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Abstract

We study the probability theory of countable dense random subsets of (uncountably
infinite) Polish spaces. It is shown that if such a set is stationary with respect to a
transitive (locally compact) group of symmetries then any event which concerns the
random set itself (rather than accidental details of its construction) must have proba-
bility zero or one. Indeed the result requires only quasi-stationarity (null-events stay
null under the group action). In passing, it is noted that the property of being countable
does not correspond to a measurable subset of the space of subsets of an uncountably
infinite Polish space.
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1 Introduction

The results derived in this paper make it clear how little can be usefully said about stationary
random patterns of points which are both countable and dense. If we restrict ourselves to
speaking only about what we can observe from the random pattern itself (rather than any
mechanism that might have been used in its construction) then we find that there are strong
limits on useful statements, summarized in the zero-one law given in Thm.4.3 below. It
seems worth putting these facts on record, not only because their description has surprised
specialists who have not happened to consider the question before, but also because they
illustrate some of the limits of sensible enquiry for stochastic phenomena.

Of course in a strict sense the notion of a random countable dense set is far from our
firmly bounded and finite perception of reality. However it is important to be clear about
the limits of the mathematical abstractions used to discuss our perceptions of such reality.
As remarked in [11, page 442], “Thus, while as hewers of wood and drawers of water we
can afford for most of the time to ignore these matters, we must not neglect them entirely
if we care for the quality of the wood and the purity of the water”. Indeed countable
dense random sets arise naturally in stochastic geometry (for example, the sets of limiting
directions of sensed lines from line processes) and in the theory of Brownian motion (the
zeroes of one-dimensional Brownian motion measured in the scale of local time) so it is
useful to clarify the situations in which probabilistic statements about such sets can be
uninformative.

The paper is organized as follows. In the next section we introduce notation and con-
cepts from stochastic geometry. Section3 discusses measure-theoretic issues, particularly
the fact that the property of being countable does not in general correspond to a measurable
event. The main results are to be found in Section4, where we show that a countable dense
random set which is quasi-stationary satisfies a zero-one law, at least under a mild extra
condition on the basic space (which is certainly satisfied in the case where the stationarity
is taken with respect to the symmetries provided by a Lie group). Finally, Section5 deals
with further questions, in particular showing that there is no concealed phenomenological
event concerning such countable dense random sets which has non-trivial probability.
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It is a pleasure to acknowledge useful discussions on this topic with my colleagues
Saul Jacka and Jon Warren, and with Ilya Molchanov of Glasgow University. I am also
very grateful to an anonymous referee who pointed out the centrality to this work of the
notion of multifunctions.

2 Definitions and notation

We begin by introducing notation for the space from which the points of the random set
are to be drawn. In the following we will consider random patterns of points belonging to
a basic spaceX, which we require to be a Polish space (which is to say,X is a complete
separable metric space), locally compact and of uncountable cardinality. The Borelσ-
algebra ofX is denoted byB(X).

It will be helpful to bear in mind the specific example of the real lineR with its Borel
σ-algebra: we discuss the general case because of its interest in stochastic geometry, but
the case of the real line carries all the significant technical issues.

The following standard notation from stochastic geometry will be used throughout this
paper. (See [20] for a general introduction to stochastic geometry.) We need a notation
to express the fact that the (typically random) setA hits (intersects) the (typically non-
random) setB: if A,B are subsets ofX then we write

A ⇑ B

(A hitsB) to signify thatA ∩ B 6= ∅. We denote the event that a random set hits a given
target setB by the following:

Definition 2.1 (The hitting-set event): If B ⊆ X then

[B] = {A ∈ B(X) : A ⇑ B} (1)

defines thehitting-set eventfor B.

With this notation we can define thehit-or-missσ-algebra (introduced to stochastic
geometry by Matheron [15]):

Definition 2.2 : Thehit-or-miss σ-algebraH(X) for B(X) is generated by the events[B]
asB runs throughB(X):

H(X) = σ{[B] : B ∈ B(X)} . (2)

Note thatH(X) is a collection of subsets of the familyB(X).

In fact it would suffice to considerB running only through the closed sets ofX (this
follows by a capacitability argument).

Notice that in Matheron’s original definition theσ-algebraH(X) is composed only of
subsets of the family of closed subsets ofX. However we need to consider random sets
which are not closed, and therefore must consider subsets of the familyB(X) of Borel
sets.

We now define arandom set. In fact there are two different ways in which one might
think of a random set: constructively and phenomenologically. From the constructive point
of view we define a random set as a subset of “probability space× basic space”;

Definition 2.3 (Constructive definition of a random set):A random setbased on a prob-
ability space(Ω,F,P) is anF⊗B(X)-measurable subset

Ξ ⊆ Ω× X .
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Thus an observed random set is a slice

Ξ(ω) = {x ∈ X : (ω, x) ∈ Ξ} ∈ B(X) ,

whereω ∈ Ω.
But what do we actually observe when given a random set? If all reference to the actual

construction is to be avoided then it is reasonable to confine ourselves to theσ-algebra
generated by the various hitting events[B] for B ∈ B(X) (we address this issue further
in Thm. 5.1 below). These events are indeed measurable for a countable random set, by
the argument sketched after Defn.2.4below. So it is natural, following Matheron [15], to
consider a notion of a random set involving rather less information, for which we stipulate
only the measurability of these hitting events. This turns out to be exactly the notion of a
Borel multifunction: a set-valued functionΞ satisfying the following.

Definition 2.4 (Phenomenological definition of a random set):Consider a probability
space(Ω,F,P). The map

Ξ : Ω → B(X)

is a Borel multifunctionif it is measurable as a map from(Ω,F) to (B(X),H(X)), which
is to say that for all Borel subsetsB ofX we have

{ω : Ξ(ω) ⇑ B} ∈ F .

Wagner [21, 22] (see also [9]) surveys the very extensive literature on multifunction prop-
erties and results.

Note that the above definitions still make sense if the basic spaceX fails to be a Polish
space. The main requirement is for singleton point sets to be Borel, so that[{x}] ∈ H(X),
thus ensuring thatΞ−1([{x}]) belongs toF. This is important if the random countable set

Ξ = {ξ1, ξ2, . . . } ,

(produced usingX-valued random variablesξ1, ξ2, . . . ) is to yield a Borel multifunction
in the sense of Defn.2.4.

The contrast between random sets and multifunctions reflects a fundamental tension
between synthetic and analytic approaches to probability. The synthetic approach defines
random quantities by construction, as in Defn.2.3. (Indeed from a historical perspective
this is the original way in which random sets were defined: see [17, 18].) The analytic
approach describes random quantities using their probability distributions on suitableσ-
algebras, just as in the use of the hit-or-missσ-algebraH(X) in the phenomenological
Defn.2.4. If the random setΞ is almost surely closed then Defns.2.3and2.4are equivalent:
this is a consequence of Himmelberg’s theorem [6, Thm. 3.5].

The work of Aldous and Barlow [1], on countable dense random subsets of the real line,
is close in subject matter to the material treated here. However Aldous and Barlow treat
densePoissonpoint processes using the synthetic approach, considering the dense Pois-
son point process as defined using a projection from some higher-dimensional space, and
using the higher-dimensional information to formulate their results. In the following we
are guided by the analytic approach; we will aim for results concerning random sets of the
form given in Defn.2.3but based on observation of the random set itself, without making
reference to whatever stochastic mechanism has been used for its construction. Thus our
results concern random sets defined using Defn.2.3but viewed in terms of Defn.2.4, using
the hittingσ-algebraH(X).

Finally in this section we introduce notions of stationarity. All the essential technical-
ities in the following arise in the case of the real lineX = R with symmetry group given
by translations; we would then abbreviateB = B(R), H = H(R). and letTx : R → R
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be the translationTx(y) = x + y. However we give a general treatment here because the
results of this paper are of interest in stochastic geometry, where both the basic space and
the symmetry group can be considerably more general.

Recall the following basic facts about invariant measures, to be found for example
in [12] or in part in [5]. If G is a locally compact topological group then it carries a
left-invariant Borel measureµ, theHaar measure, which is unique up to a multiplicative
constant. In general this measure is not right-invariant, but there is amodular function

∆ : G → (0,∞) (3)

such that forg ∈ G the right-translated measureRgµ satisfies the identityRgµ = ∆(g)µ.
In fact∆ is a continuous homomorphism [12, page 117].

Suppose thatG acts transitively on a locally compact spaceX, with stability group the
closed subgroupH ≤ G, so that we can viewX as

X = G/H . (4)

ThenX = G/H carries an invariant measure (unique up to a multiplicative constant) if and
only if the modular functions∆ andδ of G andH are related by

∆(h) = δ(h) for all h ∈ H . (5)

Moreover, given a Borel measurable selections : G/H → G (so thats(gH)H = gH),
there is a natural construction of the invariant measureν which will be useful to us later.
(The existence of a Borel measurable selection follows here from a theorem due to Mackey:
see [21, Theorem 11.6].) Suppose that Eq. (5) holds and fixW ⊆ H to be a relatively
compact open subset ofH. If Z is a Borel subset ofG/H then

ν(Z) = constant× µ {s(z)× w : z ∈ Z,w ∈W} (6)

is an invariant measure onG/H. (In the case when the stability groupH is compact the
construction can be simplified by usingW = H.)

We define extensions of theG-actiong : B(X)→ B(X) andg : H(X)→ H(X) in the
canonical way.

In the following we shall assume that the basic spaceX can be written asX = G/H
with symmetry groupG, such that the modularity relation Eq. (5) applies, with resulting
invariant measureν onX = G/H. Examples include:

1. the real lineR with symmetry group given by translations;

2. Euclidean spaceRd with symmetry group given by rigid motions;

3. the Euclidean sphereSd−1 (for d > 1) with symmetry group the special orthogonal
group SO(d);

4. the space of unimodular lattices inRd with symmetry group given by the special
linear group SL(d,R).

The last example differs in that the stability subgroupH = SL(d,N) is non-compact. It has
arisen in stochastic geometry in the study of line processes; see the letter from Kingman
presented by Kallenberg in [10].

Remark 2.5 : It is not the case that invariant measures can be found for all transitive ho-
mogeneous spaces with locally compact group symmetry. Consider for example Euclidean
space with symmetry group given by the group of affine transformations. Rather clearly
this cannot have an invariant measure, since the symmetry group can be used to transform
compact sets into strictly smaller compact sets!
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We now define the notion of a stationary random subset ofX. It is convenient also to
introduce the weaker notion of “quasi-stationarity”, corresponding to quasi-invariance of
measures as discussed for example by Mackey [14, page 134], since this arises naturally in
the hypotheses of our main results.

Definition 2.6 (Stationarity for random sets): Let Ξ be a random subset ofX based on
(Ω,F,P), and letG act transitively as above. We say

(i) Ξ is G-stationaryif, for all E ∈ H(X), the probabilityP [ gΞ ∈ E ] doesn’t depend
ong ∈ G;

(ii) Ξ is quasi-G-stationaryif, for all E ∈ H(X) and for all g ∈ G, the probability
P [ gΞ ∈ E ] vanishes if and only ifP [ Ξ ∈ E ] = 0.

In the following we shall generally omit the adjectival “G-”, as we will only consider
stationarity and quasi-stationarity with respect to a single fixed symmetry groupG.

3 Countable random sets

In order to discuss countable dense random sets in an analytic approach, we first need to
consider how to specify when a random set is countable. We insisted on the basic spaceX

being uncountable exactly in order to avoid trivialities here.
It would be convenient if we could show that the setU of all countable sets belongs

to H(X). However it is rather easy to show that (except in the trivial case of countable
X) the set of all countable random sets is not measurable with respect to the hit-or-miss
σ-algebra, as shown in the following theorem. (Note that the proof of the theorem, rather
unsurprisingly, depends on the Axiom of Countable Choice. It is closely related to the ideas
of Vitali’s classic example of a non-measurable set as described, for example, in [4, §2.7.17,
page 141]. Hoffman-Jørgensen [8, Vol. 2, P.12, pages 502ff] gives a probabilistically-
orientated discussion of logical axioms.)

Theorem 3.1 (Non-measurability of the countable property): The hit-or-missσ-algebra
H(X) (for uncountable basic spaceX) does not contain the set of all countable sets.

Proof: SupposeE ∈ H(X). By standard measure-theoretic argumentsE belongs to a
countably-generated sub-σ-algebra

σ {[B1], [B2], . . . }

for some sequence of Borel setsB1, B2, . . . from B(X). Without loss of generality we
may suppose all of theBi are non-empty. By the Axiom of Countable Choice we may
choosexi ∈ Bi for eachi = 1, 2, . . ., and consider the countable set

C = {x1, x2, . . . } .

By constructionC ⇑ Bi for all i. However it is also trivially true thatX ⇑ Bi for all i.
If X ∈ E then (sinceX is uncountable)E cannot be the set of all countable sets inX.
On the other hand, ifX 6∈ E we can argue thatC 6∈ E. For by construction ofC we

knowC ⇑ Bi agrees withX ⇑ Bi for all i. A routine measure-theoretic argument then
shows thatX andC must agree in membership or non-membership of all sets in

σ {[B1], [B2], . . . } .

Therefore eitherC, X both belong toE or they both do not belong. So it follows that if
X 6∈ E thenC 6∈ E.
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Thus, whether or notX ∈ E, we deduceE is not the set of all countable sets inX, and
the result follows. 2

In practice the Axiom of Countable Choice is not required, as in any practical presen-
tation ofX there will be some means of selectingxi fromBi.

Of course there are probability measuresP on (B(X),H(X)) giving outer measure1 to
the set of all countable sets (for example, any Poisson point process with intensity measure
a diffuseσ-finite measureµ onX). The phenomenon above is comparable with the non-
Borel-measurability of the set of continuous paths in general path-space, which does not
preclude the construction of Brownian motion as a random continuous path.

We digress briefly to sketch an argument to show that the property of being of Haus-
dorff dimension at mostα is also not measurable with respect to the hit-or-missσ-algebra.
Suppose the basic spaceX can be viewed as a complete separable metric space of Haus-
dorff dimensionβ for β > α, furnished with the Borelσ-algebra. For convenience we
require a certain dimensional uniformity: namely, that within each non-empty metric ball
Bi we may construct a subsetHi of Hausdorff dimensionα. Once again, anyE ∈ H(X)
lies in a sub-σ-algebra which is countably generated. Moreover we may suppose that the
countable sequence of subsets ofX used to generate the sub-σ-algebra is a sequence of
non-empty metric ballsB1,B2, . . . .

Now construct a setH by taking the countable union of subsetsHi ⊂ Bi of Hausdorff
dimensionα. ThenH also has Hausdorff dimensionα. Arguing as in Theorem3.1, we
deduce thatH andX belong or do not belong toE together, and accordingly thatE ∈ H(X)
cannot be the set of all subsets of Hausdorff measure at leastα.

The appeal to the Axiom of Countable Choice is circumvented here by our (very rea-
sonable) assumption that we can explicitlyconstructHi ⊂ Bi.

The failure of measurability of the countability property, as described by Thm.3.1,
opens up an ambiguity. What do wemeanby saying a random set is countable? There are
two possible alternative definitions. LetΞ : (Ω,F,P)→ (B(X),H(X)) be a random set as
defined in Defn.2.3.

Definition 3.2 (Weak countability): We sayΞ is weakly countableif the imageIm(Ξ) is
almost surely contained in the (non-measurable) set of countable sets.

The alternative is a constructive approach. In the literature there can be found two main
ways of constructing countable random sets:

(1) as Ξ = {ξ1, ξ2, . . . } using an explicit sequenceξ1, ξ2, . . . of X-valued random
variables;

(2) as the projection of an appropriate locally finite point process onX× Y, whereY is
another locally compact Polish space.

Random countable dense sets can arise naturally in other ways (for example, the starting
times for Brownian excursions measured in the scale of local time at zero), but typically
can be recast easily in one of the two above forms. Moreoverall countable random sets
of the form given in Defn.2.3 can be represented in the sequential form (1) above: we
formulate this below in Thm.3.4. This motivates the alternative definition:

Definition 3.3 (Constructive countability): We sayΞ is constructively countableif there
exists a sequence (possibly of finite length, and this length if finite may itself be random)

ξ1, ξ2, . . . : Ω → X

of random variablesξ1, ξ2, . . . such that

P [ Ξ = {ξ1, ξ2, . . . } ] = 1 . (7)
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The notions of weak and constructive countability are in fact equivalent, using an argu-
ment due to Lusin [13, pages 237ff] (see also [21, Cor. 10.2]) which can be obtained by a
straightforward argument using transfinite induction and the celebratedsection theoremof
measure theory:

Theorem 3.4 (The equivalence of weak and constructive countability):The random
setΞ based on the probability space(Ω,F,P) is weakly countable if and only if it is con-
structively countable.

In general this equivalence runs into difficulties for Borel multifunctions, as can be
seen from [7, Example 5]. ConsiderΩ to be the space of all countable nonempty sets
σ of real numbers, and takeF = H(R). If F is the multifunction given byF (σ) = σ
then it is trivially a Borel multifunction, but (following from [2, Cor. 2]) there is no Borel
measurable functionf defined onΩ such thatf(σ) ∈ σ for all σ. Thus this particular Borel
multifunction is not derived from a random set, and delivers weak countability without
constructive countability.

As our results concern random sets viewed using the hittingσ-algebraH(X), we shall
no longer distinguish between weak and constructive countability, but shall instead simply
speak ofcountablerandom sets.

4 A zero-one law for dense countable random sets

We consider a basic spaceX which has a transitive symmetry groupG (a locally compact
topological group with left-invariant Haar measureµ) and which has invariant measureν.
To obtain understanding in a simple case the reader may find it convenient to consider the
real line caseX = R, together with the group of translations, in what follows.

We first prove a partial result for the completely general case.

Theorem 4.1 : Let Ξ be a quasi-stationary countable random subset ofX based on the
probability space(Ω,F,P). For A ∈ B(X) (soA is a Borel subset ofX) the invariant
measureν(A) is non-zero if and only ifP [ Ξ ⇑ A ] > 0.

Proof: Suppose thatP [ Ξ ⇑ A ] > 0. ThenP [ gΞ ⇑ A ] > 0 for all g ∈ G, by
quasi-stationarity. Using a representationΞ = {ξ1, ξ2, . . . } of the countable setΞ, and
subadditivity of probability,

∞∑
i=1

P [ gξi ∈ A ] > 0

for all g ∈ G. For convenience, set

fi(g) = P [ gξi ∈ A ]

so that

∞∑
i=1

fi(g) > 0 for all g ∈ G.

It follows that for at least onei we have that

Di = {g : fi(g) > 0}

is a set of positiveµ-measure.
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Now this means the following: there is a relatively compact open setO ⊂ G such that
Di ∩O is of positiveµ-measure and therefore

P [Uξi ∈ A ] =
1

µ(O)

∫
O

fi(g)µ( dg) > 0

whereU is aG-valued random variableµ-uniformly distributed over the open setO and
independent of the construction ofΞ. We deduce thatA is charged by the law ofUξi. But
Uξi has a probability density with respect to the invariant measureν. ThereforeA is of
positive invariant measure:ν(A) > 0.

Suppose on the other hand thatA is of positiveν-measure. Then it follows that for all
large enough relatively compact open subsetsO of G, and forU as above, then

P [UΞ ⇑ A ] ≥ P [Uξ1 ∈ A ] > 0 .

It follows that

1
µ(O)

∫
O

P [ gΞ ⇑ A ]µ( dg) > 0

and therefore, for some (in factµ|O-almost all)g ∈ G,

P [ gΞ ⇑ A ] > 0 .

ThereforeP [ gΞ ⇑ A ] > 0 for someg ∈ G, and so (by quasi-stationarity) for allg includ-
ing the caseP [ Ξ ⇑ A ] > 0 wheng equals the identity. 2

The main result of this paper is to show that this can be strengthened to a zero-one law
for quasi-stationary countabledenserandom sets. It suffices to show that ifA is of positive
ν-measure thenP [ Ξ ⇑ A ] = 1. We require two extra regularity conditions in order to
make the proof work. Firstly, the topology for the basic space must be generated by open
sets with boundaries which are negligible with respect to invariant measure, and secondly
there must be local continuous selections lifting the basic space to the symmetry group.
Both are satisfied in the case when the symmetry groupG is a Lie group, since then it is a
consequence of the closed subgroup theorem [23, Thm. 3.42] that the closed subgroupH
is also Lie,G/H is a manifold, and locally the set-up is Euclidean withH lying in G as
an imbedded sub-manifold. We therefore impose the requirement thatG is Lie for the next
lemma and theorem.

We begin with a preparatory lemma formulating and proving a version of Lebesgue’s
density theorem.

Lemma 4.2 : Suppose that the Polish metric spaceX is a transitive homogeneousG-
space, with symmetry group a Lie groupG, and stability group a closed subgroupH < G.
Suppose further thatX possesses aG-invariant measureν. Suppose that a Borel subset
A ⊆ X has positiveν-measure. Then we can find a pointa ∈ A and a decreasing sequence
{Nn : n ≥ 1} of relatively compact open sets whose boundaries are of nullν-measure,
such that

(a) a ∈ Nn;

(b) Nn ↓ {a};

(c) ρn = ν(Nn ∩A)/ν(Nn)→ 1 asn→∞.

Proof: Sinceν(A) > 0, there is a pointa ∈ A of full density by Lebesgue’s density
theorem. For the case ofX = R this is a standard result in real analysis [19, Theorem 8.8]:
for everyn = 1, 2, . . . we can find an interval(cn, dn) such that

(a′) a ∈ (cn, dn);
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(b′) dn − cn = 2−n and(cn+1, dn+1) ⊆ (cn, dn);

(c′) ρn = Leb((cn, dn) ∩A)/2−n → 1 asn→∞.

It also applies in the general setting of theG-spaceX whenG is a Lie group; a general
proof can be obtained using discrete-time martingale theory as follows. Without loss of
generality suppose that0 < ν(A) <∞. Because the homogeneous spaceX is derived from
a Lie group it is a smooth manifold, and therefore we can construct a filtration{Cn : n ≥ 1}
of locally finite coveringsCn of X using relatively compact open sets with boundaries
of ν-measure zero. This filtration in turn allows us to construct a sequence of functions
fn : X → [0,∞) as follows: the coveringCn produces an algebraA(Cn) of subsets ofX
and ifx ∈ X belongs to the atomH of A(Cn) then

fn(x) =
ν(A ∩H)
ν(H)

.

(We set the ratio equal to zero ifν(H) = 0.)
LetU beν-uniformly distributed overA. Then the sequence{fn(U) : n ≥ 1} defines

a bounded martingale (by properties of discrete conditional expectation) which converges
almost surely to1 (as can be seen by approximating the indicator ofA using indicators of
elements ofA(Cn)). Hence there is a pointa ∈ A of full density (in fact, the set of sucha
is of positiveν-measure): for everyn = 1, 2, . . . we can find a relatively compact open set
Nn of positiveν-measure such that

(a) a ∈ Nn;

(b) Nn ↓ {a};

(c) ρn = ν(Nn ∩A)/ν(Nn)→ 1 asn→∞,

as required. In fact ifHn is the atom ofA(Cn) containing the random variableU then we
can setNn = int(Hn), arguing that with probability one all theHn will be open and of
positive measure and their boundaries (being of measure zero) will not containU . 2

Theorem 4.3 (A zero-one law for quasi-stationary dense random sets):Suppose that
the Polish metric spaceX is a transitive homogeneousG-space, with symmetry group a Lie
groupG, and stability group a closed subgroupH < G. Suppose further thatX possesses
aG-invariant measureν. LetΞ be a quasi-stationary countable dense random subset ofX

based on the probability space(Ω,F,P). Then for any BorelA ∈ B(X) it is the case that
P [ Ξ ⇑ A ] = 1 if and only ifA is of non-zeroν-measure. Moreover foranyE ∈ H(X) we
have

P [ Ξ ∈ E ] = 0 or 1 (8)

depending only onE ∈ H(X) and the nature of the symmetry afforded byG via the invari-
ant measureν, butnoton the specific random setΞ.

Proof: Thm.4.1proves half of this result, so it suffices to consider the case when a set
A ⊆ X is given which is of positiveν-measure.

It is convenient to fix a relatively compact open subsetO ⊂ G, and to replaceΞ by
Ξ′ = V Ξ, whereV is aG-valued random variable uniformly distributed overO. It is
immediate thatΞ′ is also a countable dense quasi-stationary random set. As we will explain
in detail below, ifP [ Ξ′ ⇑ A ] = 1 then quasi-stationarity implies thatP [ Ξ ⇑ A ] = 1.

Fix a constructively countable representation

Ξ′ = {ξ1, ξ2, . . . }

of the countable dense random setΞ′.
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Now apply Lemma4.2 to obtain a density pointa ∈ X for the setA in question, with
corresponding decreasing sequence of open sets{Nn : n ≥ 1}.

Let Q ⊆ H be a relatively compact open neighbourhood of the identity in the sub-
groupH. Using our discussion of invariant measure for homogeneous spaces in Section
2, and particularly Eq. (6) together with the existence (following from the remarks before
Lemma4.2, sinceG is Lie andH is a closed subgroup) of alocally continuousselection
s : G/H → G which is chosen to be continuous in a neighbourhood of the density point
a, we can construct setsMn = s(Nn)×Q ⊆ G such that;

• Mn is decreasing inn, and allMn contains(a);

• Mn is open for all large enoughn (specifically,n such thats is continuous when
restricted toNn);

• if the G-valued random variableUn is µ-uniform onMn (and independent ofΞ′),
then

P [UnH ∈ A ] = ν[Nn ∩A] → 1

asn→∞.

Without loss of generality we may discard the initial part of the sequence{Mn : n ≥ 1}
and suppose that in factMn is open for alln.

Choose a decreasing sequence{Wn : n ≥ 1} of relatively compact open subsets ofG
which are neighbourhoods of the identity and such that diam(Wn)→ 0.

Using the fact that the countable random setΞ′ is dense inX = G/H, we can find
gn ∈Wn ⊆ G (depending implicitly onΞ′) such thatgns(a)H ∈ Ξ′.

Let fn(·) be the density ofUn on G with respect to the Haar measureµ, and let
Lgnfn(·) be the density ofgnUn. (The notationLgnfn is standard for the left-translate
of the functionfn by the group elementgn.) Their supportsMn andgnMn are contained
in the relatively compact setW1 × M1. Furthermore bothfn(·) andLgnfn(·) take just
two values: either zero or1/µ(Un) = 1/µ(gnUn) (recall thatµ is left-invariant). Finally
the supports are both open sets with boundaries of nullµ-measure, and the fact thatgn
converges to the identity onG therefore implies

fn − Lgnfn → 0 µ-almost everywhere.

We can therefore deduce from the dominated convergence theorem that

1
µ(Mn)

∫
g∈G:gH∈A

(fn − Lgnfn) dµ = P [UnH ∈ A ]− P [ gnUnH ∈ A ] → 0 .

It follows from P [UnH ∈ A ] = ν[Nn ∩A]→ 1 that

1 ≥ P [ Ξ′ ⇑ A ] ≥ P [ gnUnH ∈ A ] → 1 .

Now P [ Ξ′ ⇑ A ] =
∫
O
P [ gΞ ⇑ A ]µ( dg)/µ(O) and thereforeP [ gΞ ⇑ A ] = 1 for

µ-almost allg ∈ O, and indeed forµ-almost allg ∈ G, sinceO was arbitrary. Therefore
by quasi-stationarity we deduce

P [ Ξ ⇑ A ] = 1 if ν(A) > 0 . (9)

The final conclusion (the zero-one law forU ∈ H(X), not depending on the specific
construction ofΞ) follows by standard measure theory arguments once we recall the def-
inition of H(X); that it is generated by the hitting events[Ξ ⇑ A] which are zero or one
depending on whether the invariant measure ofA is zero or positive. 2

As an immediate consequence of this result we obtain some apparently paradoxical
facts:
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Remark 4.4 : The zero-one law for the quasi-stationary countable dense random setΞ
implies that for allH(X)-measurable random variablesY we haveP [Y ∈ Ξ ] = 0. So
there are no Borel selections of points inΞ, and the randomness inΞ is “hidden”, if all we
can use is hit-or-miss information.

Remark 4.5 : If one considers the stationary countable dense random setΞ = Q + U ,
whereQ is the set of rationals andU is Uniform(0, 1), then this translates into the known
fact that one cannot produce aH-measurable selection for the fibration ofR induced by
its subgroupQ. This is related to Vitali’s example of a non-Lebesgue-measurable set men-
tioned above before Thm.3.1.

Remark 4.6 : As a further consequence, we can deduce thatanytwo stationary countable
dense random setsΞ1, Ξ2 onR are independent, in the sense that

P [ Ξ1 ∈ U1,Ξ2 ∈ U2 ] = P [ Ξ1 ∈ U1 ]× P [ Ξ2 ∈ U2 ]

wheneverU1, U2 ∈ H. This follows for the trivial reason that all sets of probability zero or
one are independent of each other.

5 Further questions and comments on the literature

One might wonder whether there is some more complicatedσ-algebra forB thanH, which
supports non-trivial events for stationary countable dense random sets but does not use
randomness not somehow available from observation of the random set in question. This
can be formulated as follows. LetΞ ⊂ E × X be a countable dense random set such that

{ξ1, ξ2, . . . }

is a representation as a constructively countable random set. The particular representation
is arbitrary: so we introduce the notion ofset-equivalenceof two sequences ofX-valued
random variables by

ξ = {ξ1, ξ2, . . . } ∼ η = {η1, η2, . . . }
if and only if

{ξ1(ω), ξ2(ω), . . . } = {η1(ω), η2(ω), . . . } for almost allω .

Here the equality is taken in the sense of equality of the two sets (ie: order of enumeration
is irrelevant).

We set

G =
⋂
η:η∼ξ

σ {η1, η2, . . . } (10)

so that events inG are exactly those which can be formulated under arbitrary (including
random!) reorderings of the sequence used to derive constructive countability. ThusG
encompasses the widest possible class of events which might be viewed as concerning the
random setΞ itself, rather than the means of its construction.

Theorem 5.1 : It is the case thatG is contained in any completion of theσ-algebraH(X).

Proof: This is actually a problem aboutfibered spaces. LetS be the space of allX-valued
sequences, with the usualσ-algebraS, generated by evaluation maps. Then we have a
sequence of measurable projections

π : (S,S)→ (S,G)→ (B(X),H(X)) (11)

11



representingS as a fibration over the spaceB(X) of (in fact countable) subsets ofX.
The matter resolves to the study of setsE ⊆ B(X) such thatE is theprojectionof

someG-measurable set̃E ∈ S, so

E =
{
π(α) : α ∈ Ẽ

}
.

Note thatẼ will also beS-measurable. Hence (since the spaceS of X-valued sequences
can be metrized so as to be Polish withσ-algebraS) we see the projection setE is analytic
([3, Theorem III.13]). Now the issue can be recognized as one which concerns analytic
sets and Choquet’s famous capacitability theorem ([3, III.33]). In general projection setsE
neednotbe measurable in the sense of belonging toH(X): however they will be measurable
with respect to any completion ofH(X). 2

Clearly this settles the matter as far as zero-one laws are concerned.

Ilya Molchanov has asked the question, whether Thm.4.3 above can be generalized
to apply to a stationary random subset ofR which is everywhere dense and yet which has
probability zero of containing any specified point. The answer is no, as may be seen from
the following examples.

In the first example we use a theorem of Mattila [16, Theorem 3.2] on intersections of
fractal sets. This implies that ifH, H̃ ⊂ [0, 1]2 are sets of finite positive Hausdorff5/3-
dimensional measure then the set of rigid motionsr such thatrH ⇑ H̃ has positive Haar
measure. Note that the conditions of this theorem force us to consider at leastR

2 rather
thanR!

Example 5.2 : The random setΞ ⊂ R
2 is constructed as follows. Letr be a random

rigid motion, obtained by first uniformly randomly translating the origino over the unit
square[0, 1]2 and then applying a uniform random rotation. LetZ2 ⊂ Q

2 = Q × Q
denote the integer lattice. LetH, H̃ ⊂ [0, 1/3]2 be sets of finite positive Hausdorff5/3-
dimensional measure, so that the probability ofrH intersectingH̃ lies strictly between0
and1. Consider theuncountabledense random set

Ξ = r

(
Q

2 ∪
⋃
z∈Z2

(z +H)

)
.

This stationary (and isotropic) dense random set generates non-trivial probabilities for the
hit-or-missσ-algebraH(R2).

To see this, consider the eventΞ ⇑ H̃. This has probability lying strictly between0 and
1. For

P

[
Ξ ⇑ H̃

]
= P

[
r

( ⋃
z∈Z2

(z +H)

)
⇑ H̃

]
,

since the countable partr(Q2) of Ξ missesH̃ almost surely, by Thm.4.1. But r(z+H)∩H̃
is empty whenr is a random rigid motion produced as above, andz is a member ofZ2 \
(ball(o,

√
2/3) ⊕ [−4/3, 0]2), sinceH andH̃ are both contained in[0, 1/3]2 and hence

r(z +H) is disjoint fromH̃ for suchz. Consequently the Mattila result shows

P

[
Ξ ⇑ H̃

]
= P

 ⋃
z∈Z2∩(ball(o,

√
2/3)⊕[−4/3,0]2)

r(z +H)

 ⇑ H̃
 ∈ (0, 1) .

So there is no zero-one law for probabilities of hitting events in this case.

The above is a two-dimensional example: here is a less explicit example in just one
dimension, which in addition is ergodic and mixing:
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Example 5.3 : The random setΞ ⊂ R is constructed as follows. SplitR into domains
according to a unit intensity Poisson process, such that in each domain independentlyΞ is

• eitherthe intersection with the domain of a random translate of the rationalsQ ,

• or the intersection with the domain of a random translate ofQ ⊕ Z, the rationals
Minkowski-added to the zero setZ of a linear Brownian motion.

In each case the random translate vector should be chosen uniformly distributed over[0, 1]
independently of the Poisson process and of other translations, and the Brownian motions
should be independent of the Poisson processes and the translations.

There are bounded sets of measure zero which have a positive chance of being hit by linear
Brownian motion (for example the zero set of a Bessel(ν) process forν ∈ (0, 1), continued
by reflection at the origin): such sets will have a positive but not certain chance of being hit
by theΞ whose construction is indicated above.

Our final example is motivated by problems from the theory of Brownian local times,
which lead to pairs of random countable dense sets which exhibit dependence phenomena
appearing to contradict the observation in Remark4.6 above. Saul Jacka and Jon Warren
proposed the following simplified example. (More complicated examples involve non-
independent Brownian motions which share some but not all of their respective zero sets.)

Example 5.4 : Consider three independent Poisson point processesX, Y , Z living on
the infinite rectangle[0, 1]× R. Suppose their intensity measures are given byLeb×Leb,
Leb×ν, andLeb×Leb respectively, whereLeb is Lebesgue measure andν is some mea-
sure onR, possibly finite, possiblyσ-finite, possibly null. Imagine the points ofX, Y ,
Z being coloured red, white, blue respectively. Now construct the new point processes
Ξ1 = π(X ∪ Y ), Ξ2 = π(Y ∪ Z) whereπ : [0, 1]× R→ [0, 1] is projection onto the first
coordinate.

Clearly, depending on the total mass ofν, we have three different situations depending
on whether there are no white points at all, infinitely many, or only finitely many. So the
dependence/independence structure ofΞ1, Ξ2 is non-trivial. However this example really
concerns amarkedpoint process based on the points ofπ(X ∪ Y ∪ Z), where the points
are marked red, white, or blue according to their originating point process. Consequently
more information is being used here concerningΞ1, Ξ2 than would be available from their
hitting σ-algebras alone. It follows that there is no contradiction between this example and
Remark4.6.

We have already noted the work of Aldous and Barlow [1], which investigates non-
trivial structure of countable dense random sets; this is possible because these random sets
are viewed constructively (because they are related to filtrations ofσ-algebras specified
a priori) rather than phenomenologically. Note that the difference here is thea priori
specification of the filtration, rather than the one-dimensional nature of the basic space: as
Zuyev [24] has demonstrated, it is possible to make effective use of similar notions for point
processes on multidimensional spaces. For example it is straightforward to follow Zuyev’s
ideas to generalize a pretty characterization due to Aldous and Barlow [1, Theorem 4(c)]:
if a countable dense subsetΞ ⊆ Rd, viewed as a random set defined on a probability space
with filtration localizing to compact subsets ofRd, satisfies

{ω ∈ E : Ξ(ω) ∩ C(ω)} = {ω ∈ E : Leb(C(ω)) = 0} (12)

for every previsible setC (see [24] for a definition) thenΞ is the projection of a locally
finite Poisson point process onRd × (0,∞). The proof uses [1, Theorem 4(c)] applied to
predictable sets following one-parameter increasing families of compact subsets ofR

d.
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