
Math Finan Econ (2007) 1:103–128
DOI 10.1007/s11579-007-0005-z

Valuing the option to invest in an incomplete market

Vicky Henderson

Received: 1 May 2007 / Revised: 24 July 2007 / Accepted: 15 August 2007 /
Published online: 29 September 2007
© Springer-Verlag 2007

Abstract This paper considers the impact of entrepreneurial risk aversion and incomple-
teness on investment timing and the value of the option to invest. A risk averse entrepreneur
faces the irreversible decision of when to pay a cost in order to receive a one-off investment
payoff. The uncertainty associated with the investment payoff can be partly offset by hedging,
but the remaining unhedgeable risk is idiosyncratic. Nested within our incomplete set-up is
the complete model of McDonald and Siegel (Q J Econ 101:707–727, 1986) which assumes
investment payoffs are perfectly spanned by traded assets. We find risk aversion and idiosyn-
cratic risk erode option value and lower the investment threshold. Our main finding is that
there is a parameter region within which the complete and incomplete models give differing
investment signals. In this region, the option is never exercised (and investment never oc-
curs) in the complete model, whereas the entrepreneur exercises the option in the incomplete
setting. Strikingly, this parameter region corresponds to a negative implicit dividend yield on
the payoff, and so this exercise behavior contrasts with conventional wisdom of Merton (Bell
J Econ Manage 4:141–183, 1973) for complete markets. Finally, in this parameter region,
increased volatility speeds-up investment and option values are not strictly convex in project
value, in sharp contrast to the conclusion of standard real options models.
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The real options theory of corporate investment, dating back to Myers [16], recognizes
that investment opportunities are options on real assets. Under the real options approach, the
investment timing decision is made to maximize option value. This decision depends crucially
upon the volatility of the project value, and a higher volatility leads to a manager waiting
longer to invest, since the option to wait is more valuable. In deriving such conclusions, the
literature assumes either the real asset is traded, or other assets perfectly span the risk of the
real asset. These assumptions result in a complete market model. The canonical models of
Brennan and Schwartz [3] and McDonald and Siegel [11] (see also Dixit and Pindyck [6])
amongst others, fit this description.

In reality, the assets underlying real options are not traded in capital markets, and other
assets may (at best) partially span risk. In this paper we investigate the impact of risk aversion
and incompleteness on investment timing and option value. As we shall show, this will
significantly alter the conclusions of the traditional complete real options models.

We consider a risk averse entrepreneur with exponential utility who can choose at any time
to undertake an irreversible investment project for a cost. We assume that the reward from
undertaking the project is a one-off payoff at the time of investment. This one-off investment
payoff is random and is not a traded asset, so there is unhedgeable or idiosyncratic risk
associated with waiting.

The entrepreneur does not make the decision to invest in isolation. He can also trade
in a risk-less bond and a risky asset which is correlated with the investment payoff. This
provides him with a hedging opportunity since he can offset some of the risk associated
with his unknown investment payoff. Despite hedging the market risk, the entrepreneur still
faces some remaining idiosyncratic risk. It is his aversion to such risk which will alter his
investment behavior in an incomplete market. The entrepreneur selects an investment time,
and a hedge position to maximize his expected utility of wealth, where his wealth consists
of the option payoff in addition to the value of his hedge portfolio. The formulation reflects
the entrepreneur’s behavior over an infinite horizon, as his portfolio choice after he exercises
the option is considered. It is a natural generalization of the benchmark complete market
real options framework, and leads to a certainty equivalent valuation of the real option and
investment threshold in closed form.

Comparative statics show the higher the entrepreneur’s risk aversion, or the lower the
correlation between the project value and hedging asset, the lower will be the investment
threshold and option value. A lower correlation means more idiosyncratic risk remains as
the project value fluctuates. This causes the risk averse entrepreneur to exercise at a lower
threshold to reduce uncertainty and lock-in a value for the investment payoff. Similarly, if
he is more risk averse, he prefers to act earlier since waiting involves facing idiosyncratic
risk. The rationale is that the entrepreneur resolves uncertainty when he exercises the option.
The explicit nature of our solution enables us to compare easily to the benchmark complete
model of McDonald and Siegel [11], and a model where the idiosyncratic risk is not priced.
Both are limiting cases of our model for a risk averse entrepreneur, either as correlation
between the investment payoff and risky asset approaches one, or as risk aversion tends to
zero.

The key contribution of our paper is to show the presence of risk aversion and idio-
syncratic risk gives rise to an additional parameter region within which both benchmark
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models recommend never exercising the option (to take advantage of potential rises in
the investment payoff) but our incomplete model gives a finite threshold at which the
option is exercised. The intuition is that when the entrepreneur is risk averse, there is an
additional incentive to exercise to avoid exposure to idiosyncratic risk, and in this new re-
gion, this effect dominates over the benefit from waiting. In fact, in this region, the benefit
from waiting arises from a negative implicit dividend yield on the investment payoff. Our
results can be compared with the conventional finding of Merton [14] that American call
options will only be exercised early when there are positive dividends. This is true in the
complete market, but in the incomplete setting the additional incentive to exercise to avoid
risk means it is possible to exercise early even with negative dividends. Since we find this
additional parameter region does not disappear in the limit as either correlation approaches
one or risk aversion approaches zero, we conclude that approximating with the benchmark
real options models when the entrepreneur is risk averse could lead to an incorrect deci-
sion. Further, we show that in the common parameter regime where exercise or investment
occurs under both the benchmark and incomplete models, exercising sub-optimally accor-
ding to either of the benchmark models can lead to an economically significant loss in
value.

Uncertainty increases the value of waiting and delays investment in complete market real
options models. In contrast, we find in the incomplete setting, the investment–uncertainty
relationship differs in the two parameter regimes. In the additional regime (where implicit
dividends are negative) we find that idiosyncratic risk can cause the investment threshold
and option value to fall with volatility. In this region, increased volatility speeds-up rather
than delays investment. This occurs because the value-decreasing impact of idiosyncratic
risk outweighs the value-increasing effect arising from a convex payoff. Additionally, in this
parameter region, the option value is not strictly convex in the project value.

We now briefly review the related literature. Miao and Wang [15] consider the impact
of incomplete markets on investment timing in a model with consumption and portfolio
allocations. In contrast to our setting, their entrepreneur maximizes exponential utility from
consumption and investment payoffs follow arithmetic Brownian motion.1 Whilst they are
able to study the effect of incomplete markets on consumption, our set-up remains much
closer to the canonical complete model of McDonald and Siegel [11] and Dixit and Pindyck
[6] by maximizing utility of wealth and using geometric Brownian motion.

In the case where investment results in a one-off payoff, Miao and Wang [15] show via
asymptotic expansions (complementing their numerical results) that incompleteness results
in earlier investment. However, we show that not only does idiosyncratic risk and risk aver-
sion speed-up investment, but that there is an additional range of parameters under which the
entrepreneur exercises the option. In the complete setting for the same parameter values, the
option would never be exercised. We also find that in this parameter region, the entrepreneur
exercises the option despite implicit dividends on the investment payoff being negative. In
addition, our set-up is tractable and leads to closed-form expressions which enable compa-
rative statics to be performed. Miao and Wang [15] also show investment may be delayed
due to incomplete markets when investment payoffs are delivered over time in flows rather
than in a lump-sum. We also mention the model of Hugonnier and Morellec [9] where the
focus is on agency issues and the effect of control challenges on manager behavior in an
incomplete setting. Their manager chooses the investment time but does not directly benefit
from exercise of the option, although he may be replaced if his exercise strategy deviates from

1 Miao and Wang [15] remark on how geometric Brownian motion would alter their results at least in the
simpler situation where there is no correlated asset with which to hedge.
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the optimal shareholder policy. Finally, we mention modeling analogies between investment
options in incomplete markets and the exercising of executive stock options when managers
cannot trade the stock.2

1 The investment problem and modeling assumptions

Consider an infinitely-lived, risk averse entrepreneur3 with exponential utility who can choose
to undertake an irreversible investment project with payoff Vτ at time τ for cost K .4 The
project value is not spanned by traded assets so markets are incomplete. Our entrepreneur
can also invest in risk-free bonds and the traded risky asset P correlated with the project
value V . The values V and P follow geometric Brownian motion processes

dVt

Vt
= νdt + ηdWt (1)

and
dPt

Pt
= µdt + σdBt (2)

where expected returns and volatilities ν, µ, σ, η are constants. Denote by ξ = ν
η

and λ = µ
σ

the instantaneous Sharpe ratios of V and P , respectively.
The driving Brownian motions B and W are correlated with ρ ∈ [−1, 1] and we can

write dW = ρdB + √
1 − ρ2dZ for some Brownian motion Z independent of B. The role

of trading in the risky asset P is that it enables the entrepreneur to hedge the market risk,
represented by Brownian motion B. The remaining risk generated by Z is unhedgeable and
represents idiosyncratic or private risk. When correlation is one, the asset P spans all risks,
so the model consisting of the project value V together with the risky asset P , is complete.
The entrepreneur faces idiosyncratic risk and incomplete markets provided |ρ| < 1.

If the entrepreneur exercises the option to invest at time τ , he pays the cost K and re-
ceives the one-off investment payoff Vτ , generated by the project. The random value V could
also be interpreted as the value received upon selling-on a finished project. To illustrate the
applicability of our framework, we give two examples. Consider first a biotechnology firm
specializing in research and development devoted to drug discovery. These technologies may
be of value to larger pharmaceutical companies. The biotech is a small company run by an
entrepreneur. The biotech could sell-on its drug technologies to larger companies, however,
it incurs research and development expenditures first. If the biotech sells its technologies, the
pharmaceutical pays the biotech the amount V , and subsequently develops and commercia-
lizes the technology. The value received by the biotech for drug technologies is not spanned

2 Ingersoll [10] considers a risk averse executive but concentrates on the marginal value of an option. In
contrast, we do not want to restrict ourselves to small quantities. The method relies on numerical approximations
in the case of American options. Earlier, Detemple and Sundaresan [5] examine a binomial model and focus
on the impact of a short sales restriction on valuation.
3 We consider a single owner-manager or entrepreneur to abstract from agency issues between the manager
and shareholders. However the model is easily adaptable to consider such agency issues. Shareholders are
well-diversified so their preferred investment timing is modeled via the benchmark model where idiosyncratic
risk is not priced (see Sect. 2). The manager is risk averse and his timing choice is reflected in the model of this
section. The analysis in the paper concerning the differences under the benchmark and utility-based model
can be interpreted to give conclusions on agency costs of incompleteness.
4 We immediately express all amounts in discounted units or equivalently take the risk-free bond as numeraire.
Hence the rates of return µ and ν are excess growth rates. Note this means we have a investment cost/strike
of K er t rather than the more common formulation of a constant strike.
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by traded assets and so the entrepreneur faces incomplete markets.5 A second example would
be a real estate developer who pays to construct buildings on land he owns, and then decides
when to sell-on the finished site. He receives a lump-sum payoff when he sells the property.
The developer cannot perfectly hedge risk from this fluctuating property value, and so faces
an incomplete market. Amongst many others, Titman [20], Quigg [18] and Grenadier [7]
treat applications of real options to real estate.

Let X θ denote the entrepreneur’s (discounted) wealth from his position in the risky asset
P and risk-free bond. This position arises for both investment and hedging purposes. Wealth
X θ has dynamics

dX θ = θt
dP

P
(3)

where θt denotes the holdings in the asset P . Prior to exercise of the option at τ , the en-
trepreneur’s holdings in the risky asset P are both for investment purposes and to provide
a partial hedge against the uncertain investment payoff. After τ , the entrepreneur solves a
Merton [13] style portfolio choice problem to invest his total wealth.

We can now formulate the objective of the entrepreneur. His problem is to find

I∗ = sup
(τ,θ)∈A

E
[
e−ζ τU

(
X θτ + (Vτ − K )+

) |X θt = x, Vt = v
]

(4)

where U (x) = − 1
γ

e−γ x is exponential utility, the discount factor ζ is taken to be ζ = − 1
2λ

2,

and A is a suitable class of admissible6 pairs of stopping times and strategies.
We now explain where this objective comes from. It is a non-standard situation since we

need to evaluate wealth at an intermediate time τ prior to the (infinite) horizon. That is, our
problem is to evaluate utility from wealth in a consistent fashion across different dates. If the
horizon were finite, we would simply map back to τ from the utility function U (x) at T via
the value function. Such an argument would give us an objective (4) where there is a particular
discount factor which depends on market parameters. This choice of discount factor exactly
accounts for the fact that after τ , the entrepreneur invests wealth optimally in the traded asset.
We describe this in more detail in the Appendix. However, since we have an infinite horizon,
we need another criteria, and argue that we want to formulate the problem such that there
are no biases arising from the portfolio choice problem influencing the manager’s choice of
exercise/investment time. A different choice of ζ would create artificial incentives to exercise
early, or may even lead to a degenerate situation where the investment option should never be
exercised.7 We also elaborate on this interpretation in the Appendix. Further mathematical
development of such horizon-unbiased utilities is given in Henderson and Hobson [8].

In Sect. 3 we will solve the risk averse entrepreneur’s problem as given in (4). However
first we will give a discussion of some benchmark models.

5 See Berk et al. [2] and Nicholson et al. [17] for studies of real options applied to biotechs and pharmaceuticals.
6 We show in the Appendix that a suitable class is A = ⋃

T,J,L AT,J,L where AT,J,L = {τ : τ ≤
T ∧ H V

J , |θt | ≤ L} and H V
J = inf{u : Vu ≥ J }.

7 Note however that the specification ζ = − 1
2λ

2 is a modeling choice, and is not essential to solve the
model in closed-form. We could solve the model in (4) for a general discount factor ζ , although the resulting
investment times would be biased towards early or late exercise.
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2 Benchmark models

This section briefly reviews the benchmark models against which we will later compare
the risk averse entrepreneur’s investment timing. We give two benchmark models - the well
known complete markets real options model of McDonald and Siegel [11] (see also Dixit
and Pindyck [6]) and the model where the entrepreneur does not price idiosyncratic risk. The
latter model where idiosyncratic risk is not compensated is appropriate for a well-diversified
manager. Of course, typically managers are not well diversified and thus our aim in this paper
is to treat the case where the entrepreneur requires compensation for idiosyncratic risk. We
will return to this case in the next section.

If idiosyncratic risks are not priced, the option value, denoted p(ρ) solves8

0 = 1

2
η2v2 ∂

2 p(ρ)

∂v2 − η(λρ − ξ)v
∂ p(ρ)

∂v
(7)

subject to boundary, value-matching and smooth pasting conditions:

p(ρ)(0) = 0; p(ρ)(Ṽ (ρ)) = Ṽ (ρ) − K ; ∂ p(ρ)

∂v

∣
∣
∣
∣
∣
Ṽ (ρ)

= I{Ṽ (ρ)>K }

This gives the usual first passage time criteria where the manager invests the first time the
(discounted) investment payoff Vt is greater than or equal to a constant threshold level Ṽ (ρ).
We solve for this threshold and associated value of the option to invest in the standard way
to give the following result.9

Proposition 2.1 Denote by β(ρ) = 1 − 2(ξ−λρ)
η

the non-zero root of the quadratic

φ(φ − 1)η2/2 − ηφ(λρ − ξ) = 0.

There are two possibilities depending on the parameter β(ρ):
(i) If β(ρ) > 1, investment/exercise takes place at the first passage time τ = inf{Vt ≥ Ṽ (ρ)}
where

Ṽ (ρ) = β(ρ)

β(ρ) − 1
K (8)

8 The manager solves the following for the optimal investment time τ :

p(ρ)(v) = sup
τ

E

[
D0
τ (Vτ − K )+|V0 = v

]
(5)

where D0
t denotes the state price density which assigns zero market price of risk to the independent Brownian

motion Z . Define the family of state price densities Dϑt by Dϑt = e−λBt − 1
2 λ

2t e−ϑZt − 1
2 ϑ

2t whereλ represents
the market price of risk on the traded Brownian motion B and ϑ represents the market price of risk on the
non-traded Brownian motion Z . Taking ϑ = 0 gives the state price density D0

t under which Z -risk is not
compensated. We have B0

t = Bt + λt and Z0
t = Zt are independent Brownian motions, giving P and V

follow
dP

P
= σdB0,

dV

V
= η

[
ρdB0 +

√
1 − ρ2dZ − (λρ − ξ)dt

]
. (6)

9 We remark here that in both of the standard real options models described in this Section, it is equivalent
to consider an investment paying a stream of cash flows over time or an investment paying the present
value of those cash flows at the time of investment (a one-off or lump-sum case). Since E

∫ ∞
0 D0

s Vs ds =
V0/η(λρ − ξ), it is equivalent to consider a payoff based on cash flows of (Vs I(s>τ) − K )+ and a one-off
payoff of (R(Vτ ) − K )+ where R(v) = v/η(λρ − ξ). This is no longer true in the incomplete setting and
thus we consider the case of a one-off payoff.
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The value of the investment option is

p(ρ)(v) =
{
(Ṽ (ρ) − K )( v

Ṽ (ρ)
)β

(ρ); v < Ṽ (ρ)

v − K ; v ≥ Ṽ (ρ)
(9)

(ii) If β(ρ) ≤ 1, the option value is maximized by Ṽ (ρ) = ∞, and investment never occurs
and is postponed indefinitely. If β(ρ) < 1, the option value is infinite. If β(ρ) = 1, the option
value is v.

Typically in real options theory, it is assumed that either the project value V is itself a traded
asset, or it is spanned by traded assets, resulting in a complete market model. An example
where these assumptions might be reasonable is if the investment cashflow arose from the
sale of a commodity on which futures contracts are liquidly traded. The standard real options
model of McDonald and Siegel [11] (see also Dixit and Pindyck [6]) can be recovered from
the above framework which accounts for non-priced idiosyncratic risk. Under the assumption
thatρ = 1, the risky asset P is a spanning asset for V . The corresponding investment threshold
and option value are obtained from Proposition 2.1 with the substitution ρ = 1. This gives

Corollary 2.2 In the complete market where ρ = 1, we have β(1) = 1 − 2(ξ−λ)
η

and again

there are two possibilities depending on the parameter β(ρ):
(i) If β(1) > 1, the investment threshold is given by

Ṽ (1) = β(1)

β(1) − 1
K (10)

and the value of the investment option is10

p(1)(v) =
{
(Ṽ (1) − K )( v

Ṽ (1) )
β(1); v < Ṽ (1)

v − K ; v ≥ Ṽ (1)

(ii) If β(1) ≤ 1, the option value is maximized by Ṽ (1) = ∞, and investment never occurs
and is postponed indefinitely. If β(1) < 1, the option value is infinite. If β(1) = 1, the option
value is v.

As is well known, since Ṽ (ρ) > K , taking the option to invest into account gives a rule
which leads to waiting beyond the standard net present value criteria, specifically waiting
for investment payoff Vt to reach the higher level, Ṽ (ρ). Model parameters determine how
large the threshold is relative to K . In some instances, parameters are such that the threshold
is in fact infinite, and waiting has infinite option value. In this case, investment never takes
place. Notice that in Proposition 2.1 (and Corollary 2.2), there were two scenarios depending
on the value of the parameter β(ρ) (or β(1)). If this parameter exceeded the critical value of
one, investment should take place at the given (finite) threshold. However, if this parameter
was one or lower, investment does not occur. In this latter case, the investment threshold is
infinite, and so investment never takes place and the option is retained.

The condition for investment to occur is often stated either in terms of model parameters
or via an implicit dividend yield. In terms of the underlying model parameters, the condition

10 This is a standard perpetual American option problem and was solved by McKean [12] in an appendix to
Samuelson [19], see also Merton [14].
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becomes ξ < λρ for investment to occur at a finite threshold. In the case of a complete
market, the condition for investment simplifies to ξ < λ.11

In both models, the intuition is that the option should remain unexercised when it offers
better opportunities (than the risky asset P) to obtain a greater payoff in the future. This occurs
when the Sharpe ratio of V is high relative to that of the risky asset P . In the non-priced
idiosyncratic risk model the correlation also appears in the comparison. In the extreme case
of zero correlation, all risks are idiosyncratic and provided ξ > 0, it is always beneficial to
wait, despite the idiosyncratic risk, since this risk is not priced by the entrepreneur. However,
McDonald and Siegel [11] note that ξ < 0 may arise for firms in competitive industries
exhibiting temporary rents, such as high technology industries. In this situation, there will
be a finite investment threshold.

We define ξ∗
np to be the critical value of the Sharpe ratio in the non-priced idiosyncratic

risk model which distinguishes between the two possibilities of investing at a finite threshold
and not investing. From the previous condition, we see ξ∗

np = λρ. We define similarly ξ∗
c to

be the critical Sharpe ratio in the complete model, and see that ξ∗
c = λ.

The second usual way to state the condition for investment to take place is via the interpre-
tation of δ(ρ) = λρ − ξ (or δ(1) = λ− ξ in the complete market) as an implicit proportional
dividend yield (see Dixit and Pindyck [6]). With this interpretation, the condition for in-
vestment to occur becomes δ(ρ) > 0. From (6) and (7) we see the expected return on the
investment payoff V is decreasing when δ(ρ) > 0 and thus there is a reason to exercise the
option since on average, waiting results in a lower amount upon exercise. The dividend yield
δ(ρ) represents the opportunity cost of waiting. However, if δ(ρ) ≤ 0, there is no reason to
exercise the option early and it is optimal to keep waiting. This is exactly the conclusion that
waiting is optimal for an American call option with no dividends made by Merton [14]. We
will see later that this intuition is no longer sufficient in the incomplete setting.

3 The risk averse entrepreneur’s threshold and option value

The remainder of the paper concentrates on the risk averse entrepreneur’s timing and portfolio
choice problem described in Sect. 1 and given in (4). To solve the problem, we need a number
of steps which are given in detail in the proof of the following proposition.12 Define

G(x, v) = sup
(τ,θ)∈A

E

[
− 1

γ
e

1
2 λ

2(τ−t)e−γ (Xθτ+(Vτ−K )+)|X θt = x, Vt = v

]

Finding G(x, v) at t = 0 is equivalent to solving (4) (with ζ = − 1
2λ

2). By time-homogeneity,
we deduce the manager invests at the first passage time of V to a constant threshold Ṽ (ρ,γ ),

τ = inf{t : Vt ≥ Ṽ (ρ,γ )} (11)

11 Often in the real options literature (see [6]) the condition for investment to occur is expressed in terms of
expected returns rather than Sharpe ratios, because it is assumed that the volatilities of V and P are equal.
Making this assumption gives the condition ν < µ for investment to occur in the complete model. Once we do
not have perfect spanning, there is no reason to assume this a priori and we retain distinct volatilities, η �= σ

throughout. A further clarification with the standard models concerns the equilibrium approach of McDonald
and Siegel [11]. The CAPM specifies the required return on the asset P via λ = λMρP M where λM is the
Sharpe ratio of the market portfolio, and ρP M is the correlation between the returns on the asset P and the
market portfolio. This results in the condition for investment occurring being ξ < λMρP M . Although we do
not insist on the CAPM choice for λ, at any point in the paper, the reader may specialize to this choice.
12 The proofs of propositions in this section are given in the Appendix.
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The following proposition characterizes G.13

Proposition 3.1 In the continuation region, G solves the following non-linear HJB equation

0 = 1

2
λ2G + ξηvGv + 1

2
η2v2Gvv − 1

2

(λGx + ρηvGxv)
2

Gxx
(12)

with boundary, value matching and smooth pasting conditions

G(x, 0) = − 1

γ
e−γ x ,

G(x, Ṽ (ρ,γ )) = − 1

γ
e−γ (x+(Ṽ (ρ,γ )−K )+),

Gv(x, Ṽ (ρ,γ )) = I{Ṽ (ρ,γ )>K }e
−γ (x+(Ṽ (ρ,γ )−K )+).

We can now solve the above HJB equation and characterize the threshold Ṽ (ρ,γ ) as the
solution of a non-linear equation. We summarize the results in a Proposition.

Proposition 3.2 Recall β(ρ) = 1 − 2(ξ−λρ)
η

. If β(ρ) > 0 (correspondingly ξ < λρ + η
2 ), the

entrepreneur will invest at time τ given in (11). The optimal investment threshold, Ṽ (ρ,γ ), is
the unique solution to

Ṽ (ρ,γ ) − K = 1

γ (1 − ρ2)
ln

[

1 + γ (1 − ρ2)Ṽ (ρ,γ )

β(ρ)

]

(13)

where the solution is such that Ṽ (ρ,γ ) > K .
If β(ρ) ≤ 0 (or equivalently ξ ≥ λρ + η

2 ) then smooth pasting fails and there is no solution.

In this case, the entrepreneur postpones exercise indefinitely, and Ṽ (ρ,γ ) = ∞.
The value function G(x, v) (solving (12) and associated conditions) is given by

G(x, v) =

⎧
⎪⎨

⎪⎩
− 1
γ

e−γ x
[

1 − (1 − e−γ (Ṽ (ρ,γ )−K )(1−ρ2))
(

v

Ṽ (ρ,γ )

)β(ρ)]
1

1−ρ2

v ∈ [0, Ṽ (ρ,γ ))

− 1
γ

e−γ x e−γ (v−K ) v ∈ [Ṽ (ρ,γ ),∞)

Given we have the value function, the value of the option to the entrepreneur can be
derived via a standard certainty equivalence (or utility indifference) argument. We evaluate
the certainty equivalent value by finding the amount of incremental wealth which can be
invested optimally, which gives the same utility as having the option. That is, the certainty
equivalent value p(ρ,γ )(v) solves G(x, v) = G(x + p(ρ,γ )(v), 0).

Proposition 3.3 If β(ρ) > 0 (or ξ < λρ + η
2 ), the entrepreneur’s certainty equivalent

valuation of the option is given by

p(ρ,γ )(v) = − 1

γ (1 − ρ2)
ln

(

1 − (1 − e−γ (1−ρ2)(Ṽ (ρ,γ )−K ))

(
v

Ṽ (ρ,γ )

)β(ρ))

(14)

where Ṽ (ρ,γ ) and β(ρ) are given in Proposition 3.2.

13 The solution to (12) is a candidate solution of the problem. In the Appendix we sketch a verification
argument to show that the candidate solution is indeed the value function I∗.
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The option value p(ρ,γ )(v) also has the representation

p(ρ,γ )(v) = sup
τ bounded

− 1

γ (1 − ρ2)
ln E[D0

τ e−γ (1−ρ2)(Vτ−K )+|V0 = v] (15)

where D0
τ is the state price density under which idiosyncratic risks are not priced, used in

(5).
If β(ρ) ≤ 0 (or ξ ≥ λρ + η

2 ), waiting for the project value to rise is preferable, hence the
entrepreneur postpones indefinitely and the value of the option is infinite.

These propositions give us both the constant threshold Ṽ (ρ,γ ) and the value of the option to
invest in closed-form. The risk averse entrepreneur exercises the option when the investment
payoff V reaches the threshold given in (13), and the certainty equivalent value of the option to
the entrepreneur is given in (14). Similarly to the benchmark models, the threshold is always
greater than K and so the option to wait is always valuable. In contrast to the complete market
model (of Corollary 2.2), both the threshold and option value depend on the entrepreneur’s risk
aversion level as well as the correlation between the investment payoff V and the risky asset
P . The correlation reflects the degree to which the entrepreneur can hedge the uncertainty
associated with receiving the random payoff Vτ at the exercise time. Higher correlation
corresponds to a larger portion of the risk being market (or hedgeable) risk versus idiosyncratic
(or unhedgeable) risk. When |ρ| = 1, the asset P provides a perfect hedge and the market is
complete. In fact, we show that the complete models of Dixit and Pindyck [6] and McDonald
and Siegel [11] and non-priced idiosyncratic risk model are nested within the incomplete
utility-based model as special cases when |ρ| → 1 and γ → 0 respectively.

Proposition 3.4 Two special cases of the incomplete utility-based model are:
(A) Complete model: As ρ → 1,

(i) β(ρ) → β(1); (ii) Ṽ (ρ,γ ) → Ṽ (1); (iii) p(ρ,γ )(v) → p(1)(v)
where β(1), Ṽ (1), p(1)(v) were given in Corollary 2.2.

(B) Non-priced idiosyncratic risk model: As γ → 0,

(i) β(ρ) = β(ρ); (ii) Ṽ (ρ,γ ) → Ṽ (ρ); (iii) p(ρ,γ )(v) → p(ρ)(v)
where β(ρ), Ṽ (ρ), p(ρ)(v) were given in Proposition 2.1.

The above proposition holds for all values of β(ρ,γ ). Note for instance that when 0 <
β(ρ,γ ) < 1, the threshold Ṽ (ρ,γ ) and option value p(ρ,γ ) are both finite whilst the thresholds
and option values in the benchmark models are infinite in this case (see Proposition 2.1 and
Corollary 2.2). The proposition says that in the limit, the finite thresholds and option values
tend to infinity.

We now investigate the impact of risk aversion and correlation on the entrepreneur’s
threshold and option value. Since the threshold and option value were given in closed form
in Propositions 3.2 and 3.3, comparative statics can be obtained easily via differentiation.14

Proposition 3.5 The investment threshold Ṽ (ρ,γ ) and option value p(ρ,γ ) are increasing in
|ρ| and decreasing in γ .

The intuition behind this result is as follows. By paying the investment cost (or equiva-
lently exercising the option), the entrepreneur is locking-in the payoff he receives. Waiting

14 We regard δ(ρ) as a fixed parameter. Dixit and Pindyck [6] “regard δ as a basic parameter independent of η”
and McDonald and Siegel [11] note that not doing so leads to “ambiguity in the comparative statics results”.
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Fig. 1 The value of the option to invest, where investment costs are K = 1 and in the case where β(ρ) > 1
(or ξ < ξ∗

np). The left panel gives option values and investment thresholds as γ varies, fixing ρ = 0.9. The
right panel fixes γ = 10 and plots option values and thresholds for varying ρ. The lines in the left panel
take γ = 0, 5, 10, 20 (from highest to lowest) with β(ρ) = 2.7. The lines in the right panel take ρ = 1,
ρ = 0.99, 0.95, 0.9, 0.75, 0.5, 0.0 (from highest to lowest) and β(ρ) = 3 = β(1)

involves facing random fluctuations in V which can only be partially hedged away by tra-
ding. Remaining risk is idiosyncratic and by waiting, the entrepreneur is exposed to this risk.
If the manager is more risk averse, he dislikes uncertainty concerning V and so prefers to
exercise earlier to lock-in value, and reduce this exposure to idiosyncratic risk. In the extreme
situation where ρ = 0, the option value and threshold will be lowest. In this case, all risk
is idiosyncratic. In comparison to the ρ = 0 situation, the ability to hedge increases option
value and the investment threshold.

We notice from Proposition 3.5, that either higher risk aversion or a lower correlation will
impact on the threshold and value in the same direction. In fact, risk aversion and correlation
appear together as γ (1−ρ2) in (13) and (14). The presence of the correlated risky asset with
which to hedge means that the entrepreneur has a scaled down “effective risk aversion” of
γ (1 − ρ2). The higher the correlation, the less idiosyncratic risk he is exposed to, and the
lower his effective risk aversion.15

We now illustrate these observations in Figs. 1 and 2. The leftmost panels of Figs. 1 and 2
give the impact of the entrepreneur’s risk aversion on the value of the option. Both show
that the investment threshold and the option value are decreasing in risk aversion, γ . The
rightmost panels of Figs. 1 and 2 show the effect of the correlation between the project value
and the hedging asset. Both panels show the threshold and option value fall as correlation is
lowered.

Figures 1 and 2 correspond to different parameter regimes. The panels of Fig. 1 take
β(ρ) > 1 whilst those of Fig. 2 take 0 < β(ρ) < 1. We will explain in the next section
how the existence of these two distinct parameter regimes has important implications for
investment, and later we will show the threshold and option value behave very differently in
the two regimes.

Finally, we quantify the impact of following an incorrect model in a world where
the risk averse entrepreneur faces incompleteness. Figure 3 plots option values given

15 Another fruitful way to interpret this observation is as follows. Two entrepreneurs face the same investment
opportunity—one (with risk aversion γ ) has access to a hedge asset with correlation ρ �= 0, and the other
does not have any hedge asset available to him, but has lower risk aversion coefficient, γ (1 − ρ2). Two such
entrepreneurs will act identically with respect to investment timing and will place the same value on the option
to invest.
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Fig. 2 The value of the option to invest, where investment costs are K = 1 and in the case where 0 < β(ρ) < 1
(or ξ∗

np ≤ ξ < ξ∗
i ). The left panel gives option values and investment thresholds as γ varies, fixing ρ = 0.9.

The right panel fixes γ = 10 and plots option values and thresholds for varying ρ. The lines in the left panel
correspond to values γ = 1, 5, 10, 20 (from highest to lowest), and β(ρ) = 0.2. The lines in the right panel
take ρ = 0.95, 0.9, 0.75, 0.5, 0.0 (from highest to lowest), with β(ρ) = 0.5 = β(1)
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Fig. 3 Value of the option to invest under optimal versus suboptimal exercise with β(ρ) > 1 and ρ = 0.75.
The top line is the incomplete utility-based model value from Proposition 3.3 where Ṽ (ρ,γ ) = 1.29. The
middle line represents suboptimal exercise where the entrepreneur exercises at Ṽ (1) = 1.5, the complete
model threshold. The lowest line is suboptimal exercise when Ṽ (ρ) = 1.8, the threshold from the non-priced
idiosyncratic risk model. Parameters are K = 1, γ = 10. For ρ = 0.75, β(ρ) = 2.25. For the complete model,
ρ = 1 and β(1) = 3

investment decisions are made under the three possible models. We take ρ = 0.75. The
highest line corresponds to the entrepreneur using the incomplete model and investing at thre-
shold Ṽ (ρ,γ ) = 1.29. The middle and lower lines represent suboptimal exercise decisions.
The middle line is the option value when the entrepreneur waits to invest at the complete
market threshold of Ṽ (1) = 1.5. The lowest line is the value when he waits to invest at
the threshold arising from the non-priced idiosyncratic risk model, Ṽ (ρ) = 1.8. Given our
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Fig. 4 Critical values of the project Sharpe ratio ξ , as a function of correlation, ρ. Parameter values are
λ = 0.3, η = 0.2. The higher line, ξ∗

i , with slope λ, is the largest Sharpe ratio in the incomplete utility-based
model for which there is a finite investment threshold. Below this is the line ξ∗

np , also with slope λ. The line
ξ∗

np goes through the point ξ∗
c = λ when ρ = 1

parameter choice, Fig. 3 shows that the loss in value resulting from an incorrect model is
economically significant. For example, at the incomplete threshold of 1.29, the option value
is 0.29. However if the entrepreneur waits until threshold 1.5, he loses about 20% of the
option value. If he waits until threshold 1.8, about 50% of the option value is lost.

4 An additional parameter region where investment occurs

Recall that in the benchmark models presented in Sect. 2, we highlighted that for some
parameter values, the option would never be exercised and investment would not occur. In
this section we undertake an analogous investigation for the incomplete model, and find that
the parameter region where exercise occurs is extended, and that in this additional region, the
option is exercised even though the implicit dividend yield is negative. This has implications
for investment timing since there are situations where the option is exercised in the incomplete
model but never exercised in the corresponding complete model.

Proposition 3.2 tells us that the entrepreneur exercises at the constant threshold given in
(13) provided β(ρ) > 0, or equivalently, ξ < λρ + η

2 . In the case where ξ ≥ λρ + η
2 , the

entrepreneur postpones exercise and waits indefinitely. Define ξ∗
i = λρ+ η

2 to be the critical
value of the Sharpe ratio distinguishing these two situations. The key observation is that this
critical value ξ∗

i has changed compared with those obtained for the benchmark models of
Sect. 2. Recall for the complete model, we found ξ∗

c = λ. The non-priced idiosyncratic risk
model gave ξ∗

np = λρ.
This is illustrated in Fig. 4. Each of ξ∗

i , ξ∗
c and ξ∗

np is represented on the graph as a
function of ρ. ξ∗

c is just the single value λ when ρ is one. The higher line with slope of
λ = 0.3 represents ξ∗

i = λρ + η/2, the critical Sharpe ratio for the incomplete model. The
corresponding line ξ∗

np = λρ for the non-priced idiosyncratic risk model is the lower one, also
with slope of λ. The first observation from Fig. 4 is that there is a gap between the lines ξ∗

i and
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ξ∗
np corresponding to a parameter region where the non-priced idiosyncratic risk model signals

investment should be postponed indefinitely, whilst the incomplete utility-based model says
investment should be undertaken at a finite threshold, described in Proposition 3.2. We call
the parameter region λρ < ξ < λρ + η/2 the additional region, since it is an extra region
in which the incomplete model recommends investment is undertaken. When parameters
are such that ξ < λρ, both the incomplete and benchmark models give a finite threshold at
which investment occurs. This is the common parameter region where the investment option
is exercised at some finite threshold in each of the models.

Just as we noted earlier for the benchmark models, the criteria for investment to occur
can also be stated in terms of an implicit proportional dividend yield. Recall we denoted
δ(ρ) = λρ − ξ and the aforementioned common parameter region corresponds to δ(ρ) > 0.
Re-writing the condition for investment in the incomplete model of ξ < λρ + η

2 gives
δ(ρ) > −η/2. This implies that even if dividends are negative, investment may still occur
at some finite threshold. This appears to contradict conventional wisdom as the standard
Merton [14] result says an American call will never be exercised early in the absence of
positive dividends. The additional parameter region is described in dividend yield terms by
−η/2 < δ(ρ) < 0, so implicit dividends are always negative in this region.

The explanation for the existence of this additional exercise region is as follows. In order for
the entrepreneur to leave the option unexercised, he requires a higher Sharpe ratio than in the
non-priced idiosyncratic risk benchmark model, since the benefit from waiting must outweigh
the incentive to exercise to reduce exposure to idiosyncratic risk. The higher the idiosyncratic
risk, the higher is η and the higher is the critical threshold the Sharpe ratio must reach for
him to leave the option unexercised. For correlations ρ > 1− η

2λ , the entrepreneur requires a
higher Sharpe ratio (to leave the option unexercised) than in the complete benchmark model.
Again, as η increases, the effect of idiosyncratic risk is larger, and he requires a higher
Sharpe ratio for a wider range of correlation values. This has significant impact on the option
to invest since the option is exercised when V is high (relative to investment costs). That is,
the entrepreneur faces uncertainty regarding a large amount and therefore the fact he is risk
averse has a significant impact on his decision.

Now we return to the interpretation via an implicit dividend yield. The conventional
wisdom concerning the necessity of positive dividends for exercise of the American call is
no longer the full story. Again, as in the benchmark models, the expected return on V is
decreasing with δ(ρ) (see (6) and (15)), which means a positive δ(ρ) encourages the exercise
of the option. However, we already noted that the entrepreneur has an additional incentive to
exercise to reduce idiosyncratic risk. He actually requires a negative dividend to encourage
waiting in order to counterbalance the impact of idiosyncratic risk. At δ(ρ) = −η/2, the
benefit from the “negative dividends” on the expected return of V balances the cost of
waiting in terms of exposure to risk. When −η/2 < δ(ρ) < 0 (or λρ < ξ < λρ + η/2), the
impact of idiosyncratic risk dominates the incentive to wait because of negative dividends,
and the option is exercised. In this same region, the model where idiosyncratic risk is not
priced does not experience this tradeoff since a manager in such a model is not concerned
with idiosyncratic risk and so waits indefinitely if there are negative dividends. Finally,
when δ(ρ) > 0 (or ξ < λρ), both idiosyncratic risk and positive dividends impact in the
same direction to encourage early exercise. As we saw in Sect. 3, the additional impact of
idiosyncratic risk caused the entrepreneur to exercise at a lower threshold than in the complete
or non-priced idiosyncratic risk models.

A final result that we draw attention to is the behavior of the additional parameter region in
limiting cases. Since we showed in Proposition 3.4 that the benchmark models are recovered
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in the limit as correlation tends to one or risk aversion tends to zero, we also might expect
that the additional parameter region disappears in the limit. If this were the case, then if
correlation were high, or risk aversion believed to be low, then the benchmark models would
provide a good approximation to the incomplete model. However, this is not the case, and this
additional region does not shrink as we take limits ρ → 1 or γ → 0. This can be expressed
in the following result which is now immediate.

Theorem 4.1 (i) ξ∗
i does not tend to ξ∗

c as ρ → 1; (ii) ξ∗
i does not tend to ξ∗

np as γ → 0

This result (and Fig. 4) shows the gap between the various model critical values remains
in the limit. This has important implications for whether the benchmark models provide a
reasonable approximation. In fact, since the parameter region does not shrink in the limit, the
benchmark models do not provide a good approximation to the incomplete model even when
correlation is high or risk aversion is small. This is because if the complete market or non-
priced idiosyncratic risk model give the recommendation that exercise should be postponed
indefinitely, it is not possible to conclude that it is also optimal for a risk averse entrepreneur
to postpone investment even if correlation is very close to one or risk aversion is low. Using a
complete model when markets are incomplete can lead to an incorrect conclusion with regard
to investment timing. Similarly, using a model where idiosyncratic risks are not compensated
when the entrepreneur is risk averse can lead to an incorrect decision. These differences in
investment timing are more significant than the numerical differences we demonstrated earlier
in Fig. 3 when parameters were such that ξ < λρ or δ(ρ) > 0. For these parameters, recall,
all models gave a finite investment threshold, although, of course, these thresholds all differ
in value.

We comment now on the practical relevance of the parameter region λρ < ξ < λρ + η
2

in which the models lead to different conclusions, via an illustrative example. Consider the
biotech-pharmaceutical example given earlier in the paper. The entrepreneur has the option
to receive a one-off payoff for drug technologies from a pharmaceutical company. As a first
approximation suppose the dynamics of the payoff received by the biotech can be related to
the NASDAQ Biotech Index, which has annual return of about 13% and standard deviation
of 45%.16 This gives an approximate Sharpe ratio of ξ = 0.29. Assume the entrepreneur
uses the AMEX Pharmaceutical Index as a partial hedge against the risk arising from his
option. This index has annual returns of around 12% with standard deviation 27%, giving an
approximate Sharpe ratio of λ = 0.44. The two indices have correlation around 0.40. If the
entrepreneur had not required compensation for idiosyncratic risk when valuing his option to
invest, he would retain the option and wait indefinitely since ξ > λρ = 0.17. However, in fact
0.17 < ξ < λρ + η/2 ≈ 0.4 so the incomplete model would recommend the entrepreneur
acts at some finite threshold, given by Ṽ (ρ,γ ). Risk aversion towards the unhedgeable portion
of η changes the behavior of the entrepreneur.

5 The investment–uncertainty relationship

In this final section we illustrate the impact of uncertainty on the value of the option and
the timing of investment. We show the investment–uncertainty relationship arising from the
incomplete model differs in the two distinct parameter regions.

16 These numbers were taken from the April 15, 2005 “Statistical Analysis of the Historical Performance of
the Biotechnology and Pharmaceutical Sectors”, BioPharma Fund. The time period used was 1994–2005. We
ignore interest rates for simplicity in this illustrative example.
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It is well known that in complete real options models, uncertainty in the project value
increases the option value and delays investment.17 In such models, volatility increases option
value purely via the convexity of the option payoff.18 The intuition in the complete market
model is that volatility gives a greater spread of outcomes for the investment payoff, and since
the option is never exercised for V < K , this increases option value. In a complete market,
the option value itself is also convex in the project value or investment payoff. We show
in this section that both of these properties are no longer universally true in an incomplete
market.

Entrepreneurial risk aversion together with incompleteness introduces another effect of
increased volatility which acts in the opposite direction to the usual convexity effect. When
some of the volatility η is idiosyncratic, higher idiosyncratic volatility is bad news for the
risk averse entrepreneur. As discussed earlier, idiosyncratic volatility encourages exercise at
a lower threshold in order to lock-in a value for the project.

The combination of these two effects in the incomplete utility-based model means that
volatility can either raise or lower the option value, and simultaneously raise or lower the
investment threshold, which is in sharp contrast to traditional thinking on the effect of un-
certainty on real options. We investigate precisely how these effects interact in the following
result.

Proposition 5.1 (i) Let β(ρ) > 1 (or equivalently ξ < ξ∗
np or δ(ρ) > 0)

Incomplete utility-based model and the Benchmark models:
I. The value of the option is convex in v under all models.
II. The threshold and value of the option are increasing in volatility under all models

(ii) Let 0 < β(ρ) < 1 (or equivalently ξ∗
np < ξ < ξ∗

i or − η
2 < δ(ρ) < 0)

Incomplete utility-based model:
I. The value of the option p(ρ,γ )(v) is not strictly convex in v. For low v, the option
value is concave, and for larger v (near ≈ Ṽ (ρ,γ )), the option value is convex.
II. The threshold and value of the option are decreasing in volatility.
Benchmark models:
In both the non-priced idiosyncratic risk model and complete model, the thresholds
and option values are infinite.

(iii) Let β(ρ) = 1 (or equivalently ξ = ξ∗
np or δ(ρ) = 0)

Incomplete utility-based model:
I. The value of the option is convex in v.
II. The threshold and option value do not depend on η.
Benchmark models:
In both the non-priced idiosyncratic risk model and complete model, the thresholds
are infinite and the option values are equal to v.

We find the behavior of the threshold and option value differs in the two parameter regions.
When the Sharpe ratio on the project is low enough (ξ < ξ∗

np), or equivalently, dividends are

positive δ(ρ) > 0, the behavior of the option value and threshold with respect to volatility is
the same for all three models. Figure 5 displays option value as a function of volatility η for
the two regions. The left panel (corresponding to ξ < ξ∗

np) gives the non-priced idiosyncratic

17 See Dixit and Pindyck [6] and McDonald and Siegel [11] amongst many others. This hinges on the
assumption that δ(ρ) is a fixed parameter and Dixit and Pindyck [6] “regard δ as a basic parameter independent
of η”. We make the same assumption here.
18 Convexity properties have been well studied in the context of financial options, see Bergman et al. [1].
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Fig. 5 Value of the option to invest for a range of project volatilities η. In the left panel, β(ρ) > 1, whilst in
the right panel, 0 < β(ρ) < 1. In the left panel, the highest line is the value under the non-priced idiosyncratic
risk model (γ = 0, ρ = 0.9) and the middle line is the complete model value (ρ = 1). The lower line is the
incomplete (utility model) value with ρ = 0.9. In the left panel, δ(ρ) = 0.17 when ρ = 0.9 and δ(1) = 0.2.
In the right panel, δ(ρ) = −0.08 and the line represents the incomplete value. The value is infinite in this case
under both benchmark models. Parameters common to both panels are K = 1, γ = 10

risk model (highest), complete (middle) and incomplete utility-based model (lowest) option
values, which are all increasing in η.

However, if the Sharpe ratio is in the additional region (ξ∗
np < ξ < ξ∗

i ), or equivalently

implicit dividends satisfy −η/2 < δ(ρ) < 0, then in the incomplete model, the dislike of
idiosyncratic risk dominates, resulting in the option value and threshold both decreasing
with volatility. In this case, a higher volatility and a resulting lower threshold will cause
volatility to speed-up investment. The right panel of Fig. 5 shows how the option value in
the incomplete utility-based model varies with volatility, in the situation ξ∗

np < ξ < ξ∗
i .

Recall, in this parameter region, both the complete and non-priced idiosyncratic risk models
give infinite thresholds and option values. The graph shows that, (as in Part II. of (ii) of the
proposition), the option value decreases with η.

The proposition also states results concerning the shape of the option value itself. In the
common parameter region where ξ < ξ∗

np , the option value remains convex everywhere
in all three models. However, in the additional parameter region, the option value under the
incomplete model is not strictly convex anymore, and we can show it is concave for low values
of V (see Fig. 2). Again, this result is in contrast to the usual belief that option values are
convex, and is another demonstration of the striking behavior that can occur once managerial
risk aversion is accounted for in real options.

Although Miao and Wang [15] also find that volatility and uncertainty can speed-up
investment (in the situation of a lump-sum investment payoff), this only occurs in their model
when risk aversion is sufficiently large. In contrast, we find that for all (non-zero) values of
risk aversion, the threshold will decrease with volatility (and hence speed-up investment)
provided parameters are such that λρ < ξ < λρ + η/2. Since this depends on observable
quantities, and not on an unobservable risk aversion parameter, it should be more amenable
to empirical testing than the conclusion of Miao and Wang [15]. In addition, we also show
that the option value need not be convex everywhere in the incomplete model, and again,
when parameters are such that λρ < ξ < λρ + η/2, the option value is concave for low
values of v.
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6 Conclusions

This paper studies the impact of incompleteness and risk aversion on the investment timing
decision and value of the option to invest. In our framework, an entrepreneur decides when
to pay an investment cost to receive a random one-off investment payoff, the risk of which
cannot be fully hedged against.

We find that incompleteness and risk aversion reduce the investment threshold and option
value. More importantly, we find there is an additional parameter region (in which dislike of
idiosyncratic risk outweighs the benefit of waiting for a higher investment payoff) wherein
the incomplete and benchmark real options models give conflicting investment signals. The
incomplete model where the entrepreneur is risk averse, recommends exercising at some
finite threshold, whilst both the complete model and the model where idiosyncratic risk is
not priced suggest retaining the option to wait indefinitely for a higher investment payoff.
Such conflicting signals imply that the benchmark real options models are not necessarily a
good approximation to an incomplete setting even if correlation is high or risk aversion is
small.

Merton [14] showed American call options are never exercised unless dividends are po-
sitive. However, we find that the additional region (where the option is exercised under the
incomplete model) corresponds to parameters which imply a negative implicit dividend yield.
This apparent contradiction is resolved because in the incomplete model there is an additional
incentive to exercise to avoid idiosyncratic risk. In this parameter region, some conventional
properties of thresholds and option values are no longer true. We saw that the value of the
option is not strictly convex in the investment value itself, and the option value and investment
threshold decrease with volatility. Strikingly, uncertainty speeds-up investment in this para-
meter region, which is in contrast to traditional thinking that uncertainty increases the option
value of waiting, and leads to a higher threshold.19 The sign of the investment–uncertainty
relationship is also of empirical interest, so we offer new insights into this relationship for
risk averse entrepreneurs facing one-off investment payoffs. In fact, our conclusion that vo-
latility speeds-up investment holds for any level of risk aversion, provided parameters place
the investment in the additional region, and so is amenable to testing.

To remain as close to the canonical model of McDonald and Siegel [11] as possible, we
have chosen to develop an incomplete markets framework where the entrepreneur maximizes
his expected utility of wealth. The advantage of our set-up (and unlike in Miao and Wang
[15]) is that standard real options models are recovered as a special case when the corre-
lation between the investment payoff and hedging asset is one. We also made a number of
assumptions. The use of exponential utility allowed us to eliminate wealth-dependence and
reduce to a one-dimensional free boundary problem which we could solve. Other utilities
could be studied at the cost of an increase in dimension. Similarly, studying the perpetual
problem lead to stationary solutions or a constant threshold (see Dixit and Pindyck [6] or
McDonald and Siegel [11]). There is no reason to expect the main conclusions of the paper
would change if these were altered, however, the solutions would be much less tractable.

19 It is interesting to note that Brock et al. [4] show that when V has a lower absorbing barrier sufficiently
close to the current value, an increase in volatility can lower the value of the option. See also Sect. 5, Chapt. 5
of Dixit and Pindyck [6] where a similar effect is observed for a mean-reverting model. However, both of
these models are under the assumption of complete markets, and the behavior is being driven by the special
features of the chosen process for V .
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Appendix

Remarks on the Manager’s Optimization Problem in (4)
In this section we provide further explanation and justification for the choice of discount

factor ζ = − 1
2λ

2 in the manager’s optimization problem in (4). We will do this in two parts.
First, in (i), we will show that this choice reflects the fact that the manager has an infinite
horizon and is investing optimally in the risky asset and risk-free bond after the exercise time

τ of the option. The factor e− 1
2 λ

2τ is accounting for this optimal portfolio choice after τ . In
(ii), we provide a second interpretation that the choice ζ = − 1

2λ
2 ensures there are no biases

in the manager’s choice of investment/exercise time resulting from the underlying portfolio
choice problem.

(i) For sake of argument, first consider the manager’s problem under the restriction that
τ < T for some horizon T < ∞. That is, assume the option to invest has a finite horizon T .
The manager’s preferences are described by a utility function U (x) for discounted wealth.

Temporarily ignoring the option to invest, consider solving the optimal portfolio choice
problem with terminal horizon T

J (t, x) = sup
(θs )t≤s≤T

E[U (X θT )|X θt = x] (16)

where X θ represents the entrepreneur’s wealth from holding the risky asset P , see (3) and
J (t, x) denotes the value function or indirect utility at t < T . For technical reasons we
assume the class of admissible strategies θs are bounded, see the verification argument for
details.

We now want to choose a time τ ≤ T at which to exercise the investment option to receive
(Vτ − K )+. Conditioning shows that

sup
τ≤T

sup
(θs )s≤T

EU (X θT + (Vτ − K )+) = sup
τ≤T

sup
(θs )s≤τ

EJ (τ, X θτ + (Vτ − K )+)

It is thus equivalent to either solve the exercise problem over the finite horizon T with utility
U (x), or to solve the exercise problem up to the (exercise) time τ but using J (t, x) defined
in (16) to evaluate wealth at τ . In this sense, the problem we are interested in (with horizon
T and the manager has preferences described by utility function U (x)) is translated into one
in which it is as if the optimization ends at τ but J (t, x) is used to evaluate wealth at τ .

In the case of exponential utility, U (x) = − 1
γ

e−γ x , standard calculations show that

J (t, x) = −(e−λ2T/2) 1
γ

eλ
2t/2−γ x and then from the above,

sup
τ≤T

sup
(θs )s≤T

E

[
− 1

γ
e−γ (XθT +(Vτ−K )+)

]
= e−λ2T/2 sup

τ≤T
sup
(θs )s≤τ

E

[
− 1

γ
eλ

2τ/2−γ (Xθτ+(Vτ−K )+)
]

Clearly, it is equivalent to solve the problem on the right-hand-side without the pre-factor
e−λ2T/2, (so as if J (t, x) becomes − 1

γ
eλ

2t/2−γ x ) and the relevant problem to solve becomes

sup
τ≤T

sup
(θs )s≤τ

E

[
− 1

γ
eλ

2τ/2−γ (Xθτ+(Vτ−K )+)
]

= sup
τ≤T

sup
(θs )s≤τ

E

[
eλ

2τ/2U (X θτ + (Vτ − K )+)
]
.

(17)
Now we want to consider the infinite horizon problem. In this case the natural generali-

zation is to remove the restriction τ ≤ T in (17) and to consider
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sup
(τ,θ)∈A

E[eλ2τ/2U (X θτ + (Vτ − K )+)].

This is exactly the formulation in (4) with the choice ζ = − 1
2λ

2.
(ii) Our second explanation of the choice ζ = − 1

2λ
2 is based on the idea that we do not

want the manager to have an in-built preference for early or late exercise/investment based
on the set-up of the underlying portfolio choice/hedging problem. That is, we do not want
the manager to have a preference for particular horizon times τ in absence of the option to
invest.

Temporarily ignoring the option to invest, we just consider the underlying portfolio choice
problem of the manager. For the moment, τ denotes the terminal horizon of the portfolio
choice problem, that is, the date at which the manager evaluates his expected utility of wealth.
We will show that the choice ζ = − 1

2λ
2 is the one for which the solution of the portfolio

choice problem
sup

(θu)t≤u≤τ
E[e−ζ τU (X θτ )|Xt = x] (18)

does not depend on the horizon τ . If the manager was not indifferent as to the choice of τ in
(18), then when we include the option, the entrepreneur would already have a preference for
some exercise time which would not arise purely from the option and there would be a bias
in the model set-up.

To give a less technical presentation, we first consider the simpler case where the horizon
of the portfolio choice problem is non-random, denoted by T . This enables us to employ a
simple proof based on HJB arguments. We return to the case of a random horizon τ later.

For a non-random horizon T , and taking U (x) = − 1
γ

e−γ x , the problem becomes

M(t, x) = sup
(θu),t≤u≤T

E

[
− 1

γ
e−γ XθT e−ζT

∣
∣
∣
∣ X θt = x

]
. (19)

Apart from the presence of the discount factor ζ , this is a very similar portfolio choice problem
to the standard Merton [13] problem with exponential utility where utility of terminal wealth
is maximized, and the investor can only invest in risk-free bonds or a single risky asset. The
solution to that standard problem depends on the time remaining until the terminal horizon.
We show for a particular choice of ζ , the dependence of the solution on the terminal horizon
is removed.

Using (3), the HJB equation is given as

sup
θ

{
Ṁ + Mxθµ+ 1

2
Mxxθ

2σ 2
}

= 0 (20)

with boundary condition M(T, x) = − 1
γ

e−γ x e−ζT . Performing the maximization over θ
gives

θ∗
t = − Mxλ

Mxxσ

and substitution into (20) results in
{

Ṁ − 1

2

λ2(Mx )
2

Mxx

}
= 0.

The solution with the given boundary condition can be verified (by substitution) to be

M(t, x) = − 1

γ
e−γ x e− 1

2 λ
2(T −t)e−ζT .
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We see that the solution will depend on the terminal horizon T in general, unless we take
ζ = − 1

2λ
2. If ζ > − 1

2λ
2, then, if the manager can choose T , he would choose T = ∞. That

is, larger horizons would be better. On the other hand, if ζ < − 1
2λ

2, then smaller horizons
are preferable, and T = 0 would be chosen.

We now provide an argument for the case where the horizon is a random time, denoted
by τ . We again find that the choice ζ = − 1

2λ
2 is the one which gives indifference over the

horizon. Recall the problem (18) with ζ = − 1
2λ

2 can be written as

sup
(θu)t≤u≤τ

E[J (τ, X θτ )|Xt = x] (21)

If we can show that J (t, X θt ) is a super-martingale in general, and a martingale for the optimal
θ (J ≤ 0), then

J (t, x) = sup
(θu )t≤u≤τ

E[J (τ, X θτ )|X θt = x]

and we can write

J (t, x) = sup
τ

sup
(θu)t≤u≤τ

E[J (τ, X θτ )|X θt = x]

since J (t, x) does not depend on the horizon τ .
We now show these properties. Applying Itô’s formula to J (t, X θt ) and integrating gives

J (τ, X θτ ) = J (t, X θt )+
τ∫

t

J (s, X θs )

2

[
λ− γ θsσ

]2 ds −
τ∫

t

γ θsσ J (s, X θs )dBs

Provided the last term has zero expectation (e.g. if τ and θ are bounded) it follows that
EJ (τ, X θτ ) ≤ J (t, X θt ) for any θ , and using the optimal strategy solving the problem (21),
θ∗

s = λ
γ σ

, we have

sup
(θu)t≤u≤τ

E[J (τ, X θτ )] = J (t, X θt ).

Hence J (t, X θt ) is a super-martingale in general and a martingale for the optimal θ .

Proof of Proposition 3.1 We develop the HJB equation and associated conditions given in the

Proposition. In the continuation region (where G(x, v) > − 1
γ

e−γ (x+(v−K )+)), e
1
2 λ

2t G(x, v)
is a martingale under the optimal strategy and a supermartingale otherwise. The HJB equation
is derived using Ito’s formula, giving

0 = 1

2
λ2G + ξηvGv + 1

2
η2v2Gvv + sup

θ

{
θλσGx + 1

2
θ2σ 2Gxx + θσρηvGxv

}

Optimizing over θ gives

θ∗
t = −λGx − Gxvρηv

Gxxσ
(22)

and so

0 = 1

2
λ2G + ξηvGv + 1

2
η2v2Gvv − 1

2

(λGx + ρηvGxv)
2

Gxx
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We solve subject to the associated boundary condition, as well as at the constant exercise
threshold Ṽ (ρ,γ ), we must have value-matching and smooth-pasting conditions:

G(x, 0) = − 1

γ
e−γ x (23)

G(x, Ṽ (ρ,γ )) = − 1

γ
e−γ x e−γ (Ṽ (ρ,γ )−K )+ (24)

Gv(x, Ṽ (ρ,γ )) = e−γ x e−γ (Ṽ (ρ,γ )−K )+ I{Ṽ (ρ,γ )>K } (25)

Now we have a non-linear pde for the candidate solution for the optimization problem.
In order to complete the proof, we need to solve the pde and verify the resulting candidate
solution does indeed correspond to the value function. This is done in Proposition 3.2 and
the verification argument directly following.

Proof of Proposition 3.2 We want to solve the non-linear pde (12) subject to the associated
boundary, value matching and smooth pasting conditions. Proposing a solution of the form
G(x, v) = − 1

γ
e−γ x�(v)g gives

0 =
[
v�vη (ξ − λρ)+ 1

2
η2v2�vv + 1

2

�2
v

�
η2v2(g(1 − ρ2)− 1)

]
. (26)

Choosing g = 1
1−ρ2 eliminates the non-linear term, leaving

0 =
[
v�vη (ξ − λρ)+ 1

2
η2v2�vv

]
(27)

with corresponding conditions on �(v) (translated from the conditions in Proposition 3.1)

�(0) = 1 (28)

�(Ṽ (ρ,γ )) = e−γ (Ṽ (ρ,γ )−K )+(1−ρ2) (29)

�v(Ṽ (ρ,γ ))

�(Ṽ (ρ,γ ))
= −γ I{Ṽ (ρ,γ )>K }(1 − ρ2) (30)

We can now re-express the optimal strategy θ∗ given in (22) as

θ∗
t = λ

σγ
+ ρηv�v(v)

σγ (1 − ρ2)�(v)
(31)

Notice the first term in θ∗ is the optimal position in the risky asset P in the absence of the
option. The second term is a hedging component to reflect the optimal hedge for the option
risk with the risky asset P .

We propose a solution of the form �(v) = Cvψ , for some constant C which results in the
fundamental quadratic in ψ ,

ψ(ψ − 1)
η2

2
+ ψη(ξ − λρ) = 0. (32)

The two roots of the quadratic are

ψ = β(ρ) = 1 − 2(ξ − λρ)

η
, ψ = 0. (33)

That is, there are one non-zero and one zero root. It can be seen that the general form of the
solution must be �(v) = Cvβ

(ρ,γ ) + B, and (28) gives B = 1. We now have to decide when
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we can build a solution that value-matches and smooth-pastes. There are two possibilities.
If β(ρ) ≤ 0 (or equivalently ξ ≥ λρ + η

2 ) then C = 0, smooth pasting fails and there is no
solution. In this case, the entrepreneur postpones indefinitely. If β(ρ) > 0 (correspondingly
ξ < λρ + η

2 ), the entrepreneur will exercise at time τ .
In the case β(ρ) > 0, (29) gives the constant C < 0 and via (30) we solve for the optimal

investment threshold, Ṽ (ρ,γ ), as the solution to (13). We have finally (substituting for C),

�(v) = 1 − (1 − e−γ (1−ρ2)(Ṽ (ρ,γ )−K ))

(
v

Ṽ (ρ,γ )

)β(ρ)
. (34)

and hence the solution is of the form given.
Denote c = γ (1 − ρ2) for convenience. We now show that (13) has a unique solution

Ṽ (ρ,γ ) > K . It is sufficient to show that

f (v) = 1

c
ln

[
1 + cv

β(ρ)

]

satisfies f (0) = 0, f (v) > 0 and f ′′(v) < 0. Since β(ρ) > 0 we have f (v) > 0. Diffe-
rentiation shows f (v) is indeed concave in v, and thus (13) has a unique solution satisfying
Ṽ (ρ,γ ) > K .
Verification argument

The problem in (4) is to find

I∗ = sup
(τ,θ)∈A

E

[
− 1

γ
e
λ2
2 τ e−γ (Xθτ+(Vτ−K )+)|X θ0 = x, V0 = v

]

where A is a set of admissible pairs of stopping times τ and strategies (θt )0≤t≤τ . In particular,
A = ⋃

T,J,L AT,J,L where

AT,J,L = {τ : τ ≤ T ∧ H V
J , |θt | ≤ L}

and H V
J = inf{u : Vu ≥ J }.

We first remark that even in the standard Merton investment problem (16) (with a fixed
horizon), some condition on admissible strategies is required for the problem to be non-
degenerate. Further, once there is also a stopping problem, conditions are also required on

the stopping times τ . In the latter case, Qt = − 1
γ

e
λ2
2 t−γ Xθt is a negative local supermartingale.

For θt = λ
σγ

, it is a negative martingale which converges to zero almost surely. Hence

sup
τ finite,θ

E

[
− 1

γ
e
λ2
2 τ−γ Xθτ

]
= 0

However if we insist τ is bounded by T , say, then the martingale property gives

sup
τbounded
θbounded

E

[
− 1

γ
e
λ2
2 τ−γ Xθτ

]
= − 1

γ
e−γ x

Now we return to the verification argument for our problem. Recall from (29) and (34)
that

�(v) =
{

e−γ (1−ρ2)(v−K )+; v ≥ Ṽ (ρ,γ )

(1 − Cvβ
(ρ)
); v < Ṽ (ρ,γ )

123



126 V. Henderson

where C, Ṽ (ρ,γ ) are chosen to satisfy value-matching and smooth-pasting. Let Zt = − 1
γ

e
λ2
2 t−γ Xθt �(Vt )

1
1−ρ2 . Then, given (τ, θ) ∈ A it is straightforward to show that Zt is a true

supermartingale. Hence for (τ, θ) ∈ A,

E

[
− 1

γ
e
λ2
2 τ e−γ Xθτ−γ (Vτ−K )+

]
≤ Z0 = − 1

γ
e−γ x�(v)

1
1−ρ2

and it follows that

I∗ ≤ − 1

γ
e−γ x�(v)

1
1−ρ2

To deduce the reverse inequality it is sufficient to show that for some admissible (τn, θn)

we obtain

E

[
− 1

γ
e
λ2
2 τn e−γ Xθnτn −γ (Vτn −K )+

]
≥ I∗ − ε

This can be achieved by using τn = inf{u : Vu ≥ Ṽ (ρ,γ )} ∧ n and θn = λ
σγ

+ ρηV�v(V )
σγ (1−ρ2)�(V )

for t ≤ τn . (Note θn is bounded for V ≤ Ṽ (ρ,γ ).) The proof of this part of the verification
relies on the fact that even though P(τ > n) does not tend to zero, on (τ > n) we have

Vt → 0 and e−γ (Vτn −K )+ = 1 = limV ↓0 �(V )
1

1−ρ2 .

Proof of Proposition 3.3 Let β(ρ) > 0. We compare the value function in Proposition 3.2
with the value function achieved having no option, but with an adjusted initial wealth of
x + p(ρ,γ ). That is, p(ρ,γ )(v) solves G(x, v) = G(x + p(ρ,γ )(v), 0).

To obtain the second result of the proposition, we want to express p(ρ,γ )(v) as an optimal
stopping problem. Rewrite the option value as p(ρ,γ )(v) = − 1

γ (1−ρ2)
ln�(v) where �(v)

was given in (34). We guess an optimal stopping representation for �(v) as

�̂(v) = inf
τ bounded

E[D0
τ e−γ (1−ρ2)(Vτ−K )+|V0 = v]

It can be verified that �̂(v) satisfies the pde (27) and associated conditions, hence �̂(v) = �(v)

and the representation in the proposition holds.

Proof of Proposition 3.4 Part (i) in both (A) and (B) are straightforward from the definitions.
We distinguish between the different cases forβ(ρ,γ ). Consider first the case whereβ(ρ,γ )>1.
Write c = γ (1 − ρ2). To show (ii) in both (A) and (B), observe from (13)

Ṽ (ρ,γ ) − K = 1

c
ln

(

1 + cṼ (ρ,γ )

β(ρ,γ )

)

≤ 1

c

cṼ (ρ,γ )

β(ρ,γ )
= Ṽ (ρ,γ )

β(ρ,γ )

So if β(ρ,γ ) > 1, we have Ṽ (ρ,γ ) ≤ β(ρ,γ )

β(ρ,γ )−1
K . Observe also that x − x2

2 ≤ ln (1 + x) ≤ x

gives Ṽ (ρ,γ ) ≥ β(ρ,γ )

β(ρ,γ )−1
K − c(Ṽ (ρ,γ ))2

2(β(ρ,γ ))2(β(ρ,γ )−1)
. Letting c ↓ 0 gives Ṽ (ρ,γ ) ≥ β(ρ,γ )

β(ρ,γ )−1
K .

Putting these observations together gives Ṽ (ρ,γ ) → Ṽ (1) as ρ → 1 and Ṽ (ρ,γ ) → Ṽ (ρ) as
γ → 0. Part (iii) can be shown similarly via the valuation formula in Proposition 3.3.

Now we turn to the case where 0 < β(ρ,γ ) < 1. There exists y∗ = y∗(β(ρ,γ )) such that
for y ∈ (0, y∗), ln (1 + y) ≥ β(ρ,γ )y. Observe also that if ln (1 + cx

β(ρ,γ )
) ≥ c(x − K ) then

Ṽ (ρ,γ ) ≥ x . So for xc
β(ρ,γ )

≤ y∗(β(ρ,γ )),

ln

(
1 + xc

β(ρ,γ )

)
≥ β(ρ,γ )

xc

β(ρ,γ )
= xc > c(x − K )
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and so Ṽ (ρ,γ ) ≥ x . Since this is true for each x ≤ β(ρ,γ )y∗(β(ρ,γ ))
c , it is true for x =

β(ρ,γ )y∗(β(ρ,γ ))
c . Hence Ṽ (ρ,γ ) ≥ β(ρ,γ )y∗(β(ρ,γ ))

c . Let c ↓ 0. Then Ṽ (ρ,γ ) ↑ ∞. So for

0 < β(ρ,γ ) < 1, Ṽ (ρ,γ ) → Ṽ (1) = ∞ as ρ → 1 and Ṽ (ρ,γ ) → Ṽ (ρ) = ∞ as γ → 0.
The case where β(ρ,γ ) = 1 can be treated similarly. The final possibility where β(ρ,γ ) < 0

is special because all quantities are infinite in this case.

Proof of Proposition 5.1 We first show the convexity results in Part I of each (i)–(iii). Straight-
forward differentiation of the option value in the non-priced idiosyncratic risk model and
complete model gives these are convex in v. The incomplete utility-based model is more
complicated. Differentiating (14) twice in v, we obtain

∂2

∂v2

{
p(ρ,γ )(v)

}
= −β

(ρ,γ )

cv2 (1 − ecp(ρ,γ ) )
[
β(ρ,γ )ecp(ρ,γ ) − 1

]

where c = γ (1 − ρ2). The term outside the square brackets is positive for any β(ρ,γ ) > 0.
Now observe that if β(ρ,γ ) ≥ 1, the term inside the square brackets is positive also, and
overall the second derivative is greater than zero. We have now shown all results in Part I of
(i) as well as Part I of (iii).

We show the result of Part I of (ii) by noting that ifβ(ρ,γ ) < 1, the sign of the square bracket
term is indeterminate and the second derivative may be of either sign. Using the expression for
p(ρ,γ ) and rearranging gives convexity will hold if (1 − e−c(Ṽ (ρ,γ )−K ))(v/Ṽ (ρ,γ ))β > 1 −β.
For small values of v, this inequality will never hold, and hence p(ρ,γ )(v) is concave. For large
values of v ≈ Ṽ (ρ,γ ), (v/Ṽ (ρ,γ ))β ≈ 1 and it can be shown that 1−e−c(Ṽ (ρ,γ )−K ) > 1−β. For
v close to the optimal threshold, p(ρ,γ ) is convex. Note that these conclusions are independent
of the size of c and therefore do not depend on the size of γ .

Now we prove the relationships between option value and volatility given in II of (i)–(iii).
Recall δ(ρ) is fixed. We treat the benchmark models first. It is straightforward to show if
δ(ρ) > 0 or equivalently β(ρ) > 1 then ∂

∂η
β(ρ) < 0 and ∂

∂η
Ṽ (ρ) > 0. Both derivatives are

zero if β(ρ) = 1. Expressing the derivative of the option value with respect to volatility as

∂p(ρ)(v)

∂η
= ∂p(ρ)(v)

∂β(ρ)

∂β(ρ)

∂η
+ ∂p(ρ)(v)

∂ Ṽ (ρ)

∂ Ṽ (ρ)

∂η
(35)

it is easy to show that ∂p(ρ)

∂ Ṽ (ρ)
= 0 and ∂p(ρ)

∂β(ρ)
< 0. Putting these together gives ∂p(ρ)

∂η
> 0 in the

non-priced idiosyncratic risk model. All of the above goes through for the complete model
with the superscripts changed from ρ to 1. We have therefore shown Part II of (i) for the
benchmark models.

Now we turn to the incomplete utility-based model. If β(ρ) > 1 then ∂
∂η
β(ρ) < 0 and

∂
∂η

Ṽ (ρ,γ ) > 0. These signs are reversed if β(ρ) < 1. Both derivatives are zero if β(ρ) = 1.

Now consider the option value p(ρ,γ )(v). Again, straightforward differentiation gives
∂

∂β(ρ)
p(ρ,γ )(v) < 0 and ∂

∂ Ṽ (ρ,γ )
p(ρ,γ )(v) = 0. Combining these results via the equivalent

expression to (35), we see that in the case β(ρ) > 1, ∂p(ρ,γ )

∂η
> 0 and in the case β(ρ) < 1, we

have ∂p(ρ,γ )

∂η
< 0. This shows the remaining part of II (i), and the results of II of (ii) and (iii).
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