 0 and Φ is convex on (0,∞),
there exists a unique solution to Φ (ϕ) = 0 such that ϕ ∈ (0, 1). Moreover,

since Φ(φ) = x0φ
n − Uφ + U − x0 = 0 and φ ∈ (0, 1) , U

nx0
= 1−φn

n(1−φ) =
1
n

(
1 + φ+ φ2 + · · ·+ φn−1

)
> φn−1 and thus φ < n−1

√
U/(nx0).

Now we verify that for these multipliers (4) holds and that (G∗, q∗) ∈
A(1, x0). Again, the latter fact follows from the explicit form of G∗ and q∗.
Then, since q∗ 6= 0 and θ(k) = 1/k, and since Ck−1n−1/k = Ckn/n,

n∑
k=1

θ(k)Ck−1n−1(q∗)k−1(1− q∗)n−k =
1

nq∗

n∑
k=1

Ckn(q∗)k(1− q∗)n−k =
1

nq∗
[1− (1− q∗)n]

=
1

n(1− φ)
(1− φn) =

U

nx0
,

and we have

LG∗,q∗(G, q;λ∗, γ∗)

=

ˆ
[0,U)

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) +

[
U

nx0
− λ∗U − γ∗

]
q + λ∗x0 + γ∗

=

ˆ
(nx0φn−1,U)

(
φn−1 − x

nx0

)
G(dx) +

1

n
≤ 1

n
= LG∗,q∗(G∗, q∗;λ∗, γ∗).

So that (4) holds. Thus there exists a symmetric Nash equilibrium that has
no atoms in [0, U).

Remark 4 In the case where U cannot be reached in finite time, if the optimal
target law places mass on U then this corresponds to the optimal stopping
rule τ =∞ for that part of the sample space where Xτ = U .

Remark 5 There are strong parallels between our model and an all-pay auc-
tion in which the stopped value of the process corresponds to the auction bid,
so that the choice over distributions for the stopped value of the process cor-
responds to the choice over distributions for the bid size. The upper bound on
the state space of the stochastic process in natural scale corresponds to the
bid cap.

It follows that the same Lagrangian methods can be applied to the all-pay
auction. The cost from making a bid then enters directly into the objective
function and the agent chooses any probability distribution on R+. In contrast,
in the context of gambling in contests there is no cost associated with the
bid in the objective function, but the constraint that the target probability
distribution has mean x0 introduces an extra term into the Lagrangian.

More precisely, consider a symmetric all-pay auction with a cap m on bids,
where 0 < m ≤ ∞. We assume that there are n bidders in the auction, and



Gambling in Contests modelled with diffusions 11

all bidders have the same valuation v of the prize. The Lagrangian for this
problem is

Lapa
F,p (G, q; γ) =

ˆ
[0,m)

[
vF (x)n−1 − x− γ

]
G(dx) (5)

+

[
v

n∑
k=1

θ(k)Ck−1n−1p
k−1(1− p)n−k −m− γ

]
q + γ.

Comparing with (3) we see that modulo a factor of v representing the size of
the winnings and a relabelling of parameters, the main difference is that in (5)
the multiplier λ on the bid level is set to 1/v.

In the case where m ≥ v or the case where m ∈ (v/n, v) and θ(k) = 1/k,
the equilibrium distribution in this all-pay auction is exactly the same as the
equilibrium distribution in our model with m = U and v = nx0. In the case
where m ∈ (0, v) and θ(k) = 1{k=1}, these two equilibrium distributions are

also the same with m = U and v = U
[

(n−1)U
n(U−x0)

]n−1
.

Remark 6 Expanding on the previous remark, for the most standard tie-breaking
rule, i.e. θ(k) = 1/k, Theorem 1 shows that if x0 < U < nx0, then there is
a “hole” in the support of the equilibrium distribution. Specifically, in equi-
librium, players stop with positive probability on [0, nx0φ

n−1], players stop
with zero probability on (nx0φ

n−1, U), and players stop at U with probability
1− φ. Similar equilibrium distributions with holes have been found in all-pay
auctions with bid caps, e.g., Che and Gale (1998), Dechenaux et al. (2006) or
Szech (2011) and also in wars of attrition, e.g., Hendricks et al. (1988) and
Damiano et al. (2012).

Remark 7 If x0 < U < nx0, θ(k) = 1{k=1} (so that only outright wins are
rewarded) and all other agents follow strategies which yield the optimal target
distribution stated in Case 2i) of Theorem 1, then whatever stopping rule

agent i chooses her expected payoff is equal to x0

U

[
n(U−x0)
(n−1)U

]n−1
. In the other

two cases, Cases 1) and 2ii) of the theorem, if other agents use the Nash
equilibrium strategy, then the agent achieves the same expected payoff as
the optimal strategy, provided she puts no mass in (nx0, U ] or (nx0φ

n−1, U)
respectively.

Remark 8 The choice of the tie-breaking rule is crucial in determining the Nash
equilibrium, at least in cases where the upper bound is sufficiently small. This
phenomena is also a feature of some variants of the all-pay auction in which
optimal bid distributuions include an atom, see for example Che and Gale
(1998), Dechenaux et al. (2006), Cohen and Sela (2007), and Szech (2011).

Szech (2011) studies a two-player all-pay auction in which each player is
restricted to choose her bid from the interval [0,m]. She introduces an asym-
metry whereby it is assumed that if both bidders submit the same bid, bidder
1 wins with probability α ∈ [0, 1], otherwise bidder 2 wins. In this auction,
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Szech shows that the Nash equilibrium depends on the choice of tie-braking
rule via (α,m), and takes one of three distinct forms.

Remark 9 If the way of breaking ties has not been chosen appropriately, then
there might exist multiple Nash equilibria. (In the context of all-pay auctions,
Cohen and Sela (2007) show that there may be multiple symmetric equilibria
even in the standard case θ(k) = 1/k, but there the phenomena arises from
the discreteness of the set of possible bids.)

Take θ(k) ≡ 1 (in which tied winners all win the full prize) as an example in
the context of this paper. It is clear that the stopping rule such that every agent
stops immediately is a symmetric Nash equilibrium and that the associated
target distribution consists of unit mass at x0 ∈ [0, U). Moreover, there exists
a symmetric Nash equilibrium that has no atoms in [0, U). This can be proved
similarly to the proof of Theorem 1. In fact, if U ≥ nx0 then there exists a
symmetric Nash equilibrium for the problem that has no atoms and Xi

τ i has

law F (x), where F (x) = min
{

n−1
√
x/(nx0), 1

}
for x ≥ 0; if U < nx0 then

there exists a symmetric Nash equilibrium for the problem that has no atoms
in [0, U) but an atom at U of size (1 − φ̂), and Xi

τ i has law F such that

F (x) = min
{

n−1
√
x/(nx0), φ̂

}
for 0 ≤ x < U . Here φ̂ ∈ (0, 1) solves Φ̂(ϕ) = 0,

where Φ̂(ϕ) = Uϕn − nUϕ+ n(U − x0).

4 Examples

In this section, we give explicit expressions for the optimal target distribu-
tion and associated stopping time. The optimal stopping time is based on the
Azéma-Yor solution of the Skorokhod embedding problem (Azéma and Yor
(1979)). Note that any other solution for the Skorokhod embedding problem
(see Hobson (2011); Ob lój (2004) for a survey) can also be used to construct
an optimal strategy, but the Azéma-Yor solution is both relatively simple and
quite concrete.

4.1 Drifting Brownian motion

Suppose the diffusion process Y is a drifting Brownian motion absorbed at
zero and solves dYt = µdt+ σdWt where Y0 = y0 > 0, µ 6= 0 and σ > 0 are all
constants. Set γ = 2µ/σ2 6= 0. The scale function of Y is s(y) = 1

γ −
1
γ e
−γy.

Let X = s(Y ); then X is a diffusion in natural scale on [0, U) with starting
value x0 = s(y0), and U = s(∞). If µ > 0 then U = s(∞) = 1/γ, else if µ < 0
then U = s(∞) =∞.

Seel and Strack (2013) discussed the case where U > nx0, which is equiv-
alent to the condition (1) i.e. γ < 1

y0
log n

n−1 . Here we discuss the general
case.
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1) Suppose U ≥ nx0, that is, suppose γ ≤ 1
y0

log n
n−1 . Recall that θ(k) ≤ 1

for all k, then by Case 1) of Theorem 1, the optimal distribution of Xτ is

F (x) = min
{

n−1
√
x/(nx0), 1

}
for x ≥ 0. Define

ψ(x) =
1

1− F (x)

ˆ
[x,∞)

yF (dy) (6)

for x ≤ inf {x : F (x) = 1} and ψ(x) = x otherwise. Then ψ is the barycentre
function. Thus ψ(x) = x for x ≥ nx0, and for 0 ≤ x < nx0,

ψ(x) = x0

(
1−

(
x
nx0

)n/(n−1))
(

1−
(

x
nx0

)1/(n−1)) . (7)

The Azéma-Yor embedding of F in Brownian motion started at x0 = (1 −
e−γy0)/γ is τ = inf

{
t ≥ 0 : ψ(Xt) ≤ X̄t

}
, where X̄t = sups≤tXs.

We want to re-interpret this solution in terms of the drifting Brownian
motion Y . Set FY = F ◦ s so that FY (y) = 0 for y ≤ 0,

FY (y) =

(
(1− e−γy)

n(1− e−γy0)

)1/(n−1)

for y ∈
(

0,− 1

γ
log
(
1− n(1− e−γy0)

))
,

(8)
and FY (y) = 1 for y ≥ − 1

γ log (1− n(1− e−γy0)).

Then, since s is increasing, τ can be rewritten as τ = inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
where Ψ(y) := s−1(ψ(s(y))) is given by

Ψ(y) = − 1

γ
log

1− (1− e−γy0)

{
1−

(
(1−e−γy)
n(1−e−γy0 )

)n/(n−1)}
{

1−
(

(1−e−γy)
n(1−e−γy0 )

)1/(n−1)}
 (9)

if 0 ≤ y < − 1
γ log (1− n(1− e−γy0)) and Ψ(y) = y otherwise.

2) Suppose x0 < U < nx0, that is, suppose γ > 1
y0

log n
n−1 > 0. Assume

agents receive no reward if they are a tied winner so that θ(k) = 1{k=1}. By
Case 2i) of Theorem 1, the optimal distribution of Xτ has law F such that

F (x) = n(U−x0)
(n−1)U

n−1
√

x
U for 0 ≤ x < U and F (x) = 1 for x ≥ U . Then by the

definition of the barycentre function ψ in (6), ψ(x) = x for x > U and

ψ(x) =
x0(n− 1)− x

(
1− x0

U

)
n−1
√

x
U

n− 1− n(1− x0

U ) n−1
√

x
U

for x ∈ [0, U ]. (10)

Recalling that U = 1/γ and substituting s(y) = 1
γ (1− e−γy), s−1(x) =

− 1
γ log (1− γx) and (10) into the expressions FY = F◦s and Ψ(y) = s−1(ψ(s(y)))
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yields

FY (y) =
n

n− 1
e−γy0(1− e−γy)1/(n−1),

Ψ(y) = y0 −
1

γ
log

(
n− 1− (n− 1 + e−γy) n−1

√
1− e−γy

n− 1− ne−γy0 n−1
√

1− e−γy

)
,

for 0 ≤ y <∞. In particular, if n = 2 then

Ψ(y) = y +
1

γ
log
(
eγ(y0+y) − 2eγy + 2

)
.

Note that γy0 > log 2 by hypothesis, so that the term inside the logarithm is
positive.

Then τ = inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
is the Azéma-Yor optimal stopping rule

for the original contest. We have that limy↑∞ FY (y) < 1, so there is a non-zero
probability that τ =∞ and that the agent achieves an infinite entry into the
contest.

3) Again suppose γ > 1
y0

log n
n−1 but assume θ(k) = 1/k. The opti-

mal distribution F of Xτ is given by Case 2ii) of Theorem 1 as F (x) =

min
{

n−1

√
x
nx0

, φ
}

for 0 ≤ x < U and F (x) = 1 for x ≥ U , where U = 1/γ

and φ ∈
(

0, n−1

√
U
nx0

)
solves Φ(ϕ) = 0 with Φ(ϕ) = x0 (1− ϕn) − U(1 − ϕ).

Then, by the definition (6) of the barycentre function, for 0 ≤ x ≤ nx0φ
n−1,

ψ(x) is given by (7), for nx0φ
n−1 < x ≤ U we have ψ(x) = U , and for x > U ,

ψ(x) = x.

Let FY = F ◦ s. Then for y > 0, FY (y) = min

{
φ,
[

1−e−γy
n(1−e−γy0 )

]1/(n−1)}
.

Let Ψ(y) = s−1(ψ(s(y))). Then Ψ(y) is given by (9) if y ∈
[
0, s−1

(
nx0φ

n−1)]
with s−1

(
nx0φ

n−1) = − 1
γ log

(
1− nφn−1(1− e−γy0)

)
and Ψ(y) = ∞ other-

wise. The Azéma-Yor optimal stopping rule for the original contest is τ =
inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
. Again there is a non-zero probability that τ = ∞

and that the agent achieves an infinite entry into the contest.

4.2 Exponential Brownian motion

The above methods extend easily to any non-negative time-homogenenous
diffusion with state space an interval with endpoints {0, r ∈ (0,∞]} provided
the scale function s satisfies L = s(0) > −∞. Then we can normalise s so that
s(0) = 0. Depending on the value of U = s(r) we are in one of the cases of
Theorem 1. In each case, for the diffusion in natural scale the optimal target
law is given as in the theorem, and by the formula (6) for the barycentre ψ we
can construct an optimal stopping rule. The barycentre and the stopping time
are exactly as in Section 4.1. Finally, it remains to interpret these stopping
times as stopping times for the original process, and only at this stage do the
calculations look different to the drifting Brownian motion case.
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As a further example, now suppose agents privately observe independent
copies of an exponential Brownian motion Y . Suppose Y is a solution of dYt =
µYtdt+σYtdWt, where Y0 = y0 > 0, and y0, µ and σ are all constants. In light
of the discussion in Example 2, we assume µ ∈ (−∞, σ2/2). The scale function
of Y is s(y) = yκ/κ, where κ = 1− 2µ/σ2 and κ > 0 . Let X = s(Y ); then X
is a diffusion in natural scale on (0,∞) with starting value x0 = s(y0).

In this case U = s(∞) =∞ and trivially U ≥ nx0. Provided that θ(k) ≤ 1
for all k, then by Case 1) of Theorem 1, the optimal distribution of Xτ is

F (x) = min
{

n−1
√
x/(nx0), 1

}
for x ≥ 0 and the barycentre function ψ is the

same as shown in (7). The the optimal law of Y is FY = F ◦ s where for y ≥ 0

FY (y) = min

{
1,

(
y

y0

)κ/(n−1)
n−1/(n−1)

}

Using the Azéma-Yor embedding one solution is τ = inf
{
t ≥ 0 : Ψ(Yt) ≤ Ȳt

}
,

where

Ψ(y) = y0

(
1−

(
yκ

nyκ0

)n/(n−1))1/κ(
1−

(
yκ

nyκ0

)1/(n−1)
)−1/κ

if 0 ≤ y < y0n
1/κ and Ψ(y) = y otherwise. Note that limy↑y0n1/κ Ψ(y) = y0n

1/κ

and hence τ ≤ inf
{
u : Yu = y0n

1/κ
}

.

A Derivation of the equilibrium distribution

This section is devoted to the derivation of the optimal multipliers, and the candidate Nash
equilibrium distributions given in Theorem 1.

Recall the definition of the Lagrangian LF,p(G, q;λ, γ) for the optimisation problem (2).

Let l(p) =
∑n
k=1 θ(k)Ck−1

n−1p
k−1 (1− p)n−k − λU − γ and LF (x) = F (x)n−1 − λx− γ, then

LF,p(G, q;λ, γ) =

ˆ
[0,U)

LF (x)G(dx) + l(p)q + λx0 + γ.

In order to have a finite optimal solution we require LF (x) ≤ 0 on [0, U) and l(p) ≤ 0. Let
DF be the set of (λ, γ) such that LF,p(·, ·;λ, γ) has a finite maximum. Then DF is defined
by

DF = {(λ, γ) : LF (x) ≤ 0 ∀x ∈ [0, U) and l(p) ≤ 0}.

In order to reach the maximum value, we require G (dx) = 0 when LF (x) < 0 and
q = 0 if l(p) < 0. This means that for (λ, γ) ∈ DF the maximum of LF,p(·, ·;λ, γ) occurs at
(G∗, q∗) such that G∗(dx) = 0 when LF (x) < 0 and q∗ = 0 when l(p) < 0. Conversely we
expect that G∗(dx) > 0 when LF (x) = 0 and q∗ > 0 when l(p) = 0. If the Nash equilibrium
is symmetric then we must have G∗(x) = F (x) and q∗ = p, which means LG∗ (x) = 0 at
least when G∗(dx) > 0 and l(q∗) = 0 when q∗ > 0.

Observe that 0 ≤ Fn−1(0) ≤ γ so that if (λ, γ) ∈ DF then γ is non-negative. Because
LG∗ (x) = G∗(x)n−1−λx−γ, we have G∗(x) = n−1

√
λx+ γ at least when G∗(dx) > 0. Since

G∗ is non-decreasing and not constant we must have λ > 0. Set a = inf{x : G∗(x) > 0}
and b = sup{x : G∗(x) < (1− q∗)}. Since we are searching for G∗(x) which has no atom on
[0, U), we must have G∗(x) = n−1

√
λx+ γ on the whole of the interval [a, b).
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Since G∗ has no atom on [0, U), G∗(a) = 0 and hence λa + γ = 0, and by the non-

negativity of a and γ and the positivity of λ it follows that γ = 0 = a. Thus G∗(x) =
n−1
√
λx

on [0, b) for some λ > 0 and b ≤ U which we must find. Further, we must find q∗ ∈ [0, 1)
that solves l(q∗) = 0 when q∗ 6= 0.

For a feasible solution, G∗ and q∗ should satisfy
´
[0,U) xG

∗(dx) + Uq∗ = x0 and´
[0,U)G

∗(dx) + q∗ = 1. Thus to get G∗ and q∗ we should solve the following system of

equations
x0 =

´
[0,b) xd

(
n−1
√
λx
)

+ Uq = b
n−1
√
λb− n−1

nλ
(λb)

n
n−1 + Uq = b

n
n−1
√
λb+ Uq,

1 =
´
[0,b) d

(
n−1
√
λx
)

+ q =
n−1
√
λb+ q,

l(q) =
∑n
k=1 θ(k)Ck−1

n−1q
k−1(1− q)n−k − λU = 0, if q 6= 0.

(11)
If q = 0 then from (11) we obtain b = nx0 and λ = 1/(nx0). Thus q = 0 is a feasible

solution if b = nx0 ≤ U and is not a feasible solution otherwise. Next we search for non-zero
q that is feasible.

i) Set θ(k) = 1{k=1}. Then the third equation in (11) can be reduced to (1−q)n−1−λU =
0 if q 6= 0. Thus for q 6= 0, (11) can be reduced to

λ =
(1− q)n−1

U
; b =

(1− q)n−1

λ
;x0 =

(1− q)n

nλ
+ Uq =

U (1− q)
n

+ Uq =
U + (n− 1)Uq

n
.

This gives us the optimal q∗ = nx0−U
(n−1)U

and then λ∗ =
[
n(U−x0)
(n−1)U

]n−1
U−1 and b∗ = U .

This gives us the G∗ given in the statement of the theorem.
ii) Set θ(k) = 1/k. Observe that we have shown

∑n
k=1

1
k
Ck−1
n−1q

k−1(1 − q)n−k =
1
nq

[1− (1− q)n] if q 6= 0 in the proof of Theorem 1. For q 6= 0, (11) can be reduced
to

λ =
1− (1− q)n

nUq
; b =

(1− q)n−1

λ
; (12)

x0 =
(1− q)n

nλ
+ Uq =

Uq(1− q)n

1− (1− q)n
+ Uq =

Uq

1− (1− q)n
. (13)

Let φ = 1− q then (13) can be rewritten as Φ(φ) = 0, where Φ(ϕ) = x0ϕn − Uϕ+ U − x0.
Since Φ is convex on (0, 1), we can find that there exists an solution φ to Φ(ϕ) = 0 such

that φ ∈ (0, 1) if and only if U < nx0. Moreover, such solution is unique. Denote φ∗ by this
solution if it exists.

Therefore, if U < nx0 then q∗ = 1−φ∗ and then λ∗ = 1/(nx0) and b∗ = nx0(1−q∗)n−1

using (12).
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