
VALUATION OF CLAIMS ON NONTRADED ASSETS USING

UTILITY MAXIMIZATION

Vicky Henderson

Nomura Centre for Quantitative Finance,
Mathematical Institute, Oxford

A topical problem is how to price and hedge claims on nontraded assets. A natural approach is to
use for hedging purposes another similar asset or index which is traded. To model this situation, we
introduce a second nontraded log Brownian asset into the well-known Merton investment model with
power law and exponential utilities. The investor has an option on units of the nontraded asset and
the question is how to price and hedge this random payoff. The presence of the second Brownian
motion means that we are in the situation of incomplete markets. Employing utility maximization and
duality methods we obtain a series approximation to the optimal hedge and reservation price using
the power utility. The problem is simpler for the exponential utility, and in this case we derive an
explicit representation for the price. Price and hedging strategy are computed for some example
options and the results for the utilities are compared.
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1. INTRODUCTION

Valuing claims on nontraded assets presents new challenges in option pricing theory.

An agent expects to receive or pay out a claim on a nontraded asset, and must decide

how to best manage this risk. One method is to choose another similar asset or index

which is traded and use this for hedging purposes. Clearly the higher the correlation

between the traded and nontraded assets, the better we expect the hedge to perform.

However, there is a need to quantify such statements and to give a framework under

which we evaluate the optimal hedge and reservation price using a close asset. This is

the objective of the paper.

To model these ideas mathematically, we introduce a second asset into the Merton

investmentmodel (Merton1969)onwhichno trading is allowed. In theMertonmodel, the

agent seeks to maximize expected utility of terminal wealth using either the exponential

utility or the power law utility. We consider each of these utilities in this paper.

When the asset price follows exponential Brownian motion, the optimal behavior for

an agent in the two models is well known: for the power utility a constant proportion of
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wealth is invested in the risky asset; for the exponential case, the cash amount invested

is constant. Now suppose the investor has an option on the second nontraded asset,

payable at time T . The problem is how to price and hedge this random payoff when

trading in the second asset is not permissible. This is an incomplete markets problem

and this type of risk is often called basis risk. In the finance literature, these problems

are described as involving background risks, a typical example being labor income risk

(see Franke, Stapleton, and Subrahmanyam 2001).

These problems occur often in practice. In many situations, the underlying assets can

be traded (e.g., stocks in a basket); however, transactions costs may make it preferable

to hedge with an index. Examples of this include a portfolio of illiquid shares hedged

with index futures, a basket option hedged with an index, or a five-year futures contract

hedged with a one-year futures contract. Illiquidity is also common in problems of

commodity hedging. Another area where claims involving nontraded assets occur

frequently is that of real options (see Dunbar 2000 and Dixit and Pindyck 1994).

A related problem involving stochastic income has been examined in the literature,

beginning with He and Pagès (1993). El Karoui and Jeanblanc-Pique (1998) and Cuoco

(1997) both assumed the income is spanned by assets but imposed a liquidity

constraint. Duffie et al. (1997) and Koo (1998) considered infinite-horizon optimal

consumption and investment with stochastic income imperfectly correlated with the

risky asset. Numerical solutions were given in Munk (2000) using a Markov chain

approximation. Duffie and Jackson (1990) and Svensson and Werner (1993) each

considered a number of simple examples, and Duffie and Richardson (1991) found

explicit solutions under a quadratic utility.

Detemple and Sundaresan (1999) studied a nontraded asset model as a special case

of a portfolio constraint. Values were obtained numerically in a trinomial model of

asset prices. Zariphopoulou (2001) studied a related general problem of utility

maximization under constant relative risk aversion (CRRA) and employed a

transformation to reduce the PDE to a linear one. The coefficients of the diffusion

price process for a traded asset depend on a ‘‘stochastic factor’’ correlated with the

asset price, creating unhedgeable risks. An example in Zariphopoulou looks at

nontraded assets by obtaining price bounds for claims on the traded asset, where the

price process is affected by the nontraded asset. The present paper and an earlier paper

by Henderson and Hobson (2000) differ from Zariphopoulou by directly pricing a

claim on a nontraded asset by including it in the utility from wealth.

Davis (2000) applied the dual approach to nontraded assets with the exponential

utility function. Under exponential Brownian motion, he obtained an expression for

the optimal hedge involving the solution to a nonlinear PDE. Hobson (1994) took the

primal approach to the same problem and also obtained the hedge as a solution to a

nonlinear PDE. Rouge and El Karoui (2000) used exponential utility in a portfolio

constraints model. They related the price equation, a backward SDE, with minimal

entropy. In a general semimartingale model, Becherer (2001) examined utility methods

for nonreplicable claims under exponential utility. He specialized to a semicomplete

product model and a Markov-type model driven by an Itô process for the traded asset

prices and a multivariate point process representing some untradable factors of risk.

Our model considers agents with either constant relative risk aversion (power law

utility) or constant absolute risk aversion (exponential utility). As is often the case, it

appears that for the power utility there is no closed-form solution for the utility

maximization problem in our model, as the PDE resulting from the stochastic control

problem is highly nonlinear. We assume that the money value in the nontraded asset is
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small compared with wealth and that the payoff is bounded below. Under these

assumptions, we ‘‘guess’’ the hedge and prove optimality using a dual approach. From

this we obtain a series expansion for the value function and reservation price. The use

of an expansion enables us to avoid solving the PDE numerically and allows for easier

interpretation.

However, in the case of exponential utility, the problem is simpler. By separating

wealth out of the problem, we reduce the PDE to a linear one and solve it directly to

obtain an explicit price. Although the optimization problem for the exponential utility

is more straightforward, the resulting price is wealth independent. As highlighted by

Rouge and El Karoui (2000), this is not always desirable since it is unrealistic to assume

that agents with different endowments have the same attitude toward risk. This may be

particularly important in some applications. We compare the results from the two

utilities with some interesting results.

Two examples, a call option and a power payoff, are used throughout the paper and

prices and hedges are calculated from the general results. See Tompkins (1999) for a

discussion of the uses of power style options in practice.

The remainder of the paper is organized as follows. Section 2 sets up our model with

an additional nontraded asset and defines the value function for the problem. The

complete markets case when the nontraded asset can be perfectly replicated is treated in

Section 3. Section 4 considers the incomplete case for the power utility and we give an

expansion for the value function of the agent as well as for her reservation price and the

optimal strategy. The price and strategy are computed for the two example options. In

Section 5 we give explicit results for the exponential utility and specialize to the

examples. Section 6 concludes.

2. THE MERTON PROBLEM WITH AN ADDITIONAL NONTRADED
ASSET

We consider the problem of an agent faced with receiving (or paying) a claim on a risky

asset on which trading is not possible, or not allowed. The agent must decide how best

to price and hedge this claim. Note that we refer to the asset as nontraded; however,

this can be interpreted in a number of ways. The asset may not be traded at all or it

may be traded but the agent would prefer not to trade for efficiency reasons. One case is

when it is illiquid and too expensive to trade, and another may be when the agent is not

permitted to trade in the asset, as with many executive stock options.

Begin by assuming the nontraded asset S follows an exponential Brownian motion

dS
S

¼ mdt þ gdZ;ð2:1Þ

where Z is a Brownian motion and m and g are constants. The price S can be observed

in the market at all times. We will take r ¼ 0 throughout the paper for simplicity,

although this is equivalent to using discounted variables. The agent is to receive (or

pay) an option with payoff hðST Þ at a future time T < 1. A natural idea to

approaching this problem is to look for a close or similar asset that is traded in the

market, and use this asset to hedge the position. Introduce a traded asset P ,
dP
P

¼ ldt þ rdB;ð2:2Þ

where B is correlated to the Brownian motion Z, with correlation q. The idea is

to choose P such that q is high, so we are mainly concerned with high, positive q.
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In practice, the asset P may be a related index or another stock from the same industry

group. This setup was used by Hubalek and Schachermayer (2001) to show that no-

arbitrage is not sufficient to price the claim uniquely, and it was also used byDavis (2000).

It is convenient to think of Z as a linear combination of two independent Brownian

motions B and W . Thus

Zt ¼ qBt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
W t:

For jqj < 1 we are in an incomplete market situation since we cannot trade on S and

therefore W .

Our agent’s aim is to maximize expected utility of wealth, where, in addition to funds

generated by trading, the agent is to receive (or pay out) k units of the claim hðST Þ. The
value function of the agent is given by

V ðt;X t; St; kÞ ¼ sup
ðhuÞu�t

Et½UðXT þ khðST ÞÞ
:ð2:3Þ

We will consider two forms of utility function. First, those utilities with constant

relative risk aversion of the form UðxÞ ¼ x1�R

1�R for R > 0;R 6¼ 1, and second, those with

constant absolute risk aversion UðxÞ ¼ � 1
c e�cx; c > 0. The results for the power law

utility can be adapted for logarithmic utility by setting R ¼ 1. We leave this for the

interested reader.

For the first choice of family of utility functions, utility is only defined for positive

wealth. Wealth is given by XT ¼ X t þ
R T

t huðdPu=PuÞ for some adapted h which is

constrained to ensure that XT þ khðST Þ > 0 almost surely; see Karatzas and Shreve

(1987, Chap. 5.8). Note that ht is the cash amount invested in the traded asset P at time

t. For this wealth restriction to hold, we need the following assumption on the payoff.

Assumption 2.1. Either

(i) 0 � h � b (e.g., put option) and k can be positive or negative; or

(ii) h � 0 but not bounded above (e.g., call option) and k can only be positive.

If h is not nonnegative but is bounded below by �c, then it will turn out that by

considering ~hh ¼ h þ c our results still hold.

This assumption allows for three of the four simple option positions. When this

assumption does not hold (say for a short call, where h is not bounded above but k < 0)

we have that V is identically minus infinity for the power law utility (a problem

common to many utility functions) because the potential obligation is unbounded, and

no hedging strategy can completely remove the risk. To see this, recall that ST is the

product of a term measurable with respect to the filtration of B and a random part

eg
ffiffiffiffiffiffiffiffi
1�q2

p
W T that is independent of B and unbounded above. In particular, for any XT

that can be generated from a finite initial fortune x, and investments in the traded asset
P , we have

PðXT þ khðST Þ < 0Þ > 0:

Since for the power utility, U � �1 on the negative real line, we have

V ðt;X t; St; kÞ ¼ �1; jqj < 1; t < T :

This problem with unbounded payoffs also prevents the exponential utility from

coping with the short call since EUð�ðST � KÞþÞ ¼ �1. However in this case

Assumption 2.1 is a stronger assumption on the payoff than is necessary. (This is

discussed further in Section 5.)
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The value function in (2.3) is a modification of the traditional Merton (1969)

problem to include the additional payoff. We can thus think of this problem as the

Merton wealth problem adjusted to include the nontraded asset. In the simple Merton

problem with power utility we have

V ðt; xÞ ¼ sup
ðhuÞu�t

Et½UðXT ÞjX t ¼ x
 ¼ x1�R

1� R
exp

1

2

l2

r2
ð1� RÞ

R
ðT � tÞ

� �
;ð2:4Þ

and if pt ¼ ht
X t
is the proportion of wealth invested in the risky asset, then

p�
t ¼

l
r2R

;ð2:5Þ

which is constant, the so-called Merton proportion. Similarly for the Merton problem

with exponential utility, we have

V ðt; xÞ ¼ sup
ðhuÞu�t

Et½UðXT ÞjX t ¼ x
 ¼ � 1

c
e�cxe�

1
2
l2

r2
ðT�tÞð2:6Þ

and

h�t ¼
l

cr2
:ð2:7Þ

Now return to the problem with random endowment, h. We first show that V exists

in ð�1;1Þ for each of the utility functions. Under Assumption 2.1, if (ii) holds so

h � 0 and k > 0 then V ðt; x; s; kÞ � V ðt; x; s; 0Þ where the ‘‘no claim’’ position is given in
(2.4) or (2.6) above. When (i) holds, kh � �jkjb so XT þ khðST Þ � XT � jkjb and

V ðt; x; s; kÞ � V ðt; x � jkjb; s; 0Þ.
Now we can find a simple upper bound for V by considering the dual problem. The

reader is referred to Karatzas et al. (1991) for a description of the dual approach. The

problem is to maximize EðUðXT þ khðST ÞÞÞ over feasible values of the terminal wealth
XT . For a positive random variable K, consider

E UðXT þ khðST ÞÞ � K XT � x þ
Z T

t
ht

dP
P

� �� �� �

¼ EfUðXT þ khðST ÞÞ � KðXT þ khðST ÞÞg þ EfKðx þ khðST ÞÞg þ E K
Z T

t
ht

dP
P

� �
:

Suppose K is of the form K ¼ adQ=dP for some change of measure Q such that P is a

Q martingale and positive constant a. Then, with ~UUðyÞ ¼ supxðUðxÞ � xyÞ,

sup
XT

EfUðXT þ khðST ÞÞg � inf
K
Ef ~UUðKÞ þ Kðx þ khðST ÞÞg

¼ inf
a
inf
Q

EP ~UU a
dQ
dP

� �� �
þ ax þ kaEQhðST Þ

� �
:

The problem is now to choose K in an optimal fashion. Set

dQ
dP

¼ exp � l
r

BT � l2

2r2
T

� �
¼ dQ0

dP
;

where Q0 is the minimal martingale measure. This makes the price process P into a

martingale without affecting the Brownian motion W . Under the minimal martingale
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measure of Föllmer and Schweizer (1990), processes contained within the span of the

traded assets (such as rBt þ lt) become martingales, and martingales that are

orthogonal to this space are unchanged in law. Thus, under the minimal martingale

measure Q0,

dS
S

¼ mdt þ gqdB þ g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
dW

¼ m � gql
r

	 

dt þ gq

r
ðrdB þ l dtÞ þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
dW ;

where the final two terms in the last expression are both martingales. Thus S has drift

d ¼ m � lqg
r under Q0.

We nowuse the formof the twoutilities. For the power law utilityUðxÞ ¼ x1�R=ð1� RÞ
we have ~UUðyÞ ¼ ðR=ð1� RÞÞyðR�1Þ=R. The exponential utility UðxÞ ¼ � 1

c e�cx gives
~UUðyÞ ¼ y

c ½ln y � 1
.
Then

EP ~UU a
dQ
dP

� �� �
¼ R

1� R
aðR�1Þ=RA

for the power utility, where

A ¼ efmð1�RÞ=RgT

and m ¼ 1
2

l2

r2R. Similarly,

EP ~UU a
dQ
dP

� �� �
¼ a

c
ðln a � 1Þ þ a

c
l2

2r2
T

for the exponential utility.

The minimization over a involves finding the minimum of

R
1� R

aðR�1Þ=RA þ aðx þ kE0hðST ÞÞ

for the power law, and the exponential utility gives

a x þ kE0hðST Þ þ
l2

2cr2
T � 1

c

� �
þ a

c
ln a:

The minimum and the upper bound for UðxÞ ¼ x1�R

1�R is now easily seen to be

1

1� R
ARðx þ kE0t hðST ÞÞ1�R ¼ V ðt; x; s; 0Þ 1þ k

x
E0t hðST Þ

� �1�R

;

where V ðt; x; s; 0Þ is given in (2.4), while UðxÞ ¼ � 1
c e�cx gives

� 1

c
e�cx�ckE0hðST Þ� l2

2r2
T ¼ V ðt; x; s; 0Þe�ckE0hðST Þ

with V ðt; x; s; 0Þ from (2.6).

The value function can be used to find the price that the agent is prepared to pay for

the claim khðST Þ. The common procedure for pricing in a utility maximization

framework is to compare the expected utility for an agent who does not receive any

units of the claim to the expected utility of the agent who receives khðST Þ. The
adjustment to the initial wealth which makes these values equal gives the so-called
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reservation price of the option. Equivalently, the investor is indifferent between the

investment problem with zero endowment and the problem with the additional

opportunity to buy the claim. Mathematically, given an initial (time 0) wealth of x0, the
reservation price is the solution to the equation V ð0; x0 � p; s0; kÞ ¼ V ð0; x0; s0; 0Þ; see
Hodges and Neuberger (1989).

3. THE COMPLETE MARKETS CASE

If the correlation between B and Z is one, there is only one source of risk. We may

compute the price and hedge directly, as there will be a unique martingale measure.

With q ¼ 1, dS=S ¼ gdB þ mdt, giving the relationship

dS
S

¼ g
r

dP
P

þ m � lg
r

	 

dt:

The measure under which P is a martingale must also make S into a martingale. Call

this measure �QQ and we must have m ¼ gl=r, otherwise the model would allow for

arbitrage.

We wish to solve the utility maximization problem in (2.3). By considering the new

wealth variable Y t ¼ X t þ k�CCt, where �CCt ¼ E
�QQ
t hðST Þ, we can solve the problem explicitly

in this case. Define �CCS
t ¼ @

@S E
�QQ
t hðST Þ, �CCSS

t ¼ @
@S

�CCS
t . By using the PDE for �CC,

_�CC�CC þ 1
2
�CCSSS2g2 ¼ 0;

Y solves

dY ¼ h þ k�CCS
t Stg
r

� �
rdB þ h þ k�CCS

t Stg
r

� �
ldt ¼ ~hhtðrdB þ ldtÞ;

where ~hh ¼ ðh þ k�CCS
t Stg=rÞ, and the agent seeks to maximize EUðY T Þ. This corresponds

to the Merton (1969) problem, with a modified strategy.

We treat each utility in turn. From the results of Section 2, the optimal ~hh for the

power utility is l
r2R Y t and h�, the optimal amount of cash invested in P , is

h�ðt; x; s; kÞ ¼ l
r2R

y � g
r

k�CCS
t s ¼ l

r2R
ðx þ k�CCtÞ �

g
r

k�CCS
t s:ð3:1Þ

Using wealth Y , the value function is given by

V ðt; x; s; kÞ¼ Et½UðY T Þ
 ¼
y1�R

1� R
eð1�RÞmðT�tÞ

¼ x1�R

1� R
eð1�RÞmðT�tÞ 1þ k�CCt

x

� �ð1�RÞ
:

Using the exponential utility and the results of Section 2, the optimal ~hh is l
cr2 and

h�ðt; x; s; kÞ ¼ l
cr2

� g
r

k�CCS
t s:

The value function is given by

V ðt; x; s; kÞ ¼ � 1

c
e�cye�

1
2
l2

r2
ðT � tÞ ¼ � 1

c
e�cðxþk�CCtÞe�

1
2
l2

r2
ðT � tÞ:

For both utilities, we can follow the arguments at the end of the previous section to

obtain the price the agent will pay for khðST Þ:
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p ¼ k�CCt ¼ kE
�QQ
t hðST Þ:ð3:2Þ

This is the expected value of the claim under the risk neutral measure �QQ, as must be the
case in a complete market. This complete market analysis does not require the

restrictions on the payoff given in Assumption 2.1, and it is valid for short call options.

We treat the two utility functions separately in Sections 4 and 5. Comparisons are

drawn between the two sets of results in Section 5.

4. THE INCOMPLETE CASE: POWER LAW UTILITY

In this section we concentrate on the power utility UðxÞ ¼ x1�R

1�R. As described earlier, if

jqj < 1, the market is incomplete as the position in S cannot be replicated with P . We

assume that the value of the claim under the minimal martingale measure kE0t hðST Þ is
small relative to current wealth x. Henderson and Hobson (2000) concentrate on the

case where the claim is proportional to the share price ST ; i.e., hðST Þ ¼ ST . This allowed

scalings within the problem to be exploited to reduce the dimensionality by one. The

resulting nonlinear PDE was approached using a series expansion. If we follow a

similar approach here and derive the PDE associated with the value function, we have

an extra variable. Using the value function in (2.3), write

V ðt;X t; St; kÞ ¼ sup
ðhuÞu�t

X 1�R
t

1� R
E

XT

X t
þ khðST Þ

X t

� �1�R

¼ X 1�R
t

1� R
gðT � t; St;X tÞ;ð4:1Þ

where gð0; s; xÞ ¼ ð1þ khðsÞ
x Þ1�R.

Using Itô on V and the fact that V is a supermartingale under any h and a martingale
under the optimal strategy gives

ð� _gg þ gsSm þ 1

2
gssS

2g2Þ þ
½lðgx þ gð1�RÞ

X Þ þ rqgðgxsS þ gsð1� RÞ S
XÞ


2

4r2ð12 gxx � 1
2 gRð1 � RÞ=X 2 þ gxð1� RÞ=X Þ

¼ 0:ð4:2Þ

This is a nonlinear PDE in three variables, and the method used in the linear case

does not seem straightforward. In this paper we take a different approach to treat the

general claim hðST Þ. Since scaling can no longer be used, we conjecture the form of the

optimal strategy. We verify that this strategy gives an upper and lower bound on

the value function and these bounds agree to order k2. For this approach, we need to
assume kE0t hðST Þ=x is small.
In the main theorem below, we prove that our conjecture for the optimal strategy is

indeed optimal, and we derive an expansion for the value function V 2 up to order k2.
Recall that Q0 is the minimal martingale measure for P .

Theorem 4.1.

(1) Define Ct ¼ E0t hðST Þ, CS
t ¼ @

@S E
0
t hðST Þ. For h and k satisfying Assumption 2.1 and

UðxÞ ¼ x1�R

1�R, the optimal strategy h� is given by

h�ðt; x; s; kÞ ¼ h1ðt; x; s; kÞ þ oðkÞð4:3Þ

with

h1ðt; x; s; kÞ ¼
l

r2R
ðx þ kCtÞ �

gq
r

ksCS
t :ð4:4Þ

(2) Using h1 we define
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V 2ðt; x; s; kÞ ¼
x1�R

1� R
eð1�RÞms 1þ k

Ct

x

�
� :

k2

2
Rg2ð1� q2ÞÊE

Z T

t

S2uC
S2
u

X 02

u

du

!1�R

;ð4:5Þ

where dP̂P
dP ¼ expðlð1�RÞ

rR BT � 1
2
ðlð1�RÞ

rR Þ2T Þ. Then for k and h satisfying Assumption 2.1 and

UðxÞ ¼ x1�R

1�R, the value function V ðt; x; s; kÞ is given by

V ðt; x; s; kÞ ¼ V 2ðt; x; s; kÞ þ oðk2Þ:ð4:6Þ
We first consider some examples before returning to prove the theorem.

Example 4.1. Taking hðST Þ ¼ ðST � �KKÞþ gives the important example of a call

option. We must have k > 0 (since h is not bounded above), thus the agent is long a call
option. We can evaluate the price under the minimal martingale measure Q0. Recall

that under this measure S has drift d ¼ m � lqg
r ; hence

E0t ðST � �KKÞþ ¼ Ct ¼ edðT�tÞsNðdþÞ � �KKNðd�Þ;ð4:7Þ

where d� ¼ ln s
�KKþðd�1

2g
2ÞðT�tÞ

gðT�tÞ and

@

@S
E0t ðST � �KKÞþ ¼ CS

t ¼ edðT�tÞNðdþÞ;

giving an optimal hedging strategy of

h�t ¼
lx
r2R

þ kedðT�tÞsNðdþÞ
l

r2R
� gq

r

h i
� k

l�KK
r2R

Nðd�Þ þ oðkÞ:ð4:8Þ

If k ¼ 0 we regain the Merton ‘‘constant proportion of wealth’’ hedge of (2.5). Taking

d ¼ 0 and q ¼ 1 we recover the complete case of Section 3.

We can examine the effect of changing q on hedge. To get a comparison, we fix l and d,
the drift of S under Q0. This means that m, the real world drift, varies with q. Figure 4.1

FIGURE 4.1. The optimal hedge h1 for the claim ðST � �KKÞþ for 0:5 � q � 1. Utility is

power law. Note that the hedge is net of the Merton hedge (2.5), which is 326.53 in this

example. Parameter values are k ¼ 0:01, s ¼ 100, T ¼ 1, �KK ¼ 100, x ¼ 500, R ¼ 0:5,
l ¼ 0:04, g ¼ 0:30, r ¼ 0:35, m ¼ lgq

r , and d ¼ 0.
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shows hedge h1 net of the Merton hedge in (2.5). Thus zero represents the Merton

strategy. For this choice of parameters, the agent holds less of the asset than the

Merton hedge, and this decreases with correlation. When q ¼ 0, the agent follows a

strategy close to the no claim Merton strategy (in (2.5)) as the traded asset is of no use

in reducing risk. This strategy deviates from Merton as correlation increases. In Figure

4.2, the effect of changing S on the strategy is displayed. If we fix S then we recover the
behavior displayed in Figure 4.1. If S is low, and the option is out-of-the-money, then it
is optimal to use the no claim Merton hedge given as zero on the graph. If S is large,

and the option is far in-the-money, the hedge differs most from the Merton hedge.

Example 4.2. Taking hðST Þ ¼ S2T , we have a ‘‘power’’ payoff. Again we need k > 0

for Assumption 2.1 to hold. This example is used because the price can be calculated

explicitly.

Ct ¼ E0S2T ¼ s2eð2dþg2ÞðT�tÞð4:9Þ
CS

t ¼ 2seð2dþg2ÞðT�tÞ

h�t ¼
lx
r2R

þ ks2eð2dþg2ÞðT�tÞ l
r2R

� 2gq
r

� �
þ oðkÞ:

Interestingly, the sign of the k term in the hedge depends on ð l
r2R �

2gq
r Þ where the

power 2 appears in the second term. For the call example in (4.8) the same factor

decides the sign but the power is 1.

Proof of Theorem 4.1. We demonstrate that the strategy h1 is optimal and derive

an expansion for the value function by exhibiting upper and lower bounds for the

supremum of expected utility which agree to order k2.
The exposition for the lower bound requires the fact that khðST Þ � 0 almost surely.

Under Assumption 2.1(ii), this is satisfied. Under (i), we have two cases. If k > 0 then

FIGURE 4.2. The optimal hedge h1 for the claim ðST � �KKÞþ for 0:5 � q � 1 and

40 � s � 160. Utility is power law. Note that the hedge is net of the Merton hedge

(2.5). Parameter values are k ¼ 0:01, T ¼ 1, �KK ¼ 100, x ¼ 500, R ¼ 0:5, l ¼ 0:04,
g ¼ 0:30, r ¼ 0:35, m ¼ lgq

r , and d ¼ 0.
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again khðST Þ � 0. If k < 0 we write �jkjh ¼ �jkjb þ jkjðb � hÞ. Thus the payoff has a

positive componentminus a constant. In ourmodel, prices for claims are nonlinear due to

the appearance of ðCSÞ2. Thus, taking two claims h1 and h2, we could not simply compute
the second-order term for the sum h� ¼ h1 þ h2 by adding components.However, if h1 is a
constant, then ðCS

1Þ
2 þ ðCS

2Þ
2 ¼ ðCS

�Þ
2 and the sumof the second-order terms (only one of

which is nonzero) is equal to the second-order term for the sum. Hence we can split our

claim h into a constant part (�b) and a positive component (b � h).

The Lower Bound. Consider first the zero endowment problem where ðX 0
t ; h

0
t Þ is the

optimal wealth, strategy pair. Then dX 0
t ¼ h0t dP t=P t with h0t ¼ ðlX 0

t Þ=ðr2RÞ and

X 0
t ¼ x0 exp

l
rR

Bt þ
l2

r2R
t � l2

2r2R
t

� �
:

Now consider the problem with a random endowment of khðST Þ at time T . We

would like to consider the strategy in Theorem 4.1. However, with this strategy we

cannot guarantee that wealth remains positive, so we use a localized version.

Fix K and let

HK ¼ inf u :

Z u

0

1

X 0
t

� l
r2R

Ct þ
gq
r

StCS
t

	 
 dP
P

� ldt
R

� �
¼ K

� �
:

Suppose k < 1
2
K�1. Consider the wealth process X 1;K generated from an initial fortune

x0 using the strategy

h1;Kt ¼ l
r2R

ðX 1;K
t þ kCtI ðt<HK ÞÞ �

gq
r

kStCS
t I ðt<HK Þ:

Then X 1;K
t is given by

X 1;K
t ¼ X 0

t 1þ k
Z t^HK

0

1

X 0
u

l
r2R

Cu �
qg
r

SuCS
u

	 
 dPu

Pu
� l

R
du

� �� �
:

Note that on HK < T we have X 1;K
T ¼ X 0

T ð1� kKÞ and indeed more generally

X 1;K
T � X 0

T ð1� kKÞ. In particular, the localization times HK allow us to bound the

wealth process from below.
Now consider the sum of the wealth process and the random endowment. It is

convenient to consider Zk;K
t ¼ X 1;K

t þ kCt. On t � HK , using the PDE satisfied by the

option price C we have

dZk;K
t ¼ l

r2R
Zk;K

t
dP
P

þ kStCS
t g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

so that, still with t � HK ,

Zk;K
t ¼ X 0

t 1þ k
E00hðST Þ

x0
þ
Z t

0

SuCS
u

X 0
u

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �� �
:

Also, Zk;K
T ¼ X 1;K

T þ khðST Þ � X 0
T ð1� kKÞ þ khðST Þ � X 0

T ð1� kKÞ.
From Taylor’s expansion we have Uðy þ hÞ ¼ UðyÞ þ hU 0ðyÞ þ 1

2 h
2U 00ðy þ nhÞ with

n ¼ nðk;K;xÞ 2 ½0; 1
. We will take y ¼ X 0
T and h ¼ Zk;K

T � X 0
T , and consider the

expected value of this expansion term by term. The first term yields

EðUðX 0
T ÞÞ ¼ V ð0; x0; s0; 0Þ. For the second term, note that

U 0ðX 0
T Þ ¼ x�R

0 exp
l2

2r2
ð1� RÞ

R
T

� �
dQ0

dP
;
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where Q0 is the minimal martingale measure. Then since both X 0 and X 1;K are

martingales under Q0, we have

E½ðZk;K
T � X 0

T ÞU 0ðX 0
T Þ
 ¼ x�R

0 eð1�RÞmTE0ðkhðST ÞÞ:
For the final term in the Taylor expansion we have that for n ¼ nðk;K;xÞ 2 ½0; 1
,

X 0
T þ nðZk;K

T � X 0
T Þ � X 0

T ð1� kKÞ:
Then, since U 00 is increasing,

1

k2
ðZk;K

T � X 0
T Þ

2U 00ðX 0
T þ nðZk;K

T � X 0
T ÞÞ

� ðX 0
T Þ

2 E00hðST Þ
x0

þ
Z T

0

StCS
t

X 0
t

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �2
U 00ðX 0

T ð1� kKÞÞI ðHK�T Þ

þðhðST Þ � X 0
T KÞ2U 00ðX 0

T ð1� kKÞÞI ðHK<T Þ:

By the dominated convergence theorem, on taking expectations and letting k # 0, we
find for each K that k�2ðEUðZk

T Þ � EUðX 0
T Þ � kE½hðST ÞU 0ðX 0

T Þ
Þ is bounded below by

1

2
E ðX 0

T Þ
2U 00ðX 0

T Þ
E00hðST Þ

x0
þ
Z T

0

StCS
t

X 0
t

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �2

I ðHK�T Þ

" #

þ 1

2
E ðhðST Þ � X 0

T KÞ2U 00ðX 0
T ÞI ðHK<T Þ

h i
:

If we let K " 1 this expression becomes

1

2
E U 00ðX 0

T ÞðX 0
T Þ

2 E00hðST Þ
x0

þ
Z T

0

StCS
t

X 0
t

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �2
" #

:ð4:10Þ

We can interpret U 00ðX 0
T ÞðX 0

T Þ
2 as a constant multiplied by a change of measure that

affects the drift of dP=P . With this interpretation it is straightforward to show that

(4.10) becomes

�R
2
E ðX 0

T Þ
1�R E00hðST Þ

x0
þ
Z T

0

StCS
t

X 0
t

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �2
" #

ð4:11Þ

¼ �R
2

x1�R
0 emð1�RÞT ÊE

E00hðST Þ
x0

þ
Z T

0

StCS
t

X 0
t

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2Þ

q
dW

� �2" #

¼ �R
2

x1�R
0 emð1�RÞT E00hðST Þ

2

x20
þ g2ð1� q2ÞÊE

Z T

0

S2t ðCSÞ2t
X 02

dt

 !" #
;

where P̂P is the measure under which both B̂Bt � Bt � ðlð1� RÞ=rRÞt and ŴWt � W t are

Brownian motions.

We have shown that

lim sup
K"1

lim
k#0

1

k2
ðEUðZk

T Þ � EUðX 0
T Þ � kE½U 0ðX 0

T ÞhðST Þ
Þ

is greater than the expression (4.11) and

sup
XT

EUðXT þ khðST ÞÞ � EUðZk
T Þ � V 2ð0; x0; s0; kÞ þ oðk2Þ;

where V 2 is given in Theorem 4.1 (4.5). Hence V 2 is a lower bound to order k2.
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The Upper Bound. An upper bound on the value function will be found by

considering the dual problem as in Section 2. We refine our choice of measure Q to

obtain a higher order bound. For each � > 0 we show that V 2 þ �k2 is an upper bound.
Let Mu ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p R u
0 ðStCS

t =X
0
t ÞdW t and for any K > 0 define

T K ¼ inf u : jMuj þ ½M 
u ¼ K
� �

:

Now choose K large enough so that

ÊE½½M 
T � ½M 
T K

 < �:

Let QK be given by

dQK

dP
¼ exp � l

r
BT � l2

2r2
T

� �
exp �RkMT K � 1

2
R2k2½M 
T K

� �
:

Then

EP ~UU a
dQK

dP

� �� �
¼ R
1� R

aðR�1Þ=RAK ;

where

AK ¼ E exp
lð1� RÞ

rR
BT þ l2ð1� RÞ

2r2R
T

� �
exp ð1� RÞkMT K þ 1

2
Rð1� RÞk2½M 
T K

� �� �

¼ efmð1�RÞ=RgT ÊE exp
1

2
ð1� RÞk2½M 
T K

� �� �
:

Note that the measure P̂P is the measure that arose in the calculation of the lower

bound. Here ½M 
T K
is bounded so AK can be written as an expansion in k:

AK ¼ efmð1�RÞ=RgT 1þ 1

2
ð1� RÞk2ÊE½M 
TK

þ Oðk4Þ
� �

:ð4:12Þ

� efmð1�RÞ=RgT 1þ 1

2
ð1� RÞk2ðÊE½M 
T � �I ðR>1ÞÞ þ Oðk4Þ

� �
:

Now

EQK hðST Þ ¼ E hðST Þ
dQ0

dP
e�kRMTK �

1
2k
2R2½M 
TK

h i !

¼ E0 hðST Þ 1� kRMT K þ oðkÞ½ 
ð Þ
¼ E0hðST Þ � kRE0ðMT K hðST ÞÞ þ oðkÞ

If we now show that

E0MTK hðST Þ ¼ x0ÊEM2
TK

¼ x0ÊE½M 
T K
ð4:13Þ

then

EQK hðST Þ ¼ E0hðST Þ � kRx0ÊE½M 
TK
þ oðkÞ � E0hðST Þ � kRx0ðÊE½M 
T � �Þ þ oðkÞ:ð4:14Þ

Using Itô on MtCt and since Mt;Ct are Q
0-martingales, we have

E0MT K hðST Þ ¼ E0
Z T

0

dðMt^T K CtÞ ¼ g2ð1� q2ÞE0
Z TK

0

S2t ðCS
t Þ
2

X 0
t

dt:ð4:15Þ

Now using dP̂P
dP ¼ e

lð1�RÞ
rR BT�1

2ð
lð1�RÞ

rR Þ2T and dQ0

dP , we derive the relationships
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ðX 0
T Þ

1�R

x1�R
0

¼ dP̂P
dP

emð1�RÞT

and

dQ0

dP
¼ ðX 0

T Þ
�R

x�R
0

e�mð1�RÞT :

Thus

ÊEM2
T K
¼ E

M2
T K

emð1�RÞT
ðX 0

T Þ
1�R

x1�R
0

" #
¼ 1

x0
E0M2

TK
X 0

Tð4:16Þ

¼ 1

x0
E0
Z T K

0

X 0ðdMÞ2 ¼ g2ð1� q2Þ
x0

E0
Z TK

0

S2t ðCSÞ2t
X 0

t

dt

using Itô on M2
t X

0
t . Thus (4.13) holds using (4.15) and (4.16).

Now

sup
XT

EðUðXT þ kST ÞÞ � inf
a

R
1� R

a
1�R
R AK þ ax0 þ kaEQK hðST Þ

� �
ð4:17Þ

¼ 1

1� R
ðAKÞRðx0 þ kEQK hðST ÞÞ1�R;

and using (4.12) and (4.14) we see for some constant c0 that

inf
a
E V a

dQK

dP

� �
þ aðx0 þ EQK hðST ÞÞ

� �
� V 2ð0; x0; s0; kÞ þ c0�k

2: h

We wish to calculate the expansion for the reservation price, p, that the agent

would be willing to pay for k units of the claim hðST Þ. As discussed at the end

of Section 2, this involves solving V ðt; x; St; 0Þ ¼ V ðt; x � p; St; kÞ, which can be

written as

x1�R ¼ ðx � pÞ1�R 1þ kE0hðST Þ
x � p

� k2

2
Rg2ð1� q2ÞÊE

Z T

t

S2uðCSÞ2
u

X 02

u

du

" #1�R

;ð4:18Þ

where X 0
t ¼ x � p. To first order, we find p ¼ kE0hðST Þ. The second-order term is

calculated by finding c2 in p ¼ kE0hðST Þ þ k2c2. Combining finally the definitions of
measures Q0; P̂P, we have proved the following result.

Theorem 4.2. For h and k satisfying Assumption 2.1, and UðxÞ ¼ x1�R

1�R, the time t price
p for k units of hðST Þ delivered at time T , given a current wealth x, is

pðt; x; s; kÞ ¼ p ¼ kE0t hðST Þ � k2
R
2

xÊE½M 
T þ oðk2Þð4:19Þ

¼ kE0t hðST Þ � k2
R
2

g2

x
ð1� q2ÞÊE

Z T

t

S2uðCSÞ2u
ðX 0

u=xÞ
2

du þ oðk2Þ

¼ kE0t hðST Þ � k2
R
2

g2ð1� q2ÞE0
Z T

t

S2uðCSÞ2u
X 0

u

du þ oðk2Þ:

Note that when q ¼ 1, d ¼ 0, we recover the price in the complete market case (3.2).
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Example 4.1 continued. We wish to calculate the price of the call with hðST Þ ¼
ðST � �KKÞþ. From (4.19)

p ¼ kE0t ðST � �KKÞþ � k2
R
2

g2ð1� q2ÞE0
Z T

t

S2uðCSÞ2u
X 0

u

du þ oðk2Þ:ð4:20Þ

The first term is simple, we have a closed-form expression in (4.7). The second term is

more involved and we simulate this. The simulation results gave standard errors of less

than 0.2%.

Note that if we fix d the second-order term is increasing in q. The minimal martingale
measure term is unchanged with q, so the price in (4.20) is increasing in q. This is
consistent with the idea that as the correlation approaches 1, the traded asset gives a

better hedge and the position is less risky. The agent is thus willing to pay more for the

claim.

A plot of the second-order term in (4.20) is given in Figure 4.3. Parameters used

are: k ¼ 0:01; s0 ¼ 100; T ¼ 1; q ¼ 0:8;R ¼ 0:5; l ¼ 0:04; g ¼ 0:30; r ¼ 0:35, d ¼ 0,

x0 ¼ 500, and 0 � �KK � 200. In both Figures 4.3 and 4.4 we plot the second-order

term divided by k2:

R
2

g2ð1� q2ÞE0
Z T

t

S2uðCSÞ2u
X 0

u

du;ð4:21Þ

or equivalently the second-order term with k ¼ 1. In Figure 4.3, this is about 0.07 for
�KK ¼ 100. For comparison, the first-order term (with k ¼ 1 and for s0 ¼ 100, �KK ¼ 100,

say) is 11.924. Thus the second term is about 0.6% of the first. Of course, if we use a

larger value for R, we would get a larger ratio here. To obtain the comparison for

different k, we can simply multiply this percentage by k.

FIGURE 4.3. The second-order term of the reservation price of the claim ðST � �KKÞþ for

0 � �KK � 200, as given in (4.21). Utility is power law. Parameter values are

k ¼ 0:01; s0 ¼ 100; T ¼ 1; R ¼ 0:5; l ¼ 0:04; q ¼ 0:8; g ¼ 0:30; r ¼ 0:35, d ¼ 0,

and x0 ¼ 500.
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Returning to Figure 4.3, as �KK ! 0 the payoff approaches ST and we recover the

linear case of Henderson and Hobson (2000). In this case we have a simple second-

order term and it has greatest effect on the price. As �KK ! 200 the option will not pay

out and hence the second-order term tends to zero.

For a strike of �KK ¼ 100 the second-order term in (4.20) is graphed in Figure 4.4 for

varying values of the asset price S. Note that this appears to look like the price of a

call option. If S is large, the option is in-the-money and the price correction term is

large (as it is likely the claim will pay out). Alternatively, if S is low, the option is

unlikely to pay out and therefore the problem is close to the Merton problem with no

option. With the parameter d ¼ 0 note that the first term is simply the complete (risk

neutral) price.

Example 2 continued. For hðST Þ ¼ S2T the price can be calculated explicitly.

p ¼ ks2eð2dþg2ÞðT�tÞ � 2k2Rg2ð1� q2Þ s4

x
eð3g

2þ6dþ l2

r2R2
ÞðT�tÞ � 1

3g2 þ 6d þ l2

r2R2

0
@

1
Aþ oðk2Þ:

Returning to some more general remarks on Theorem 4.2, if we consider the

reservation price for the random payment of khðST Þ, and convert it into a unit price, we
find

p
k
¼ E0t hðST Þ � k

R
2

g2

x
ð1� q2ÞÊE

Z T

t

S2uðCSÞ2u
ðX 0

u=xÞ
2

du þ oðkÞ:ð4:22Þ

The marginal price of a derivative is the price at which diverting a little money into

the derivative at time zero has a neutral effect on the achievable utility. This is given

by

FIGURE 4.4. The second-order term of the reservation price of the claim ðST � �KKÞþ for

50 � s0 � 150, as given in (4.21). Utility is power law. Parameter values are

k ¼ 0:01; T ¼ 1; �KK ¼ 100;R ¼ 0:5;l ¼ 0:04; q ¼ 0:8; g ¼ 0:30; r ¼ 0:35, d ¼ 0, and

x0 ¼ 500.
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lim
k#0

p
k
¼ E0t hðST Þ:ð4:23Þ

Of note is that the marginal price is independent of the risk-aversion parameter R.
This is an example of a general result which states that the marginal price is

independent of the utility function; see Davis (1999) or Hobson (1994, Thm. 1).

Further, the marginal price is the expected payoff under the minimal martingale

measure Q0. Importantly, and unlike in the complete market scenario of Section 3,

the marginal price the agent is prepared to pay for hðST Þ depends on the drift l of

the traded asset.

As we remarked above, conclusions about the marginal price the agent is

prepared to pay for the asset are independent of the agent’s utility. However the

reservation price for a nonnegligible quantity of nontraded asset does depend on

the utility as expressed in the k2 term in the expansion (4.19). Note that the

correction term to order k2 is negative since ½M 
T � 0, using (4.19). This is because

utilities are concave, so the agent is prepared to pay a lower (unit) price for larger

quantities.

Pricing in this model is nonlinear in that the reservation price the agent is prepared to

pay for 2x units of the claim is less than twice the price for x units. We now examine the

unit price in (4.22). Putting k > 0 gives a buy price of

E0t hðST Þ � /

and likewise k < 0 gives a sell price of

E0t hðST Þ þ /;

where / ¼ jkj R
2 xÊE½M 
T > 0 using the equivalent formulation in (4.19). Perhaps this

difference 2/ can be seen as a proxy for the bid–ask spread and on the option and

might be useful for comparing two claims on nontraded assets.

We can see also from (4.22) that if initial wealth increases, with fixed S and k, then
the holding in derivatives is diluted and the price is larger. For the power law utility, the

absolute risk aversion � U 00ðxÞ
U 0ðxÞ ¼ R

x is a decreasing function of wealth and thus the higher

the wealth, the higher the price the agent is willing to pay. In contrast, for the

exponential utility considered in the next section, we will see that the price is

independent of wealth.

5. THE INCOMPLETE CASE: EXPONENTIAL UTILITY

The second utility function we focus on is the exponential utility UðxÞ ¼ � 1
c e�cx (see,

e.g., Hodges and Neuberger 1989; Svensson and Werner 1993; Duffie and Jackson

1990; Davis 2000; Cvitanic et al. 2001; Delbaen et al. 2000; and Rouge and El Karoui

2000). This utility has constant absolute risk aversion, and its popularity is derived in

part from its separability properties.

For this utility, we are able to obtain an explicit representation for the price. This is

an advantage compared to the power utility where we used expansions. However, to

compare the results to the power utility we will also calculate an expansion for the

price.

Again, let V ðt;X t; St; kÞ be the value function for the agent who at time t has wealth
X t and who will receive khðST Þ at time T . Here we take UðxÞ ¼ � 1

c e�cx. Then
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V ðt;X t; St; kÞ ¼ sup
h

EtUðXT þ khðST ÞÞ ¼ � 1

c
e�cX t inf

h
Etðe�c

R T

t
huðdPu=PuÞ�ckhðST ÞÞ

¼ � 1

c
e�cX tgðT � t; log StÞ;

where gð0; zÞ ¼ e�kchðezÞ. Using the fact that V is a supermartingale for any strategy, and

a martingale for the optimal strategy, we find that g solves the PDE

_gg � mgz þ
1

2
g2gz �

1

2
g2gzz þ

1

2

ðrgqgz þ lgÞ2

r2g
¼ 0:

An expression for the optimal hedge h� can be given as

h� ¼ ðlg þ rgzgqÞ
gcr2

:

When there is no option, this collapses to the Merton strategy given in (2.7). We follow

Hobson (1994) and the example in Henderson and Hobson (2000) to solve this

equation. This trick is also used in many of Zariphopolou’s papers (e.g., see

Zariphopoulou 2001) and converts a nonlinear PDE into a linear one. If we set

gðs; yÞ ¼ easGðs; y þ bsÞb then we find that G solves

b _GG � 1

2
g2bGyy �

1

2
g2ðbðb � 1Þ � q2b2Þ

G2
y

G

þ bðb þ 1

2
g2 � m þ gql

r
Þ

� �
Gy þ a þ l2

2r2

� �
G ¼ 0:

Choosing

b ¼ 1

ð1� q2Þ ; a ¼ � l2

2r2
; b ¼ m � gql

r
� 1

2
g2 ¼ d � 1

2
g2;

we find that G solves

_GG ¼ 1

2
g2Gyy :

This is the heat equation, with solution

Gðs; yÞ ¼
Z 1

�1
Gð0; y þ zÞ e

� z2

2g2s

g
ffiffiffiffiffiffiffiffi
2ps

p dz;

so

gðs; yÞ ¼ e�
l2s

2r2

Z 1

�1
Gð0; y þ ðd � 1

2
g2Þs þ zÞ e

� z2

2g2s

g
ffiffiffiffiffiffiffiffi
2ps

p dz

2
4

3
5
1=ð1�q2Þ

¼ e�
l2s

2r2 EðGð0; y þ ðd � 1

2
g2Þs þ g

ffiffiffi
s

p
NÞÞ

� �1=ð1�q2Þ
;

where N is a standard normal random variable. Using the boundary condition

Gð0; yÞ ¼ e�ðkc=bÞhðeyÞ ¼ e�kcð1�q2ÞhðeyÞ:
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V ðt;X t; St; kÞ ¼ � 1

c
e�cX t� l2

2r2
ðT�tÞ

� E expð�kcð1� q2ÞhðStedðT�tÞeg
ffiffiffiffiffiffi
T�t

p
N�1

2g
2ðT�tÞÞÞ

	 
h i1=ð1�q2Þ
:

Hence we have found the solution provided the expectation above is finite. Note that

this is not always true for some important cases such as the short call. To see this, note

that EUð�ðST � KÞþÞ ¼ �1 and the term in the value function above is essentially

E0UðhðST ÞÞ, so it is also infinite for exponential utility. However, if Assumption 2.1

holds, then the above expectation is finite.

Using the utility indifference argument to obtain the price, we have proved the

following result.

Theorem 5.1. For h and k satisfying Assumption 2.1, and UðxÞ ¼ � 1
c e�cx, the

reservation price for khðST Þ is

pe ¼ � 1

cð1� q2Þ log E
0 exp �kcð1� q2ÞhðST Þ

� �� �
:ð5:1Þ

This is an explicit expression for the price under the exponential utility function.

Note also that the above price is wealth independent. As mentioned in Section 1, this

may not always be desirable for applications.

We now want to find an expansion in terms of small k which we can compare to our
results of the previous section obtained using the power law utility. The expansion is

pe ¼ kE0hðST Þ �
c
2
k2ð1� q2Þ½E0½hðST Þ
2 � ½E0hðST Þ
2
 þ Oðk3Þ;

which is equivalent to the price found in Davis (2000), although he did not have the

representation (5.1). Despite the fact that Davis uses an expansion in q, the results are
equivalent as both parameters appear in the exponential in (5.1). We find that to

leading order the price is precisely the expected value of the claim under the minimal

martingale measure. Hence we concentrate on the correction term. Note that the

second-order correction is linear in the risk aversion parameter c. We equate the local

absolute risk aversion in the power law and exponential utility models to compare the

results. This involves identifying the parameter c with R=x0. The price becomes

pe ¼ kE0hðST Þ �
R
2x0

k2ð1� q2Þ½E0½hðST Þ
2 � ½E0hðST Þ
2
 þ Oðk3Þ:ð5:2Þ

Example 4.1 continued. We can evaluate (5.2) for the call option with k > 0.

Calculations give

pe ¼ kE0ðST � �KKÞþ � R
2

k2

x
ð1� q2Þ½E0ðST � �KKÞ2I ðST>�KKÞ � ðE0ðST � �KKÞþÞ2
;ð5:3Þ

where

E0ðST � �KKÞ2I ðST>�KKÞ ¼ s2eð2dþg2ÞðT�tÞNðdþþg
ffiffiffiffiffiffiffiffiffiffi
T � t

p
Þþ �KK2Nðd�Þ�2�KKedðT�tÞsNðdþÞð5:4Þ

and E0t ðST � �KKÞþ and d� are given in (4.7).
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Figure 5.1 graphs the second-order term in (5.3) and the power law utility price

(4.20) over values of the strike �KK. The numbers are extremely close (since we equated
local absolute risk aversion); however, the exponential utility gives a larger correction

over the whole range. This is worthy of further investigation.

Now we consider the dependence of the reservation price on the risk aversion

parameter with surprising results. Comparing the forms of the exponential and power

utilities in the limit as the risk aversion parameter tends to zero, we see that

lim
c#0

1� e�cx

c
¼ x ¼ lim

R#0

x1�R

1� R
;

but in the former case the domain of definition is R whereas in the latter it is Rþ. Hence
there is no reason to expect identical behavior in the limit as risk aversion decreases to

zero.

In Figure 5.2 we graph the second-order price term as a function of R. Note that
we plot �ðpe � kE0ðST � �KKÞþÞ=k2 and the equivalent price for the power law case

of Section 4. The broken line uses the exponential utility; the solid line uses the

power utility. As expected, as risk aversion increases, the reservation price falls.

The agent is willing to pay less for the nontraded stock as she becomes less

tolerant of risk. However, surprisingly, this relationship reverses for the power

utility as R gets very small. For the parameter choices in Figure 5.1 this happens

for R below approximately 0.1. As R decreases below this value the agent is

prepared to pay less for the risky nontraded asset despite becoming more tolerant

of risk.

Recall the optimal strategy given in Theorem 4.1 for the power law utility:

h�ðt; x; s; kÞ ¼ l
r2R

ðx þ kCtÞ �
gq
r

ksCS
t þ oðkÞ:

FIGURE 5.1. The second-order term of the reservation price of the claim with payoff

ðST � �KKÞþ for 0 � �KK � 200. The lower line uses the power law utility, the higher line

uses the exponential utility. Parameter values are k ¼ 0:01; s0 ¼ 100; T ¼ 1; R ¼ 0:5;
l ¼ 0:04; q ¼ 0:8; g ¼ 0:30; r ¼ 0:35, d ¼ 0, and x0 ¼ 500.
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As R # 0, both terms become large, and fluctuations in the value of P and S are

magnified into large fluctuations in the final wealth. Wealth can be close to zero and

hence assigned a low utility value, resulting in a lower price.

Example 4.2 continued. For hðST Þ ¼ S2T

pe ¼ kE0S2T � R
2

k2

x
ð1� q2Þ½E0S4T � ðE0S2T Þ

2
;

where E0S4T ¼ s40e
4ðdþ3

2g
2ÞðT�tÞ.

6. CONCLUSION

This paper has studied the utility maximization pricing of claims on nontraded assets,

using a close asset to hedge. We extend the Merton investment model to include a

nontraded asset. The problem is how to price and hedge payoff khðST Þ when trading in
S is not permissible. This is an incomplete markets problem and the solution depends

on the utility function chosen. It is a common practice to use substitute assets to avoid

high transactions costs and the results of this paper can be applied to hedge basket

options with an index, illiquid shares, or futures contracts, among others.

Our model considers agents with either constant relative risk aversion (power law

utility) or constant absolute risk aversion (exponential utility). We use a popular utility

argument to find a price in this setup. The reservation price is the amount the investor

requires so she is indifferent between the investment problem with zero endowment and

the problem with the additional opportunity to buy the claim.

Under the assumption of constant relative risk aversion and exponential Brownian

motion, the techniques of duality were used to approximate the hedge and obtain the

value function to order k2. The results hold under the assumption that the money value

FIGURE 5.2. The second-order term of the reservation price of the claim with payoff

ðST � �KKÞþ for 0:03 � R � 1. Parameter values are ks0 ¼ 1:0; T ¼ 1; �KK ¼ 100;
l ¼ 0:04; q ¼ 0:8; g ¼ 0:30; r ¼ 0:35, d ¼ 0, and x0 ¼ 500. The broken line uses the

exponential utility; the solid line uses the power utility.
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in the nontraded asset is small compared to wealth. The use of an expansion enables us

to examine the effect of parameter changes on the results.

The problem becomes much simpler when the exponential utility function is chosen.

Wealth can be factored out, reducing the PDE to a linear equation that can be solved

directly to obtain an explicit price. This has the advantage of enabling an analysis of

the sensitivity of the results to the parameters. The price using exponential utility is

wealth independent, unlike that obtained using the power utility. Wealth independence

may be a desirable feature in some applications, but not so good for others, such as

executive stock options.

As expected, the reservation price depends on the drifts of the assets and the level of

risk aversion. The examples of a call and power option were analyzed, concentrating on

the call. We have shown that the reservation price is increasing in correlation, hence the

agent is willing to pay more when she is more likely to have a reasonable hedge. Under

our choice of parameters, the second-order correction term was about 0.6% of the first-

order term when k ¼ 1. Comparison of the reservation price with the exponential

utility price showed that, for the call, the corrections were very close. This is reassuring

since the price is not that sensitive to the form of the utility, provided the risk aversions

match locally. However, they behave very differently as a function of risk aversion as

risk aversion tends to zero. This is explained by the fact that the power utility is defined

for positive wealth whereas the exponential utility also allows wealth to go negative. If

R is close to zero, the wealth could be close to zero which gives very different behavior

for the two utilities. Therefore, some care needs to be exercised in choosing between the

two utility functions.

A shortcoming of this analysis and others in the literature is that it cannot be used to

price a short call position due to the unbounded nature of the payoff. The utility

approach is not suitable for short calls and further work could be done in this area.

Finally, an area where these results can be applied is that of executive stock options.

These are options on the stock of the company, and are given to executives as part of

their compensation package. However, frequently executives are not permitted to trade

away the risk using the stock or derivatives on the stock, so that they are essentially

receiving options on a nontraded asset; see Henderson (2001).
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