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Abstract

We study the probability theory of countable dense random subsets of (uncountably
infinite) Polish spaces. It is shown that if such a set is stationary with respect to a
transitive (locally compact) group of symmetries then any event which concerns the
random set itself (rather than accidental details of its construction) must have proba-
bility zero or one. Indeed the result requires only quasi-stationarity (null-events stay
null under the group action). In passing, it is noted that the property of being countable
does not correspond to a measurable subset of the space of subsets of an uncountably
infinite Polish space.
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1 Introduction

The results derived in this paper make it clear how little can be usefully said about stationary
random patterns of points which are both countable and dense. If we restrict ourselves to
speaking only about what we can observe from the random pattern itself (rather than any
mechanism that might have been used in its construction) then we find that there are strong
limits on useful statements, summarized in the zero-one law given in Figelow. It

seems worth putting these facts on record, not only because their description has surprised
specialists who have not happened to consider the question before, but also because they
illustrate some of the limits of sensible enquiry for stochastic phenomena.

Of course in a strict sense the notion of a random countable dense set is far from our
firmly bounded and finite perception of reality. However it is important to be clear about
the limits of the mathematical abstractions used to discuss our perceptions of such reality.
As remarked in 11, page 442], “Thus, while as hewers of wood and drawers of water we
can afford for most of the time to ignore these matters, we must not neglect them entirely
if we care for the quality of the wood and the purity of the water”. Indeed countable
dense random sets arise naturally in stochastic geometry (for example, the sets of limiting
directions of sensed lines from line processes) and in the theory of Brownian motion (the
zeroes of one-dimensional Brownian motion measured in the scale of local time) so it is
useful to clarify the situations in which probabilistic statements about such sets can be
uninformative.

The paper is organized as follows. In the next section we introduce notation and con-
cepts from stochastic geometry. Secti®bdiscusses measure-theoretic issues, particularly
the fact that the property of being countable does not in general correspond to a measurable
event. The main results are to be found in Sectiowhere we show that a countable dense
random set which is quasi-stationary satisfies a zero-one law, at least under a mild extra
condition on the basic space (which is certainly satisfied in the case where the stationarity
is taken with respect to the symmetries provided by a Lie group). Finally, Seztieals
with further questions, in particular showing that there is no concealed phenomenological
event concerning such countable dense random sets which has non-trivial probability.



It is a pleasure to acknowledge useful discussions on this topic with my colleagues
Saul Jacka and Jon Warren, and with llya Molchanov of Glasgow University. | am also
very grateful to an anonymous referee who pointed out the centrality to this work of the
notion of multifunctions.

2 Definitions and notation

We begin by introducing notation for the space from which the points of the random set
are to be drawn. In the following we will consider random patterns of points belonging to
a basic spac&, which we require to be a Polish space (which is to 3ajs a complete
separable metric space), locally compact and of uncountable cardinality. TheBorel
algebra ofX is denoted byB (X).

It will be helpful to bear in mind the specific example of the real [evith its Borel
c-algebra: we discuss the general case because of its interest in stochastic geometry, but
the case of the real line carries all the significant technical issues.

The following standard notation from stochastic geometry will be used throughout this
paper. (Seed(] for a general introduction to stochastic geometry.) We need a notation
to express the fact that the (typically random) gehits (intersects) the (typically non-
random) sef3: if A, B are subsets of then we write

A B

(A hits B) to signify thatA N B = (). We denote the event that a random set hits a given
target setB by the following:

Definition 2.1 (The hitting-set event): If B C X then
[B] = {AeB(X):Af B} (1)
defines théitting-set evenfor B.

With this notation we can define th@t-or-misso-algebra (introduced to stochastic
geometry by Matheronlp)):

Definition 2.2 : Thehit-or-miss o-algebra $(X) for B (X) is generated by the everjt8]
as B runs through (X):

9(X) = of[B]: BeB(X)}. @)
Note that9(X) is a collection of subsets of the fami/(X).

In fact it would suffice to consideB running only through the closed setsXf(this
follows by a capacitability argument).

Notice that in Matheron’s original definition the-algebra$(X) is composed only of
subsets of the family of closed subsetsXof However we need to consider random sets
which are not closed, and therefore must consider subsets of the faiily of Borel
sets.

We now define aandom set In fact there are two different ways in which one might
think of a random set: constructively and phenomenologically. From the constructive point
of view we define a random set as a subset of “probability spabasic space”;

Definition 2.3 (Constructive definition of a random set): Arandom sebased on a prob-
ability space(2, §,P) is an§ ® B(X)-measurable subset

= C OxX.



Thus an observed random set is a slice
Ew) = {zeX: (wz)eZ} € BX),

wherew € Q.

But what do we actually observe when given a random set? If all reference to the actual
construction is to be avoided then it is reasonable to confine ourselves toalyebra
generated by the various hitting evef3] for B € B(X) (we address this issue further
in Thm. 5.1 below). These events are indeed measurable for a countable random set, by
the argument sketched after Def below. So it is natural, following Matheroi ], to
consider a notion of a random set involving rather less information, for which we stipulate
only the measurability of these hitting events. This turns out to be exactly the notion of a
Borel multifunction a set-valued functio& satisfying the following.

Definition 2.4 (Phenomenological definition of a random set):.Consider a probability
space(Q2, §,P). The map

2:0 - BX)

is a Borel multifunctionif it is measurable as a map froff2, §) to (B(X), H(X)), which
is to say that for all Borel subsef8 of X we have

{w:Ew)+B} € F.

Wagner 1, 22] (see also9]) surveys the very extensive literature on multifunction prop-
erties and results.

Note that the above definitions still make sense if the basic Sda#s to be a Polish
space. The main requirement is for singleton point sets to be Borel, sd ifjate 9H(X),
thus ensuring tha ! ([{x}]) belongs td§. This is important if the random countable set

= = {517527"'}3

(produced using-valued random variables, &, ... ) is to yield a Borel multifunction
in the sense of Defr2.4.

The contrast between random sets and multifunctions reflects a fundamental tension
between synthetic and analytic approaches to probability. The synthetic approach defines
random quantities by construction, as in De®3. (Indeed from a historical perspective
this is the original way in which random sets were defined: 4&e18].) The analytic
approach describes random quantities using their probability distributions on suitable
algebras, just as in the use of the hit-or-misalgebra$(X) in the phenomenological
Defn.2.4. If the random s€eE is almost surely closed then Deflzss3and2.4are equivalent:
this is a consequence of Himmelberg's theoré&mihm. 3.5].

The work of Aldous and Barlowl], on countable dense random subsets of the real line,
is close in subject matter to the material treated here. However Aldous and Barlow treat
densePoissonpoint processes using the synthetic approach, considering the dense Pois-
son point process as defined using a projection from some higher-dimensional space, and
using the higher-dimensional information to formulate their results. In the following we
are guided by the analytic approach; we will aim for results concerning random sets of the
form given in Defn.2.3 but based on observation of the random set itself, without making
reference to whatever stochastic mechanism has been used for its construction. Thus our
results concern random sets defined using D&fbut viewed in terms of DefrR.4, using
the hittingo-algebrah (X).

Finally in this section we introduce notions of stationarity. All the essential technical-
ities in the following arise in the case of the real [Ke= R with symmetry group given
by translations; we would then abbrevi@e= B(R), H = H(R). and letT, : R — R



be the translatiol, (y) = = + y. However we give a general treatment here because the
results of this paper are of interest in stochastic geometry, where both the basic space and
the symmetry group can be considerably more general.

Recall the following basic facts about invariant measures, to be found for example
in [12] or in part in [B]. If G is a locally compact topological group then it carries a
left-invariant Borel measurg, the Haar measurgwhich is unique up to a multiplicative
constant. In general this measure is not right-invariant, but thereisdalar function

A:G — (0,00) (3)

such that forg € G the right-translated measuft, 1. satisfies the identityz . = A(g)p.
In fact A is a continuous homomorphisrh, page 117].

Suppose that? acts transitively on a locally compact spa€ewith stability group the
closed subgroup/ < G, so that we can viewX as

X = G/H. @)

ThenX = G/ H carries an invariant measure (unique up to a multiplicative constant) if and
only if the modular functiong\ and$ of G and H are related by

A(h) = &(h) forallhe H. (5)

Moreover, given a Borel measurable selectionG/H — G (so thats(¢H)H = gH),

there is a natural construction of the invariant measuvehich will be useful to us later.

(The existence of a Borel measurable selection follows here from a theorem due to Mackey:
see R1, Theorem 11.6].) Suppose that E§) bolds and fixiW C H to be a relatively
compact open subset &f. If Z is a Borel subset off/ H then

v(Z) = constantx p{s(z) xw : z € Z,w e W} (6)

is an invariant measure ai/H. (In the case when the stability grodp is compact the
construction can be simplified by usif = H.)

We define extensions of th@-actiong : B(X) — B(X) andg : H(X) — H(X) in the
canonical way.

In the following we shall assume that the basic spficean be written aX = G/H
with symmetry group, such that the modularity relation Ecp)(@pplies, with resulting
invariant measure onX = G/H. Examples include:

1. the real lineR with symmetry group given by translations;
2. Euclidean spacR? with symmetry group given by rigid motions;

3. the Euclidean spherg?~! (for d > 1) with symmetry group the special orthogonal
group SQd);

4. the space of unimodular lattices Rf with symmetry group given by the special
linear group SId, R).

The last example differs in that the stability subgrdiip= SL(d, N) is non-compact. It has
arisen in stochastic geometry in the study of line processes; see the letter from Kingman
presented by Kallenberg in ().

Remark 2.5 : It is notthe case that invariant measures can be found for all transitive ho-
mogeneous spaces with locally compact group symmetry. Consider for example Euclidean
space with symmetry group given by the group of affine transformations. Rather clearly
this cannot have an invariant measure, since the symmetry group can be used to transform
compact sets into strictly smaller compact sets!



We now define the notion of a stationary random subsé&.olt is convenient also to
introduce the weaker notion of “quasi-stationarity”, corresponding to quasi-invariance of
measures as discussed for example by Mackéydage 134], since this arises naturally in
the hypotheses of our main results.

Definition 2.6 (Stationarity for random sets): Let= be a random subset &f based on
(Q,5,P), and letG act transitively as above. We say

() = is G-stationanyif, for all E € $(X), the probabilityP [ ¢= € E'] doesn't depend
ong € G;

(i) = is quasi&G-stationaryif, for all E € H(X) and for all g € G, the probability
P[¢g= € E]vanishesifandonly P[Z € E] = 0.

In the following we shall generally omit the adjectival~”, as we will only consider
stationarity and quasi-stationarity with respect to a single fixed symmetry gfoup

3 Countable random sets

In order to discuss countable dense random sets in an analytic approach, we first need to
consider how to specify when a random set is countable. We insisted on the basi&space
being uncountable exactly in order to avoid trivialities here.

It would be convenient if we could show that the §ef all countable sets belongs
to H(X). However it is rather easy to show that (except in the trivial case of countable
X) the set of all countable random sets is not measurable with respect to the hit-or-miss
o-algebra, as shown in the following theorem. (Note that the proof of the theorem, rather
unsurprisingly, depends on the Axiom of Countable Choice. ltis closely related to the ideas
of Vitali's classic example of a non-measurable set as described, for examples2n.17,
page 141]. Hoffman-Jgrgensed, [Vol. 2, P.12, pages 502ff] gives a probabilistically-
orientated discussion of logical axioms.)

Theorem 3.1 (Non-measurability of the countable property): The hit-or-missr-algebra
$(X) (for uncountable basic spac€) does not contain the set of all countable sets.

Proof: Supposer € $(X). By standard measure-theoretic argumdnitselongs to a
countably-generated subalgebra

o{[Bi],[Ba], ...}

for some sequence of Borel sdBs, Bs, ... from B(X). Without loss of generality we
may suppose all of thé; are non-empty. By the Axiom of Countable Choice we may
chooser; € B; foreachi = 1,2, ..., and consider the countable set

C = {xl,wg,...}.

By constructionC {} B; for all i. However it is also trivially true thaX 1} B; for all i.

If X € E'then (sinceX is uncountable}’ cannot be the set of all countable set&in

On the other hand, K ¢ E we can argue that' ¢ E. For by construction of® we
know C 1} B, agrees withX 1 B; for all . A routine measure-theoretic argument then
shows thaiX andC' must agree in membership or non-membership of all sets in

o{[Bil,[Ba],... } .

Therefore either”, X both belong toF or they both do not belong. So it follows that if
X ¢ FEthenC ¢ E.



Thus, whether or naX € E, we deducé? is not the set of all countable setsin and
the result follows. O

In practice the Axiom of Countable Choice is not required, as in any practical presen-
tation of X there will be some means of selectingfrom B;.

Of course there are probability measuPesn (8 (X), (X)) giving outer measuré to
the set of all countable sets (for example, any Poisson point process with intensity measure
a diffusecs-finite measurg: on X). The phenomenon above is comparable with the non-
Borel-measurability of the set of continuous paths in general path-space, which does not
preclude the construction of Brownian motion as a random continuous path.

We digress briefly to sketch an argument to show that the property of being of Haus-
dorff dimension at most is also not measurable with respect to the hit-or-raisdgebra.
Suppose the basic spakecan be viewed as a complete separable metric space of Haus-
dorff dimensiong for 3 > «, furnished with the Boreb-algebra. For convenience we
require a certain dimensional uniformity: namely, that within each non-empty metric ball
B; we may construct a subsgl; of Hausdorff dimensiom. Once again, anf € H(X)
lies in a subs-algebra which is countably generated. Moreover we may suppose that the
countable sequence of subsetsXofised to generate the subalgebra is a sequence of
non-empty metric ball,, B, ... .

Now construct a sell by taking the countable union of subséfs C B; of Hausdorff
dimensiona. ThenH also has Hausdorff dimensian Arguing as in Theoren3.1, we
deduce thalf andX belong or do not belong t& together, and accordingly that € $(X)
cannot be the set of all subsets of Hausdorff measure atdeast

The appeal to the Axiom of Countable Choice is circumvented here by our (very rea-
sonable) assumption that we can expliciynstructt; C B;.

The failure of measurability of the countability property, as described by Thit.
opens up an ambiguity. What do weeanby saying a random set is countable? There are
two possible alternative definitions. LEt: (2,5, P) — (B(X), H(X)) be a random set as
defined in Defn2.3.

Definition 3.2 (Weak countability): We say= is weakly countabléf the imagelm(Z) is
almost surely contained in the (non-measurable) set of countable sets.

The alternative is a constructive approach. In the literature there can be found two main
ways of constructing countable random sets:

(1) asE = {&,&,,... } using an explicit sequencg, &, ... of X-valued random
variables;

(2) as the projection of an appropriate locally finite point procesXonY, whereY is
another locally compact Polish space.

Random countable dense sets can arise naturally in other ways (for example, the starting
times for Brownian excursions measured in the scale of local time at zero), but typically
can be recast easily in one of the two above forms. Moreallerountable random sets

of the form given in Defn2.3 can be represented in the sequential form (1) above: we
formulate this below in Thn3.4. This motivates the alternative definition:

Definition 3.3 (Constructive countability): We sayE is constructively countabld there
exists a sequence (possibly of finite length, and this length if finite may itself be random)

§1,82,...: 1 — X
of random variableg, &, ... such that

PlE={&. &, ] = 1. 7



The notions of weak and constructive countability are in fact equivalent, using an argu-
ment due to Lusin]3, pages 237ff] (see als@], Cor. 10.2]) which can be obtained by a
straightforward argument using transfinite induction and the celebsatdin theorenof
measure theory:

Theorem 3.4 (The equivalence of weak and constructive countability):The random
set= based on the probability space, 5, P) is weakly countable if and only if it is con-
structively countable.

In general this equivalence runs into difficulties for Borel multifunctions, as can be
seen from ¥, Example 5]. Considef2 to be the space of all countable nonempty sets
o of real numbers, and takg = H(R). If F is the multifunction given byF'(o) = ¢
then it is trivially a Borel multifunction, but (following fromZ, Cor. 2]) there is no Borel
measurable functiofi defined orf2 such thatf (o) € o for all o. Thus this particular Borel
multifunction is not derived from a random set, and delivers weak countability without
constructive countability.

As our results concern random sets viewed using the hitthaggebrasn (X), we shall
no longer distinguish between weak and constructive countability, but shall instead simply
speak oftountablerandom sets.

4 A zero-one law for dense countable random sets

We consider a basic spa&ewhich has a transitive symmetry grotp(a locally compact
topological group with left-invariant Haar measyreand which has invariant measure
To obtain understanding in a simple case the reader may find it convenient to consider the
real line cas&X = R, together with the group of translations, in what follows.

We first prove a partial result for the completely general case.

Theorem 4.1 : Let = be a quasi-stationary countable random subseKdfased on the
probability space(2, §,P). For A € B(X) (so A is a Borel subset oK) the invariant
measure/(A) is non-zero ifand only P[= + A] > 0.

Proof: Suppose thaP [ZE{+ A] > 0. ThenP[¢=f A] > O0forallg € G, by
quasi-stationarity. Using a representati®én= {1, &, ...} of the countable s€E, and
subadditivity of probability,

Y Plg&ieAl > 0
i=1

for all g € G. For convenience, set
filg) = TP[g& € Al

so that
Y filg) >0 forallgeG.
=1

It follows that for at least onéwe have that

D; = A{g: fig) >0}

is a set of positivei-measure.



Now this means the following: there is a relatively compact opeiset G such that
D; N O is of positiveu-measure and therefore

P[UE e Al = ﬁ/ofi(g)u(dg) > 0

whereU is aG-valued random variablg-uniformly distributed over the open sétand
independent of the construction 8f We deduce thatl is charged by the law df’¢;. But
U¢; has a probability density with respect to the invariant measur@&hereforeA is of
positive invariant measurei(A) > 0.

Suppose on the other hand thais of positiver-measure. Then it follows that for all
large enough relatively compact open subgetsf G, and forU as above, then

PUS4A] > P[U&eA] > 0.

It follows that

1

LL(())/OP[QETTA}M(dQ) > 0

and therefore, for some (in fagto-almost all)g € G,
Pl¢g=f1A] > 0.

ThereforeP [g= f# A] > 0 for someg € G, and so (by quasi-stationarity) for gllinclud-
ing the cas@® [E |} A] > 0 wheng equals the identity. O

The main result of this paper is to show that this can be strengthened to a zero-one law
for quasi-stationary countabtienserandom sets. It suffices to show thatdifis of positive
v-measure thef?[= f A] = 1. We require two extra regularity conditions in order to
make the proof work. Firstly, the topology for the basic space must be generated by open
sets with boundaries which are negligible with respect to invariant measure, and secondly
there must be local continuous selections lifting the basic space to the symmetry group.
Both are satisfied in the case when the symmetry gr@iga Lie group, since thenitis a
consequence of the closed subgroup theo3nThm. 3.42] that the closed subgroép
is also Lie,G/H is a manifold, and locally the set-up is Euclidean withlying in G as
an imbedded sub-manifold. We therefore impose the requiremenitisdtie for the next
lemma and theorem.

We begin with a preparatory lemma formulating and proving a version of Lebesgue’s
density theorem.

Lemma 4.2 : Suppose that the Polish metric spa¥eis a transitive homogeneous-
space, with symmetry group a Lie groGp and stability group a closed subgroup < G.
Suppose further thaX possesses &-invariant measure.. Suppose that a Borel subset
A C X has positive,-measure. Then we can find a paine A and a decreasing sequence
{N,, : n > 1} of relatively compact open sets whose boundaries are oftamieasure,
such that

(a) a € Ny;
®) Ny | {a};
(©) pn=v(N,NA)/v(N,) — 1asn — cc.

Proof: Sincer(A) > 0, there is a point. € A of full density by Lebesgue’s density
theorem. For the case &f = R this is a standard result in real analysi9,[Theorem 8.8]:
for everyn = 1, 2, ... we can find an interval,, d,,) such that

(@) a € (en,dy);



(b/) dp —cp =277 and(cn+17dn+1) - (Cn7dn);
() pn =Leb((cpn,dn)NA)/27™ — 1asn — oco.

It also applies in the general setting of tiespaceX whend is a Lie group; a general
proof can be obtained using discrete-time martingale theory as follows. Without loss of
generality suppose that< v(A) < co. Because the homogeneous spédgderived from
a Lie group itis a smooth manifold, and therefore we can construct a filtreipnn > 1}
of locally finite coveringsC,, of X using relatively compact open sets with boundaries
of v-measure zero. This filtration in turn allows us to construct a sequence of functions
fn : X — [0,00) as follows: the covering,, produces an algebtd(C,,) of subsets oK
and ifz € X belongs to the ator/ of A(C,,) then

v(ANH)

fn(x) = I/(H)

(We set the ratio equal to zerouf H) = 0.)

Let U bev-uniformly distributed overd. Then the sequendgf,,(U) : n > 1} defines
a bounded martingale (by properties of discrete conditional expectation) which converges
almost surely td (as can be seen by approximating the indicatod afsing indicators of
elements of4(C,,)). Hence there is a point € A of full density (in fact, the set of sudh
is of positiver-measure): for every = 1, 2, ... we can find a relatively compact open set
N, of positiver-measure such that

(a) a € Ny;
() Na | {a};
() pn =v(N,NA)/v(N,) — 1asn — oo,

as required. In fact iff,, is the atom ofA(C,,) containing the random variablé then we
can setN,, = int(H,,), arguing that with probability one all thH,, will be open and of
positive measure and their boundaries (being of measure zero) will not céhtain O

Theorem 4.3 (A zero-one law for quasi-stationary dense random sets)Suppose that
the Polish metric spacX is a transitive homogeneous-space, with symmetry group a Lie
group G, and stability group a closed subgroup < G. Suppose further tha possesses
a G-invariant measurer. Let= be a quasi-stationary countable dense random subsét of
based on the probability spa¢€!, §,P). Then for any BoreH € 9B(X) it is the case that
P[= 1 A] = 1ifand only if A is of non-zera--measure. Moreover fany E € $(X) we
have

P[E€E] = oOorl ®)

depending only o € $(X) and the nature of the symmetry afforded®yia the invari-
ant measure, butnoton the specific random sgt

Proof: Thm.4.1proves half of this result, so it suffices to consider the case when a set
A C Xis given which is of positive,-measure.

It is convenient to fix a relatively compact open sub@ett G, and to replacé& by
= = V=, whereV is a G-valued random variable uniformly distributed ower It is
immediate thaE’ is also a countable dense quasi-stationary random set. As we will explain
in detail below, ifP[Z" 9} A] = 1 then quasi-stationarity implies th&{ =/} A] = 1.

Fix a constructively countable representation

E/ == {£1a€25"'}

of the countable dense random Sét



Now apply Lemma4.2to obtain a density point € X for the setA in question, with
corresponding decreasing sequence of open{9éts n > 1}.

Let @ C H be a relatively compact open neighbourhood of the identity in the sub-
group H. Using our discussion of invariant measure for homogeneous spaces in Section
2, and particularly Eq.q) together with the existence (following from the remarks before
Lemma4.2, sincedG is Lie andH is a closed subgroup) oflacally continuousselection
s : G/H — G which is chosen to be continuous in a neighbourhood of the density point
a, we can construct sefe,, = s(NV,,) x @ C G such that;

e M, is decreasing im, and allM,, contains(a);

e M, is open for all large enough (specifically,n such thats is continuous when

restricted tav,,);
e if the G-valued random variabl&,, is p-uniform on M,, (and independent d&’),
then
PlU,HeA] = v[N,N4 — 1
asn — oo.

Without loss of generality we may discard the initial part of the sequé¢idg : n > 1}
and suppose that in fagt,, is open for alln.

Choose a decreasing sequeitg, : n > 1} of relatively compact open subsets@f
which are neighbourhoods of the identity and such that &) — 0.

Using the fact that the countable random Séts dense inX = G/H, we can find
gn € W,, C G (depending implicitly orE’) such thay,, s(a)H € Z’.

Let f,.(-) be the density of/,, on G with respect to the Haar measute and let
Ly, fn(-) be the density of,,U,. (The notationL,, f, is standard for the left-translate
of the functionf,, by the group element,,.) Their supports\f,, andg, M,, are contained
in the relatively compact séf; x M;. Furthermore botly,, () and L, f,.(-) take just
two values: either zero ar/u(U,) = 1/u(g,U,) (recall thaty is left-invariant). Finally
the supports are both open sets with boundaries of yratleasure, and the fact that
converges to the identity ofd therefore implies

fo—Lg.fn — 0O u-almost everywhere

We can therefore deduce from the dominated convergence theorem that

1
(M) /eG gHEA ( o fn) A [ € 4] Lg €4l 0

It follows from P [U, H € A] = v[N,, N A] — 1 that

1 > PEtA] > Plg,UHeA] — 1.

Now P[Z' 1+ A] = [, P[gE A]pu(dg)/u(O) and therefore? [¢= f+ A] = 1 for
p-almost aIIg € O, and indeed fopi-almost allg € G, sinceO was arbitrary. Therefore
by quasi-stationarity we deduce

P[E4A] = 1  ifuv(d)>0. 9)

The final conclusion (the zero-one law for € $(X), not depending on the specific
construction of) follows by standard measure theory arguments once we recall the def-
inition of $H(X); that it is generated by the hitting everi® {} A] which are zero or one
depending on whether the invariant measurel @f zero or positive. O

As an immediate consequence of this result we obtain some apparently paradoxical
facts:

10



Remark 4.4 : The zero-one law for the quasi-stationary countable dense rando® set
implies that for all$(X)-measurable random variablés we haveP [Y € Z] = 0. So
there are no Borel selections of pointsdnand the randomness His “hidden”, if all we
can use is hit-or-miss information.

Remark 4.5 : If one considers the stationary countable dense randontsetQ + U,
whereQ is the set of rationals an& is Uniform(0, 1), then this translates into the known
fact that one cannot produce @-measurable selection for the fibration Rfinduced by

its subgroupQ. This is related to Vitali's example of a non-Lebesgue-measurable set men-
tioned above before Thr8.1

Remark 4.6 : As a further consequence, we can deducedhngtwo stationary countable
dense random sefs;, =, onR are independent, in the sense that

P[ElgUl,EQGUQ] = P[ElgUl]XP[EQEUQ]

whenevely, Us € 9. This follows for the trivial reason that all sets of probability zero or
one are independent of each other.

5 Further questions and comments on the literature

One might wonder whether there is some more complicataljebra forB thans), which
supports non-trivial events for stationary countable dense random sets but does not use
randomness not somehow available from observation of the random set in question. This
can be formulated as follows. LEtC E x X be a countable dense random set such that

{513527"'}

is a representation as a constructively countable random set. The particular representation
is arbitrary: so we introduce the notion sét-equivalencef two sequences df-valued
random variables by

§={&,&, ..} ~ n={m,m,...}
if and only if

{&(w), & (W), ..} = {m(w),n2(w),...} foralmost allw .
Here the equality is taken in the sense of equality of the two &etsider of enumeration

is irrelevant).
We set

6 = () olmm...} (10)

nn~Eg

so that events i are exactly those which can be formulated under arbitrary (including
random!) reorderings of the sequence used to derive constructive countability. &Thus
encompasses the widest possible class of events which might be viewed as concerning the
random seE itself, rather than the means of its construction.

Theorem 5.1 : Itis the case tha® is contained in any completion of thealgebra$ (X).

Proof: This is actually a problem abofibered spaced_etS be the space of al-valued
sequences, with the usuatalgebra&, generated by evaluation maps. Then we have a
sequence of measurable projections

71 (S,6) = (S,8) — (B(X), H(X)) (11)
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representin as a fibration over the spa@&(X) of (in fact countable) subsets &f
The matter resolves to the study of sétsC B(X) such that¥ is the projection of
some®-measurable st € S, so

E = {W(a):aeE’}.

Note thatE will also be G-measurable. Hence (since the spdasf X-valued sequences

can be metrized so as to be Polish witlalgebraS) we see the projection sétis analytic

([3, Theorem 111.13]). Now the issue can be recognized as one which concerns analytic

sets and Choquet’s famous capacitability theoredni([.33]). In general projection set®

neednotbe measurable in the sense of belonging (&): however they will be measurable

with respect to any completion 6f(X). O
Clearly this settles the matter as far as zero-one laws are concerned.

llya Molchanov has asked the question, whether Thr.above can be generalized
to apply to a stationary random subseffofvhich is everywhere dense and yet which has
probability zero of containing any specified point. The answer is no, as may be seen from
the following examples.

In the first example we use a theorem of Mattil®,[ Theorem 3.2] on intersections of
fractal sets. This implies that #, H c [0,1]? are sets of finite positive Hausdo#{ 3-
dimensional measure then the set of rigid motiessich thatH { H has positive Haar
measure. Note that the conditions of this theorem force us to consider aRfeasther
thanR!

Example 5.2 : The random seE C R? is constructed as follows. Letbe a random
rigid motion, obtained by first uniformly randomly translating the origirover the unit
square|0, 1] and then applying a uniform random rotation. L8t ¢ Q2 = Q x Q
denote the integer lattice. Léf, H c [0,1/3]? be sets of finite positive Hausdo#f3-
dimensional measure, so that the probability:&F intersectingH lies strictly betweer)
and1. Consider thaincountablelense random set

= = t(QQU U(2+H)>
z€Z?

This stationary (and isotropic) dense random set generates non-trivial probabilities for the
hit-or-misso-algebra(R?).

To see this, consider the evént H. This has probability lying strictly betweenand
1. For

P{Eﬂf[} - P[t(U(z—!—H)) ﬂﬁ] :

z€Z?

since the countable partQ?) of = missesH almost surely, by Thmi.1 Bute(z+ H)NH
is empty when is a random rigid motion produced as above, arisla member oZ? \
(ball(o,v2/3) @ [~4/3,0]?), since H and H are both contained if0, 1/3]> and hence
t(z + H) is disjoint from H for suchz. Consequently the Mattila result shows

P[Eﬂfﬂ - P U v+ H) |1 H| € (0,1).
z€72n(ball(o,/2/3)®[—4/3,0]2)

So there is no zero-one law for probabilities of hitting events in this case.

The above is a two-dimensional example: here is a less explicit example in just one
dimension, which in addition is ergodic and mixing:
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Example 5.3 : The random seE C R is constructed as follows. SplR into domains
according to a unit intensity Poisson process, such that in each domain indeperi&ntly

e eitherthe intersection with the domain of a random translate of the ratio@lals

e or the intersection with the domain of a random translat€ofs Z, the rationals
Minkowski-added to the zero s&tof a linear Brownian motion.

In each case the random translate vector should be chosen uniformly distributel® oMer
independently of the Poisson process and of other translations, and the Brownian motions
should be independent of the Poisson processes and the translations.

There are bounded sets of measure zero which have a positive chance of being hit by linear
Brownian motion (for example the zero set of a Besggifocess for € (0, 1), continued

by reflection at the origin): such sets will have a positive but not certain chance of being hit
by the= whose construction is indicated above.

Our final example is motivated by problems from the theory of Brownian local times,
which lead to pairs of random countable dense sets which exhibit dependence phenomena
appearing to contradict the observation in Rem@atkabove. Saul Jacka and Jon Warren
proposed the following simplified example. (More complicated examples involve non-
independent Brownian motions which share some but not all of their respective zero sets.)

Example 5.4 : Consider three independent Poisson point procesée¥”, Z living on

the infinite rectanglg0, 1] x R. Suppose their intensity measures are givehdlyx Leb,
Lebxv, andLeb x Lebrespectively, wherkeb is Lebesgue measure ands some mea-

sure onR, possibly finite, possibly-finite, possibly null. Imagine the points &f, Y,

Z being coloured red, white, blue respectively. Now construct the new point processes
E1=7(XUY),E =n(Y UZ)wherer : [0,1] x R — [0,1] is projection onto the first
coordinate.

Clearly, depending on the total mass:gfwe have three different situations depending
on whether there are no white points at all, infinitely many, or only finitely many. So the
dependence/independence structurEqf=, is non-trivial. However this example really
concerns anarkedpoint process based on the pointst@¢fX U Y U Z), where the points

are marked red, white, or blue according to their originating point process. Consequently
more information is being used here concerriig=, than would be available from their
hitting o-algebras alone. It follows that there is no contradiction between this example and
Remark4.6.

We have already noted the work of Aldous and Barldy fvhich investigates non-
trivial structure of countable dense random sets; this is possible because these random sets
are viewed constructively (because they are related to filtratiornsal§ebras specified
a priori) rather than phenomenologically. Note that the difference here is thgori
specification of the filtration, rather than the one-dimensional nature of the basic space: as
Zuyev [24] has demonstrated, it is possible to make effective use of similar notions for point
processes on multidimensional spaces. For example it is straightforward to follow Zuyev’s
ideas to generalize a pretty characterization due to Aldous and Bat|dihgéorem 4(c)]:
if a countable dense subsetC R, viewed as a random set defined on a probability space
with filtration localizing to compact subsets Bf, satisfies

{weFE : Ew)NCw)} = {wekFE : Leb(C(w)) =0} (12)

for every previsible sef’ (see R4] for a definition) thenz is the projection of a locally
finite Poisson point process @®f x (0, c0). The proof usesl, Theorem 4(c)] applied to
predictable sets following one-parameter increasing families of compact sub®&ts of
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