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Figlewski proposed testing the incremental contribution of the Black–Scholes model by com-
10 paring its performance against an ‘informationally passive’ benchmark, which was defined to

be an option pricing formula satisfying static no-arbitrage constraints. In this paper we extend
Figlewski’s analysis to include options of more than one maturity. Once maturity has been
included in the model, any ‘informationally passive’ call pricing function is consistent with
some ‘active’ model. In this sense, the notion of a passive model cannot be extended to pricing

15 formulas incorporating option maturity. We derive the index dynamics of the active model
implicit in Figlewski’s implied G example. These dynamics are far more complicated than the
dynamics of the Samuelson–Black–Scholes or Bachelier models. The main implication of our
analysis is that an appropriate benchmark for assessing option pricing models should in fact
have simple dynamics, such as those of Bachelier or the Black–Scholes models. This is despite

20 the fact that the maturity extension of Figlewski’s model gives as good a fit as the
Black–Scholes model.

1. Introduction

The Black and Scholes (1973) model for option pricing is
the industry standard and won its inventors a Nobel

25 prize. Despite its widespread use, the theoretical under-
pinnings of the model are often violated in practice.
Volatility is not constant, and is widely documented
to exhibit smiles and skews, see Rubinstein (1985).
Nonetheless it is frequently used as a benchmark model

30 against which other models are compared.
The Black–Scholes option pricing formula is based on

the assumption of log-normal dynamics, as proposed by
Samuelson (1965), and on the principles of a perfect,
frictionless market. The concept of dynamic replication

35 then leads to the specification of a call pricing formula.
However, this formula is only valid if the model is correct,
both in the sense that the asset follows an exponential
Brownian motion, and that the market is frictionless.

Given that neither of these assumptions holds true,
40 Figlewski (2002) proposed that the Black–Scholes model

should itself be tested against other models. If dynamic

replication breaks down, then the Black–Scholes call
pricing formulae can be viewed purely as a formula
which satisfies certain natural static no-arbitrage condi-

45tions, and should be tested against other formula satisfy-
ing these same constraints. Figlewski (2002, p. 88)
proposed testing the Black–Scholes model or formula
against other ‘informationally passive’ models, where
an informationally passive model was defined as a call

50pricing formula which ‘satisfies portfolio dominance
constraints, but has no economic content beyond that’.
As an example of this philosophy, Figlewski (2002)
proposed such a model which he called the ‘implied G’
model. In his paper the implied G (or IG for short) model

55played the role of a new benchmark.
One of the uses of an option pricing model is to infer an

option price from market prices of ‘nearby’ options,
perhaps involving a similar strike or time to maturity.
In the Black and Scholes (1973) model this is accom-

60plished via implied volatility. For example, yesterday’s
implied volatility might be used to compute an option
price today or an option price might be calculated from
interpolation between implied volatilities of two options
with strikes spanning the strike of interest. The paper of

65Figlewski (2002) recognizes that this usage of the Black–
Scholes option pricing formula does not rely on its precise
form. In fact any function of the right shape could be
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used in its place. Figlewski’s example, the IG model, is of
roughly the right shape. The point is that the IG model is

70 not chosen to provide a best fit, but rather is a simplest
attempt at finding a pricing function with approximately
the right characteristicsy. Figlewski’s main thesis is that
the contribution of any model, and in particular the
Black–Scholes model, should be considered in the light

75 of its incremental contribution over a passive benchmark
such as the IG model.

There are two distinct applications to which a trader
can put the Black–Scholes model. In the first usage the
trader calculates the implied volatility from a single

80 option and uses that volatility to calculate the price of a
related security. (For each different security the trader
wishes to price he might calibrate with a different option.)
In the second usage the trader calculates the best-fit
implied volatility from a set of traded options of different

85 strikes, and uses that volatility to give prices for each of
a different set of options. The first of these approaches
recognizes that market data admits smiles and skews and
allows the trader to account for this. However, in
doing this the trader is being inconsistent in his use of

90 Black–Scholes. The second situation suffers no such
inconsistency, but then the trader cannot match his
model to market data, he can only give a best fit.

Figlewski (2002) tests his alternative model against
Black–Scholes in both of these usages. In the first case

95 he uses today’s option value to predict the price tomor-
row of an option with the same strike and maturity. In the
second case he uses today’s prices of all the options of a
given maturity to calculate a best fit volatility, which is
then used to predict tomorrow’s prices for those same

100 options.
Figlewski finds that his example of an informationally

passive model provides roughly as good a fit to the data
as the Black–Scholes model. In the first case, when the
Black–Scholes model is used inconsistently, it tends to

105 outperform the passive alternative, whereas when
Black–Scholes is used consistently, the IG model provides
a better fit.

Figlewski’s IG model does not explicitly incorporate a
time parameter. This means that it cannot readily be used

110 to compare options with different times to maturity.
As Figlewski (2002, p. 95) states, one natural extension
of his work is to ‘add structure across option maturities’.
Our primary aim in this article is to consider such an
extension. The main contribution of this paper is to

115 extend his example IG, or rather a modification of his
example which we label MIGz, to explicitly include a
time-parameter. This extension leads us to reconsider
the notion of an ‘informationally passive formula’: once
maturity has been included it is no longer clear that an

120 option formula can be divorced from underlying
dynamics. Indeed, under some reasonable and simpli-
fying assumptions, and using the framework of

Dupire (1993, 1994), if option prices are specified for all
maturities then the risk-neutral dynamics of the under-

125lying are also specified. Even if we return to the original
Figlewski (2002) case with a single maturity, it is
no longer clear that there is such an entity as an informa-
tionally passive model—the use of any pricing formula
is equivalent to restricting attention to a small class

130of models which are consistent with the associated
call prices.

Put another way, Figlewski (2002) distinguishes
between an ‘informationally passive model’, which is
essentially an option pricing formula satisfying portfolio

135dominance constraints, and a model-based or ‘active’
alternative where the pricing formulae are derived via
the dynamics of the underlying. The option prices which
arise from the model (under the assumptions of a perfect
market) must satisfy the portfolio dominance constraints.

140However, once maturity is included, this distinction
between passive and active models disappears. In that
case, any informationally passive model by Figlewski’s
definition is consistent with some dynamics for the under-
lying, and if we search amongst the class of diffusion

145models then there is a unique active model associated
with each supposedly passive option pricing formula.
In this sense, there is no distinction between an informa-
tionally passive model and an active alternative. On the
contrary, one way to choose a benchmark model is to

150choose the option pricing formula which is consistent
with the simplest price dynamics. This simplicity is
achieved by the Samuelson (1965)/Black–Scholes (1973)
and Bachelier (1900) models.

The second contribution of this paper is to test the
155time-extended model, which we label IGT (and MIGT

for the modified version) against the Black–Scholes
model (and the Bachelier or arithmetic Brownian motion
model). For the empirical testing we use the same
dataset as Figlewski (2002), namely traded options on

160the S&P 500 over the period 2 January 1991 to
29 December 1995. This is so that we can compare our
results to his directly. The tests we use are broadly similar
to those used by Figlewski (2002), and our choice of tests
is motivated to a large extent by his results. Again we find

165that the IG, IGT, MIG and MIGT models all perform
remarkably well (especially considering that no attempt
is made to optimize the form of these models).

The third contribution of this paper is to attempt to
understand and explain why these models all give such a

170good fit. It turns out that the good performance of these
models is linked to the fact that they generate implied
volatility smiles which closely match those found in the
dataset that we use for testing.

Unfortunately Figlewski’s primary example of an infor-
175mationally passive model admits simple arbitrage. For

market parameters (based on the data used both by
Figlewski and in this paper) the Figlewski model would

yAs Figlewski (2002, p. 90) states: ‘No effort has been made to tweak the model in any way to improve its performance.’
zModified implied G.
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give a price ranging from 50 cents to $2 for a put option
with zero strike, which must by necessity be worthless.

180 With this in mind, the fourth contribution of our paper
is to propose a ‘modified informationally passive’ model
MIG, satisfying static arbitrage constraintsy.

We find that the modified model MIG gives very simi-
lar performance to Figlewski’s original modelz. However,

185 MIG does not admit static arbitrage. In general MIG
outperforms the Black–Scholes model in exactly the
same situations as the original Figlewski model. More
especially if an implied volatility is calculated for each
option then Black–Scholes outperforms both the IG

190 and MIG models. However if Black–Scholes is used
consistently then IG and MIG both outperform the
Black–Scholes pricing function.

We find that both IG and MIG fit best for low strike
options (in-the-money calls and out-of-the-money puts).

195 This is the exact opposite of the behaviour reported
by Figlewski (2002)§. We give a plausible explanation,
using the implied volatility smile and skew of the data,
of why the results we report are to be expected.

The paper is organized as follows. Static no-arbitrage
200 criteria and the Black and Scholes (1973) option pricing

model are given in section 2. In section 3, we describe
the Figlewski (2002) model and our proposed modified
model. These models are extended to allow for maturity
dependence in section 4. Section 5 describes the data used

205 in the empirical testing of the pricing models. Our mod-
ified models are tested against the Black and Scholes
(1973) pricing formula, the Bachelier (1900) arithmetic
Brownian motion model, and the passive model of
Figlewski (2002) in section 6, and the results reported in

210 terms of RMSE. In the penultimate section we discuss
these results and give explanations, before we conclude
in a final section. The origins of the form of the proposed
passive option pricing functions are given in the
Appendix.

215 2. Static no-arbitrage properties

Let C denote the price of a European call option on the
stock index level St�, with strike X, maturity T and
riskless rate r. We can write

C ¼ Cðt,St,T,XÞ ¼ e�rðT�tÞEtðST � XÞþ, ð1Þ

220 where t is the current time, ST is the realized value of
the index at maturity and expectations are taken with

respect to the risk-neutral measure. When we think of a
fixed option with given strike and maturity, perhaps when
deriving a pricing equation for C, it is usual to think of

225C ¼ CT,Xðt,StÞ as a function of current time and index
level. Conversely when we think of the market prices
of a family of traded options at a fixed moment in time
we should think of C ¼ Ct,St

ðT,XÞ as a function of strike
and maturity. The same ideas apply to the

230price P ¼ Pðt,St,T,XÞ ¼ PT,Xðt,StÞ ¼ Pt,St
ðT,XÞ of a

put option.
There are a number of important properties that option

prices must satisfy in order to exclude simple static arbi-
trages. Merton (1973) derives these properties for stock

235options. In order to exclude static arbitrages we must
have (i)–(iv):

(i) Ct,St
ðT,XÞ is a decreasing, convex function of the

strike.
(ii) The current price of a call option with zero strike is

240equal to the stock price

Ct,St
ðT, 0Þ ¼ lim

X#0
Ct,St
ðT,XÞ ¼ St:

(iii) The call value is increasing in maturity: for
T � T̂ � t

Ct,St
ðT,XerðT�tÞÞ � Ct,St

ðT̂,XerðT̂�tÞÞ:

245(iv) Put–call parity holds

Ct,St
ðT,XÞ � Pt,St

ðT,XÞ ¼ St � Xe�rðT�tÞ:

It is also the case that for any model for which
option prices are consistent with (1):

(v) Far out-of-the-money call prices approach zero

lim
X"1

Ct,St
ðT,XÞ ¼ 0:

250(vi) At-the-money options have positive time value, for
T > 0

Ct,St
ðT,Ste

rðT�tÞ
Þ > 0:

Many of these properties have analogous forms for
255the call price function CT,Xðt,StÞk. In particular,

(vii) CT,Xðt,StÞ is an increasing, convex function of the
asset price.

(viii) Far out-of-the-money call prices approach zero

CT,Xðt, 0Þ ¼ lim
St#0

CT,Xðt,StÞ ¼ 0:

yIn defense of Figlewski’s (2002) original model, although the IG model misprices a put with zero strike (whereas MIG prices it at
zero) over the range of traded options, the differences between the two models are very small. To this extent, the fact that IG admits
static arbitrage can be viewed as a theoretical problem that has little impact in practice. Provided that the IG model is only used
‘locally’ then no mispricing problems arise. Indeed, we also find many circumstances in which IG provides a better fit to data
than MIG.
zThere is good reason to believe that both of the models IG and MIG would fit option price data with a symmetric smile, such
perhaps as currency option data, better than index option data for which implied volatilities display a skew. We discuss this
reasoning in section 7, when we attempt to explain why the IG and MIG models give such a good fit to data.
§It seems that entries in some of the tables in Figlewski (2002, Exhibit V) have been accidentally reversed.
�Throughout we assume that S has been adjusted for dividends.
kIn order to even state these properties it is necessary to assume a certain amount of regularity. For instance, we need to assume that
St is a Markov process.
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260 (ix) Far in-the-money call prices approach the value of
a long forward contract with the same strike

lim
St"1

CT,Xðt,StÞ � ðSt � e�rðT�tÞXÞ
n o

¼ 0:

The Black and Scholes (1973) call option pricing for-
265 mula, which satisfies properties (i)–(ix) is given by

BSðt,St,T,XÞ ¼ BS � 2

t,St
ðT,XÞ

¼ StNðdþÞ � Xe�rðT�tÞNðd�Þ, ð2Þ

where � is the volatility of the stock price and

d� ¼
lnðSte

r�=XÞ � ð�2�=2Þ

�
ffiffiffi
�
p :

Here � ¼ T� t is the time to maturity. The put price is
270 given via put–call parity in (iv).

3. The Figlewski formula and arbitrage-free modifications

In the previous section we wrote down a minimal list of
conditions that an option pricing function must satisfy in
order to preclude arbitrage. In this section we describe the

275 informationally passive IG model, show that it fails to
satisfy some of these conditions and propose a modifica-
tion MIG which satisfies all properties (i)–(ix) of section 2.
MIG is also informationally passive, in that it simply
satisfies the static no-arbitrage conditions.

280 Let f Gt,St
ðT,XÞ denote the time t price of a call on stock

index level St, with strike X, maturity T, riskless rate r,
and parameterized by G. This call pricing function must
satisfy (i)–(iii). Suppose f Gt,St

ðT,XÞ is increasing in G so
that G plays the role of an implied volatility parameter.

285 Then, given a market call price we can infer G and sub-
stitute this back into the formula to price a related option.
For example given today’s market price of an option we
can infer the implied value of G and use it to give a price
tomorrow for an option with the same strike and matur-

290 ity. (Of course the value of the index may have changed
during this period.)

Figlewski (2002) uses the function

IGG
t,St
ðT,XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ
ðSt � Xe�rðT�tÞÞ2

4

s
þ
ðSt � Xe�rðT�tÞÞ

2
,

ð3Þ

which we refer to as the IG model. Put–call parity in (iv)
295defines the put price to be

IGG
t,St
ðT,XÞ � ðSt � Xe�rðT�tÞÞ:

However, notice that if the strike approaches zero in
the IG model (3),

IGG
t,St
ðT, 0Þ ¼ lim

X#0
IGG

t,St
ðT,XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ

S2
t

4

r
þ
St

2
> St

300for G>0y. Thus this choice of function is inadmissible
as a call price function as property (ii) is violated and the
IG model admits arbitrage. In particular, there is a
difference between the price of a call option on the
stock with strike zero and a unit of the stock itselfz.

305We propose instead to use the modified function

MIGg
t,St
ðT,XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gSt þ

ðSt � Xe�rðT�tÞ � gÞ2

4

s

þ
St � Xe�rðT�tÞ � g

2
, ð4Þ

which we refer to as the MIG model. Here g plays the role
of the implied volatility parameter§. For this function

MIGg
t,St
ðT, 0Þ ¼ lim

X#0
MIGg

t,St
ðT,XÞ ¼ St

310and if put prices are given by put–call parity then MIG
satisfies all the necessary conditions for no-arbitrage.

In general it is quite difficult to construct option pricing
functions satisfying the no-arbitrage properties (i)–(iii).
A motivation and origin for the choice of both of the

315functions IG and MIG is explained in the Appendix.
These ideas allow us to construct a family of candidate
pricing functions. However, as Figlewski is careful to
point out, the aim is not to find a best-fit model, but
rather to compare the Black–Scholes model against the

320simplest alternative model satisfying static no-arbitrage.

4. Extension to time dependence and

implied index dynamics

Unlike the Black and Scholes (1973) pricing formula (2),
the IG model of Figlewski (2002) and our modified MIG

325models do not explicitly depend on the option maturity,
apart from in the discounting terms. We can extend both
models to include a maturity dependence. One reason for
doing this is to allow us to compare options with different
times to expiry, and as Figlewski (2002, p. 95) suggests

yNote that if we think instead of the call price as a function of current time and the index level St, then property (viii) does not hold
for the IG model. We have

IGG
T;Xðt; 0Þ ¼ lim

St#0
IGG

T;Xðt;StÞ > 0:

zThe problem with a model with call prices given by the function IG is that it is consistent with a price process which can go
negative.
§Figlewski (2002) interprets the parameter G in his model in this way. However the parameters G and g might more correctly be
interpreted as analogs of implied squared volatility. See also footnote on p. 8, where

ffiffiffiffi
G
p

takes the place of a constant multiple of �.
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330 ‘add structure across option maturities’. The second and
more fundamental reason is to better understand the
model.

In his paper Figlewski (2002, p. 81) states that
‘the Black–Scholes model and others like it, must assume

335 market conditions that rule out profitable dynamic arbi-
trage opportunities’. In contrast, by implication, a passive
model makes no assumptions about either the market, or
about the underlying dynamics. However, as we shall see,
once maturity has been introduced into the pricing model

340 then to a large extent the dynamics for the underlying
have been specified. Even if maturity is not introduced
into the model, then to be consistent the pricing function
must have an extension to include maturities, and hence
must belong to a severely restricted class of candidate

345 price processes.
The simplest way to incorporate maturity is to replace

the constant parameters G and g with the functions
ðT� tÞG and ðT� tÞg which are proportional in timey.
We obtain

IGTG
t,St
ðT,XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðT� tÞ þ

ðSt � Xe�rðT�tÞÞ2

4

s

þ
ðSt � Xe�rðT�tÞÞ

2
ð5Þ

350 and

MIGTg
t,St
ðT,XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gStðT� tÞþ

ðSt�Xe�rðT�tÞ �gðT� tÞÞ2

4

s

þ
St�Xe�rðT�tÞ �gðT� tÞ

2
: ð6Þ

We refer to the time-extended versions (5) and (6) as the
models IGT and MIGT, respectively.

355 In the subsequent analysis we follow Dupire (1993,
1994). Under the assumption that the underlying price
process is a diffusionz, and given European call prices
Ct,St
ðT,XÞ, then the risk neutral price process for

the spot is fully determined. There is a unique diffusion

360coefficient acðSu, uÞ such that the index level follows the
stochastic differential equation

dSu ¼ rSuduþ acðSu, uÞdWu ð7Þ

under the risk neutral probability measure. In fact, the
implied dynamics depend on the current call prices, and

365we can write

acðx, uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

@Ct,St
ðT,XÞ

@T þ rX
@Ct,St

ðT,XÞ

@X

@2Ct,St
ðT,XÞ

@X2

0
@

1
A

vuuut
�������
X¼x,T¼u

, ð8Þ

where Ct,St
ðT,XÞ is the call price function, thought of as a

function of strike.
The dynamics for the index level under the time mod-

370ified IGT model can be calculated using (8) and (5) as the
call pricing function. The index follows (7) with

acðSu, uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

u� t
Gðu� tÞe2rðu�tÞ þ

ðSte
rðu�tÞ � SuÞ

2

4

� �
:

s

ð9Þ

Similarly, the index level under the time modified
MIGT model follows (7) with§

acðSu, uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2e2rðu�tÞðSt þ Sue

�rðu�tÞ þ gðu� tÞ � 2DÞ

Stðu� tÞ

s
,

ð10Þ

375where D2
¼ gStðu� tÞ þ ½ðSt � Sue

�rðu�tÞ
� gðu� tÞÞ2=4�.

Notice first the contrast between the diffusion coeffi-
cients driving the index level under these two models
and the Samuelson (1965) model used for the Black and

380Scholes (1973) option pricing equation. Under the
Samuelson model,

dSu ¼ rSuduþ �SudWu

so acðSu, uÞ ¼ �Su with � constant. In both time extended
models, the diffusion coefficients (9) and (10) depend

385upon the constant parameters G and g, current index

yMore generally we could have used any increasing functions of time to maturity, but our aim is to give the simplest possible
extension to the time varying case. For an at-the-money option, under our choice ðT� tÞG, IGTG

t;St
ðT;Ste

rðT�tÞÞ ¼
ffiffiffiffi
G
p ffiffiffiffiffiffiffiffiffiffiffi

T� t
p

whereas in the Black–Scholes model BS�
2

t;St
ðT;Ste

rðT�tÞÞ � �
ffiffiffiffiffiffiffiffiffiffiffi
T� t
p

ðX=
ffiffiffiffiffiffi
2�
p
Þ to leading order. Hence our choice of linear scaling in

time to maturity is the most natural.
zThe assumption that the underlying follows a diffusion process is a combination of two assumptions, firstly that the underlying is a
Markov process, and secondly that it is continuous. Both of these assumptions can be challenged as unrealistic, and both are clearly
idealizations. However, making these assumptions leads to what, in many cases, is the simplest possible model consistent with the
given call prices.
§Compare the dynamics for the index under the two time-extended models IGT and MIGT. Notice that for the IGT model,

acð0; uÞ > 0;

whereas for the MIGT model,
acð0; uÞ ¼ 0:

In particular, in the IGT model, when the index hits zero its diffusion coefficient is non-zero and the price process can and does go
negative. Conversely, in the modified model, MIGT, when the index first hits zero, the diffusion coefficient is also zero and the
process stops. This explains why the IG model gives positive value to put options with zero strike, whereas MIG correctly gives a
zero value to these options.
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level Su, but also on current time, and the initial index
level St. Hence, although the option pricing functions (5)
and (6) are not too complicated, the implied index
dynamics consistent with these functions are much more

390 complicated than the lognormal model of Samuelson
(1965) and Black and Scholes (1973).

Although Figlewski (2002, p. 81) comments that his
example, and indeed any informationally passive model,
‘does not involve the theoretical apparatus that Black–

395 Scholes and other active pricing models require to rule
out dynamic arbitrage’, once maturity has been included
his example is consistent with the exactly one diffusion
model, and incorporating even simple time dependence
results in quite complicated dynamics for the index.

400 These observations concerning the incompatibility of
the notion of a passive model and a formula incorporat-
ing option maturity are the main message of this paper.
The remainder of the paper undertakes empirical testing
of IG, MIG and the time-extended versions and interprets

405 the results obtained.

5. The data

The data used in this study is daily data on S&P 500 index
options taken from the Berkeley Options Database.
Option prices correspond to the average of the last bid

410 and ask quotes reported before 3:00PM CST. We also use
values of the S&P500 index, dividend payout on the
S&P 500 over the remaining option life and riskless
interest rates. The data runs from 2 January 1991 to
29 December 1995.

415 The data is the same as used by Figlewski (2002). This
allows us to make a direct comparison with his results.

We construct a dividend adjusted index value by sub-
tracting the present value of the dividends over the
remaining option life from the raw series. This dividend

420 adjusted series is used in place of the raw series. The
interest rate is LIBOR obtained from the British
Bankers Association, interpolated between adjacent
months. We disregarded any observations where option
prices violated arbitrage bounds or where implied vola-

425 tilities were unable to be calculated. There were also a
very small number of observations with an obvious
recording error, for instance, the option maturity was
before the current date, and these were also eliminated.
Following this, there are 181 601 observations remaining

430 in the dataset.

6. Testing benchmark pricing models against

Black–Scholes and Bachelier

Our analysis is guided by many of Figlewski’s findings.
Firstly, he finds that regression and the R2 statistic is not

435an illuminating tool when assessing the ability of candi-
date option pricing models to fit option price data.
Instead he uses the root-mean-squared-errory (RMSE)
in comparing out-of-sample model predictions to the
observed market prices. Secondly, he finds only minimal

440differences in his numerical results (and no differences in
his conclusions) when he treats puts and calls separately
or as a single class. Thirdly, he finds that historical
volatility provides poor estimates for option prices when
used with the Black–Scholes model.

445Motivated by the above we consider three usages of the
Black–Scholes, IG and MIG models. In the first usage
(Figlewski’s Model 7) an implied volatility is calculated
for each traded option and used to predict the option
price one day later. We call this situation Model O. The

450second situation is when a single implied parameter is
calculated for all strikes for a given maturity, and used
to price options. We call this Model M and it corresponds
to Figlewski’s Model 4. The third usage is when a single
implied parameter is calculated at the close of each day.

455This parameter applies to all strikes and all maturities.
We call this Model Dz. Since Figlewski (2002) does not
explicitly include time in his model, there is no direct
comparison. We compare these predicted prices with the
observed prices and calculate the RMSE of the prices.

460In this way we repeat the analysis of Models 4 and 7 of
Figlewski (2002) for the Black–Scholes model and FIG.
His results were as given in table 1. Figlewski (2002) con-
cluded that his model IGG

t,St
ðX,TÞ fitted market prices

better than a theoretically consistent usage of the
465Black–Scholes model allowing only a single implied vola-

tility for each option maturity. However, when he allowed
for different implied volatilities for each option Black–
Scholes outperformed his model.

We examine the performance of the models IGG
t,St

,
470MIGg

t,St
, IGTG

t,St
and MIGTg

t,St
in fitting the options

data. These are compared against the standard Black
and Scholes (1973) model, and also against a Brownian
motion or Bachelier model (labelled Ba), and a modified
Brownian motion model (MBa) in which the non-

475negativity of the stock-price process is respected and the
Brownian motion is assumed to be absorbing at zero.
Our results are given in table 2§.

yRMSE is defined as

1

N

XN
i¼1

ðC ðiÞ
model

� C ðiÞ
market

Þ
2;

where C
ðiÞ

model
and C

ðiÞ

market
are the predicted model price and the observed market price respectively of the ith option.

zThe terminology O/M/D refers to one volatility per option/maturity/day.
§Note that the results for the Bachelier and modified Bachelier models are indistinguishable to the given level of accuracy. One needs
to take 10 decimal places before the numerical performance of the models differs. This is because for market parameters, the event
that the stock price hits zero is several standard deviations from the mean, and therefore the probability of this event is so small as to
leave the model fits unaffected.
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The numerical values in table 2 are broadly similar to
those in table 1 (at least for Black–Scholes and IG and

480 Models O and M) but typically about 10% smaller,
perhaps because we have been more zealous in eliminat-
ing suspect data. We find that when taking one implied
volatility per option, the Bachelier and Black–Scholes
models outperform the implied G class of models.

485 In this case, the models IG and MIG give almost indis-
tinguishable results. IGT and MIGT are also indistin-
guishable, but give a marginally better fit than IG and
MIG. This follows from the fact that they give a slightly
more sophisticated treatment of maturity which changes

490 from the time the implied parameter is calculated to the
time the option is repriced. The best fit of all is provided
by the Brownian motion or Bachelier model. If we take
one implied parameter per maturity, we still find that the
arithmetic Brownian motion models provide the best fit.

495 The relative performance of the other models changes—
now IG and IGT outperform MIG and MIGT which in
turn outperform Black–Scholes. Finally, if we take one
implied parameter per day then IG and MIG perform
very badly. (This is almost inevitable as these models

500 are not designed to cope with more than one maturity
at once.) Although the performances of the Black–
Scholes, Bachelier (and modified Bachelier), IGT and
MIGT models are comparable, we observe that the
Bachelier model provides the best fit, followed by IGT,

505 with MIGT just outperforming Black–Scholes.
Now consider the problem, instead of using implied

parameters to fit tomorrow’s option price, rather using
the price of a neighbouring option (i.e. an option with
nearby strike) to predict the current option price. For

510 each option, we choose two options with the same
maturity—the one with the next highest strike and the
one with the next lowest strike. We calculate the implied

volatility for the pair of neighbouring options and take an
average which we then use to derive a predicted price for

515the original option. (If the original option corresponds to
the smallest or largest strike traded then we just use the
implied volatility of the option with the next smallest or
largest strike.) The RMSE are given in table 3.
Since the same time is used throughout these calcula-

520tions, there is no difference between the models IG and
IGT or between MIG and MIGT so we report only one
set of numbers. The numerical difference between the fit
of the Bachelier and modified Bachelier models is also so
tiny that we just report the numbers once. For the calls

525with non-extreme strikes, the Bachelier model gives the
best predictions, followed by the Black–Scholes model.
The modified model MIG performs better than IG, but
only by a small margin. If we look at extreme option
values (deep in-the-money or out-of-the-money) then all

530models do worse. The Bachelier model continues to
provide the best fit (and substantially outperforms
Black–Scholes). For calls with the lowest strike, MIG out-
performs Black–Scholes and outperforms IG by a larger
margin. This is the part of the data where the fact that IG

535permits arbitrage is most likely to have an effect. For calls
with the highest strike, IG gives a better fit than MIG, but
both models perform poorly relative to the Black–Scholes
and Bachelier models.

For puts the pattern of behaviour is similar, but with
540some important differences. (Note that put–call parity

should mean that we find little difference between the
tables). The performance of all four models for
non-extreme strikes is very similar with MIG just
outperforming the other models and Bachelier being

545worst. MIG also provides the best fit for low strike
options. All models do worst for options with the highest
strike, but the deterioration in fit is most marked for the
implied G and its modified version, to the extent that
for the most in-the-money puts, the Bachelier and

550Black–Scholes models outperform the implied G class
by some margin.

Now we return to the situation where today’s volatility
is used to predict tomorrow’s option price and consider

Table 3. Root mean squared pricing error for Models O.
Implied parameters calculated from options with neighbouring
strikes are used to give a predicted model price, which is then

compared with market prices.

Smallest
strike

Non-extreme
strike

Largest
strike

Model O: Calls
No. obs. 7055 78742 7055
Black–Scholes 0.7061 0.2902 0.7045
Ba/MBa 0.5467 0.2831 0.5193
IG 0.7960 0.3614 1.2279
MIG 0.6920 0.3496 1.2753
Model O: Puts
No. obs. 6954 74686 6954
Black–Scholes 0.7496 0.3704 0.8694
Ba/MBa 0.5389 0.3738 0.7247
IG 0.5641 0.3723 1.3299
MIG 0.4481 0.3601 1.3783

Table 2. Root mean squared pricing error for Models O, M
and D. Implied parameters for day t are used to calculate option

prices on day tþ 1.

Model

O
One per
option

M
One per
maturity

D
One

per day

No. obs. 175742 180590 181307
Black–Scholes 0.4225 1.2954 1.3874
Ba 0.4217 1.0679 1.1297
MBa 0.4217 1.0679 1.1297
IG 0.4528 1.2073 4.1414
MIG 0.4524 1.2568 4.1843
IGT 0.4442 1.2054 1.3099
MIGT 0.4436 1.2547 1.3840

Table 1. RMSE for option prices. Extract from
Figlewski’s Exhibit 4.

Model
O

One per option
M

One per maturity

Black–Scholes 0.466 1.398
FIG 0.501 1.280
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the relative fit of the seven models in Model M, where a
555 single implied parameter is calculated for each maturity.

We divide the options into puts and calls and into five
moneyness classes: strike far below spot, strike below
spot, strike near spot, strike above spot and strike
far above spot. Like Figlewski (2002) we consider the

560 moneyness

M ¼
1ffiffiffiffiffiffiffiffiffiffiffi
T� t
p ln

S

Xe�rðT�tÞ
ð11Þ

and divide options into five categories M < �1:5�BS,
�1:5�BS <M < �0:5�BS, �0:5�BS <M < 0:5�BS,
0:5�BS <M < �BS1:5, 1:5�BS <M. Here �BS is the

565 Black–Scholes implied volatility of the option. The results
are given in table 4.

Observe that the pairs IG and IGT and MIG and
MIGT give almost identical results. In fact the time-
extended versions generally outperform the original

570 models (though not by much, and not always), presum-
ably because of the fact that time is incorporated in a
consistent fashion into the model. Note also that the
qualitative features are the same for both puts and calls,
in the sense that the relative performance of models is

575 typically the same whether we consider puts or calls, pro-
vided that, as in the table, we work with high or low strike
options rather than in or out-of-the-money options.

The fit (in terms of the RMSE) of both the IG and
MIG models deteriorates as strike increases (until for

580 options of very high strike performance improves). In
contrast, the performance of the Bachelier and Black–
Scholes models shows no consistent pattern across strikes,
except that again for high strike options the fit is
improved. As a result, the IG and MIG models fit better

585 than the Bachelier and Black–Scholes models for low
strikes, but fit worse for high strikes.

For comparison purposes table 5 includes (in modified
form) the equivalent entries from Figlewski (2002,
Exhibit V). In fact it turns out that there is little

590correspondence between our numbers and the numbers
in Figlewski’s Exhibit V. However, if we reverse the
labelling on the rows of Exhibit V, so that Figlewski’s
out-of-the-money calls (i.e. high strike calls) are relabelled
as low strike calls X� S, and similarly Figlewski’s

595out-of-the-money puts (i.e. low strike puts) are relabelled
as high strikes puts then we find the results as given in
table 5. Now there is excellent correspondence between
tables 4 and 5, both in terms of the numbers of puts
and calls in each category, and also for the RMSE

600reported in each cell. Thus it appears that the entries
in Exhibit V of Figlewski (2002) have accidentally been
reversed.

This also explains why the findings that the IG and
MIG models fit best for low strikes, and that they out-

605perform Black–Scholes for options of this type, is the
reverse of the findings reported in Figlewski (2002).
Figlewski (2002, p. 92) states that ‘the [IG] model . . .
does much better than Black Scholes for OTM calls and
ITM puts [high strikes], and does much worse for ITM

610calls and OTM puts [low strikes]’.

Table 4. Root mean squared pricing error for Model M. Implied parameters from day t are used to
calculate option prices on day tþ 1.

X�S X<S X�S X>S X�S

Model M: Calls
No. obs. 14132 22565 28925 17380 9374
Black–Scholes 1.0158 1.6231 1.0926 1.4411 0.2481
Ba/BaT 0.9270 1.3023 0.9132 1.1616 0.1690
IG 0.6881 0.8126 1.0599 2.0340 1.1339
MIG 0.5720 0.8550 1.1090 2.1326 1.1628
IGT 0.6790 0.8395 1.0993 1.9929 1.1101
MIGT 0.5679 0.8874 1.1435 2.0907 1.1385
Model M: Puts
No. obs. 16091 22105 29336 16073 4539
Black–Scholes 0.8623 1.6520 1.1204 1.4815 0.6881
Ba/BaT 0.7568 1.2953 0.9204 1.2011 0.6953
IG 0.5107 0.6621 0.9950 2.0247 1.0742
MIG 0.3650 0.7327 1.0591 2.1332 1.1045
IGT 0.4881 0.6890 1.0250 1.9788 1.0550
MIGT 0.3439 0.7656 1.0835 2.0865 1.0845

Table 5. Modified extract from Exhibit V of Figlewski (2002).
The modification is that the entries labelled in Figlewski (2002)

as being high-strike are labelled as low strike in this table.
Subject to this relabelling, there is excellent correspondence

between the numbers in Exhibit V and table 4.

X�S X<S X�S X>S X�S

Model M: Calls
No. obs. 13196 22293 29734 17862 9534
Black–Scholes 1.105 1.852 1.242 1.494 0.250
IG 0.696 0.936 1.195 2.132 1.159
Model M: Puts
No. obs. 16575 22398 29769 15997 5222
Black–Scholes 0.857 1.693 1.240 1.818 0.766
IG 0.505 0.712 1.089 2.267 0.865
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One of the main aims of the next section is to use the
basic properties of the IG and MIG models to explain
why they give superior fit for low strike options.

7. Interpretation of the empirical results

615 Consider first the difference between the IG and MIG
models and the Black–Scholes model. We can illustrate
these differences by considering the Black–Scholes
implied volatilities of option prices generated from the
alternative models. Figure 1 shows these implied volati-

620 lities for a range of values of parameters G and g.
The key observations are that for both IG and MIG

models, the implied volatility curves are convex and
roughly symmetric, and the effect of increasing G (or g)
is a parallel vertical shift. Changing G (or g) does not

625 change the shape of the volatility surface. When we intro-
duce time explicitly into the models, then we find that
convexity decreases with time.

Now consider the options data and consider families of
options traded on the same day with the same maturity.

630 There are 7054 such day/maturity pairs (approximately
1400 days with 5 maturities per day) with more than two
traded strikes. On each day, and for each maturity we can
fit an implied volatility smile

I ¼ aþ bMþ cM2
þ �i,

635 where M represents the moneyness as defined in (11). The
mean values we find for a, b, c are given in table 6. We
conclude that the data for individual days and maturities
has a negative skew and is generally convex, but occasion-
ally has a frown.

640 Figure 2 shows a synthetic dataset using implied
volatilities from the equation

I ¼ 0:135� 0:181 Mþ 0:271M2:

The range of strikes are those X for which the moneyness
given by (11) satisfies jMj � �=4, where �¼ 0.135, and

645 we take 20 evenly spaced values.

For comparison, figure 3 shows the implied volatilities
of calls and puts traded on 1991/06/03 with a maturity
date 1991/12/03. (The index level was 381.7 and the inter-
est rate r¼ 0.0629, so that the at-the-money strike is

650393.9). The same spot, maturity and interest rate were
used for figure 2. Note that in figure 3 there are two
data points per strike—one corresponding to a put and
the other to a call. (If put–call parity held perfectly these
values would match precisely). There is only one data

655point per strike in the synthetic dataset. Also plotted
are the best fit option prices for the Black–Scholes,
Bachelier, IGT and MIGT models. (Note that best fit
corresponds to minimizing the RMSE of the model prices
when compared with the data).

660Recall from table 4 that the errors in the fit of the
Black–Scholes and Bachelier models are roughly constant
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Figure 1. Black–Scholes implied volatilities calculated from options prices generated from the IG (left graph) and MIG (right)
models. The three lines correspond to three different values of the parameter G or g, which increases by a factor of 2, as we move up
from line to line.
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Figure 2. Synthetic implied volatility data, and the correspond-
ing best fit model implied volatilities.

Table 6. Regression values based on the
7054 day/maturity pairs.

a b c

Mean 0.1352 �0.1813 0.2714
Std Dev. 0.0281 0.0676 0.3300

*** 2007 style (V 7.51g) [31.10.2006–3:01pm] First Proof [1–12] [Page No. 9] {TANDF FPP}RQUF/RQUF A 201038.3d (RQUF) RQUF A 201038

Is there an informationally passive benchmark for option pricing incorporating maturity? 9



over strikey. From figures 2 and 3 we see that the fit of the
implied volatility is much worse away from the money
than at-the-money. However, in the tails the impact on

665 the price of an error in implied volatility is much reduced.
In fact, this effect dominates and although the errors in
implied volatility are largest in the tails, the pricing errors
are smallest there.

From table 4 we see that for the models IG and MIG
670 the errors increase with strikez. The explanation can be

found in figures 2 and 3. The typical set of data is convex
and negatively skewed. As a result, the symmetric but
convex implied volatilities from IG and MIG fit better
for low strikes than for high strikes. Again, the reported

675 results are for pricing errors rather than in terms of
implied volatilities, so that volatility errors at-the-money
result in the highest pricing errors. This explains why we
find the dependence we do (errors increasing with strike).

Figures 2 and 3 also help to explain why in terms of the
680 RMSE expressed in tables 2, 3 and 4, the Bachelier or

Brownian motion model gives such an excellent fit to
the data when compared against the Black–Scholes
model. As is well known, the Bachelier model produces
implied skews which are negative, and from figures 2 and

685 3 we can see that they match the skew of the index data
extremely well.

Now consider the results in table 3. Overall we might
expect to see similar results to the Model O results in
table 2, and again we find that for most of the data the

690 Black–Scholes and Bachelier models outperform the
other two models. However, MIG does provide a better

fit than IG. The results are most striking when we take the
smallest strike with a given maturity and attempt to
predict the option price using the observed value for the

695next lowest strike. This is the case when we expect
the no-arbitrage problems of IG to have most effect.
We find that MIG significantly outperforms IG in
this case, and is the best model of all for puts, so that it
seems that for the smallest strikes the model IG is starting

700to perform badly.

8. Conclusion

One interpretation of the conclusions of Figlewski’s
(2002) paper might be that, if the role of an option pricing
model is to derive option prices for illiquid options from

705the market prices of liquidly traded options, then it is not
necessary to use the Black–Scholes formula and any other
function with the right shape will perform roughly as
well. Further, in this context it is possible to assess the
contribution of the Black–Scholes model by comparing its

710performance against other candidate passive pricing func-
tions which satisfy the no-static-arbitrage conditions.
In his paper Figlewski suggests an appropriate function
and finds that sometimes it performs better than the
Black–Scholes formula, and sometimes worse, but the

715fit to data is typically comparable.
Unfortunately, Figlewski’s example is not consistent

with no-arbitrage. Indeed it prices at up to $2 a put
option with zero strike, which must be worthless. As an
alternative, we introduce a modification to Figlewski’s

720function which does not suffer from this deficiency. We
find that this modified function fits S&P 500 options data
roughly as well as the implied G model and generally they
both outperform or underperform the Black Scholes pri-
cing function for the same tests. We do find one test where

725MIG outperforms IG. This is for extremely low strike
options where we expect the arbitrage problems of the
Figlewski example to have an effect. We also expect
both IG and our modification to perform better on cur-
rency options data which tends to be characterized by

730more symmetric implied volatility smiles.
The good news for the implied G model and modified

implied G function is that they fit the data roughly as well
as Black–Scholes and that they are much simpler in that
they only involve square roots rather than cumulative

735normal distributions. The bad news for IG and MIG
comes when one introduces maturity into the models. It
is easy to include maturity, but once this is done then

yThe exception is that the RMSE for out-of-the-money calls is very small. The reason for this is that these options have a very small
price (much less than a dollar), so that even a large pricing error in relative terms translates to a small error in absolute terms. This
effect also explains why the performance of IG and MIG improves markedly for far out-of-the-money calls.
zFiglewski (2002) obtains the opposite relationship, in that he finds that for both puts and calls errors decrease with strike. The fact
that our conclusions are contradictory was one of the main motivations for our attempt to explain this relationship. The fact that we
are able to give a plausible explanation in terms of stylized facts such as skew and smile gives us confidence that our numerical
results are the correct ones, and that the entries in Figlewski’s Exhibit V have indeed been mislabelled.
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Figure 3. Implied volatilities of puts and calls on 1991/06/03
with maturity 6 months later. Also shown are the best-fit implied
volatilities from the best fit Black–Scholes, Bachelier, IG and
MIG models.
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there is only one set of dynamics which is consistent with
the option pricing function (at least under a diffusion

740 assumption). Once maturity has been included, then
following the analysis of Dupire (1993, 1994) to each
‘informationally passive’ call pricing function there corre-
sponds an ‘active’ model and vice versa. Hence it no
longer makes sense to distinguish between passive and

745 active models. There is no informationally passive
benchmark for option pricing incorporating maturity.

When we apply the Dupire (1993, 1994) analysis we
find that the implied dynamics of the implied G and mod-
ified implied G models are much more complicated than

750 the Samuelson–Black–Scholes model. Even if one does
not explicitly allow for different maturities in the IG
model, then the model has to be consistent with some
maturity-extended version, and then the dynamics must
be complex. In this sense, the simplicity of the Samuelson

755 model makes the Black–Scholes pricing formula the one
requiring minimal assumptions. This simplicity will be
especially powerful when it comes to pricing exotic
options.

Nonetheless, time-extended implied G models do give a
760 surprisingly good fit to data, especially when one consid-

ers the fact that they have purely been chosen as simple
functions and not optimized in any way. The reason for
this good fit is that the models are consistent with an
implied volatility smile which reflects the smile in the

765 options data. However, there is another candidate bench-
mark model which outperforms both the Black–Scholes
model and the implied G models. This model is the
Bachelier (or arithmetic Brownian motion) model,
which can be made to respect positivity of prices by mak-

770 ing the underlying process absorbing at zero. The pricing
function which arises from this model outperforms
the other models in terms of the tests we consider.
The main reason for this is that the Bachelier model
gives implied volatility skews which match those found

775 in the data.
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Appendix

This appendix motivates the choice of option pricing
functions IGG

t,St
ðT,XÞ and MIGg

t,St
ðT,XÞ in (3) and (4).

810We want to find a call price function C(X) which satisfies
the static no-arbitrage properties (i)–(iii) (for fixed time
t, index level S and maturity T ) when considered as
a function of discounted strike Xe�rðT�tÞ. Consider the
problem in terms of the dimensionless quantities

815c ¼ C=S and x ¼ Xe�rðT�tÞ=S.
We require c ¼ fðxÞ to be a strictly positive convex

function with fð0Þ ¼ 1, such that f(x) decreases to
zero as x increases. Further, from comparisons with
the intrinsic value of the option, we have fðxÞ � 1� x.

820The left graph of figure 4 illustrates the shape of the
function.
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Figure 4. Strictly positive convex function c ¼ fðxÞ (left graph) and its inverse x ¼ f�1ðcÞ (right graph).
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It turns out that rather than attempting to write down
suitable functions c ¼ fðxÞ it is easier to look for a func-
tion x ¼ f �1ðcÞ where f�1 is a decreasing, convex function

825 satisfying f �1ðcÞ � 1� c. This is graphed in the right part
of figure 4.

Rather than working with f �1ðcÞ it is more natural to
consider ~fðcÞ ¼ f �1ðcÞ � 1þ c. Then ~f must be a convex
decreasing function with ~fð0Þ ¼ 1 and ~fð1Þ ¼ 0. If we

830 ignore this last condition, then there is a simple
parametric family of solutions given by

~fðcÞ ¼
~G

c
: ðA1Þ

Then x ¼ f �1ðcÞ ¼ �cþ 1þ ~f ðcÞ so that

1� x ¼ c�
~G

c
:

835 This simplifies to

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Gþ
ð1� xÞ2

4

s
þ
1� x

2
:

Writing G ¼ ~GS2
t we find

CðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ
ðSt � Xe�rðT�tÞÞ2

4

s
þ
St � Xe�rðT�tÞ

2

and recover (3), which is Figlewski’s (2002) implied G
840example.

The problem with this pricing function is that it does
not satisfy Cð0Þ ¼ S or equivalently ~f ð1Þ ¼ 0. One easy
way to modify (A1) so that ~fð1Þ ¼ 0 is to set

~fðcÞ ¼
~Gð1� cÞ

c
:

845Then

1� x ¼ c�
~Gð1� cÞ

c

and

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Gþ
ð1� ~G� xÞ2

4

s
þ
1� ~G� x

2
:

In terms of the original quantities we have

CðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gSt þ

ðSt � Xe�rðT�tÞ � gÞ2

4

s
þ
St � Xe�rðT�tÞ � g

2
,

850where g ¼ ~GSt, which gives us the modified implied G
example.
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