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Ising models and multiresolution quad-trees

W.S. Kendall∗ and R.G. Wilson∗

November 28, 2002

Abstract: We study percolation and Ising models defined on
generalizations of quad-trees used in multiresolution image analysis.
These can be viewed as trees for which each mother vertex has 2d

daughter vertices, and for which daughter vertices are linked together
in d-dimensional Euclidean configurations. Retention probabilities /
interaction strengths differ according to whether the relevant bond is
between mother and daughter, or between neighbours. Bounds are
established which locate phase transitions and show the existence
of a coexistence phase for the percolation model. Results are ex-
tended to the corresponding Ising model using the Fortuin-Kasteleyn
random-cluster representation.

Keywords: Gibbs state; Ising model; finite island property; image
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tion; unique infinite cluster.
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1 Introduction

This paper begins with affectionate birthday greetings to Professor Joseph
Mecke from his friend and collaborator WSK. We hope that Professor Mecke
will enjoy this account of an investigation into phase transition phenomena on a
family of tessellations arising in an applied probability problem with a strongly
geometric flavour.

Our aim here is to present a preliminary essay in an investigation of anisotropic
Ising models on d-dimensional generalizations Qd of the quad-tree structure
used in image analysis. There is of course a long-established literature on the
behaviour of Ising models on trees, stretching back to Preston [24] and Spitzer
[28]. However we augment our trees by adding links between neighbours accord-
ing to some Euclidean structure; the closest results in the literature are therefore
those of Newman and Wu [22] concerning anisotropic Ising models on products

∗Research supported by EPSRC research grant GR/M75785
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of trees with Euclidean spaces. (See also [27, 32, 33], which investigate Ising
models on planar transitive hyperbolic graphs.) Our methods borrow much
from Newman and Wu, and the precursor paper by Grimmett and Newman
[13] concerning percolation, but the special features of the quad-tree set-up re-
quire special arguments. In this introductory section we first carefully define the
quad-tree structures to be considered, and then discuss how image segmentation
motivates the study of behaviour of Ising models defined on these structures.

1.1 Definitions

We first present mathematical definitions of the structures of interest. We bor-
row from mathematical genetics its conventional terminology for vertices in
tree-like structures (mothers, daughters, siblings, cousins).

Definition 1.1 A (doubly infinite) generalized quad-tree Qd is the union of
a doubly infinite sequence of tessellations of square tiles at increasing levels of
resolution: . . . , Ln−1, Ln, Ln+1, . . . of Rd. The tessellation Ln at resolution
level n divides each square cell Ln−1 of the previous tessellation into 2d square
sub-cells. We require that the tessellation Ln at resolution level n must be based
on the cell [0, 2−n)d. The generalized quad-tree is furnished with a graph struc-
ture; vertices are the cells of the various tessellations, with vertices connected by
edges as follows: each tessellation cell C ∈ Ln is linked to its immediate neigh-
bour cells in the tessellation Ln and also to its immediate mother cell (the cell
in the previous resolution level Ln−1 which contains C) and its daughter cell
(the cells contained in C which belong to the next higher resolution level Ln+1).

In graph-theoretic terms a generalized quad-tree is an augmentation of a 2d-
tree Td (each vertex has 2d daughters and one mother). The augmentation
endows each vertex with links to 2d neighbours in a Euclidean configuration, so
that the level Ln can be viewed as a (scaled) copy of the integer lattice Zd.

Note that the generalized quad-tree Q1 is in fact an augmented binary tree.
We endow each resolution level Ln with the metric norm ‖v − u‖n,∞ =

2n maxi |vi − ui|, where u and v are the cells

[u1, u1 + 2−n)× . . .× [ud, ud + 2−n)
[v1, v1 + 2−n)× . . .× [vd, vd + 2−n)

respectively. This metric measures distance between two vertices on the same
resolution level Ln in terms of separation in the Euclidean lattice Qd ∩Ln, and
is therefore a useful notation when considering percolation issues relating to Ln

alone.
For convenience of exposition, we often use the point u = (u1, . . . , ud) to

represent the cell [u1, u1 + 2−n)× . . .× [ud, ud + 2−n).
We emphasize that the generalized quad-tree Qd is not homogeneous. For

each vertex, d of its neighbours are siblings and d are only cousins. Measurement
of the degree of consanguinity of the cousins (how far back to the most recent
common ancestor) allows us to distinguish an infinite variety of different types
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of vertices on the basis of their immediate genealogy. The modelling of the
graph in terms of successive tessellations is necessary in order to specify the full
genealogy of specific vertices. Figure 1 illustrates this for Q1. Note in particular
that the vertex representing the cell [0, 1) is special in level L0, in that it is not
related at all in a tree-like sense to its left neighbour, the vertex representing
the cell [−1, 0).

Figure 1: Illustration of Q1. We reverse the usual order of display for trees:
daughters are placed above their mothers, to conform to the intuition that they
are at a higher resolution level. The shaded bar emphasizes the fact that [0, 1)
has no tree-like connection to its neighbour [−1, 0).

However there is a transitive Zd symmetry on the subgraph of Qd obtained
by considering only the tessellations at resolution levels 0 and higher.

Definition 1.2 The (singly infinite) generalized quad-tree is Qd;0: that part of
the full generalized quad-tree which is at resolution level 0 or higher. We set

Qd;n = Qd ∩ (Ln ∪ Ln+1 ∪ Ln+2 . . .) .

On Qd;0 there is a Zd-action induced by the standard additive Zd-action on Rd.

In fact Qd;0
∼= Qd;n for any integer n; the following proposition describes

graph isomorphisms which realize this.

Proposition 1.3 Given o ∈ L0 ⊂ Qd, and u ∈ Ln ⊂ Qd, there is a graph
isomorphism So;u : Qd;0 → Qd;n carrying o to u which preserves the generators
of Zd and the generalized quad-tree structure. We describe this in terms of a
mapping on the underlying Euclidean space: if u is the vector representing the
cell u = [u1, u1 + 2−n)× . . .× [ud, ud + 2−n) then So;u can be represented by the
affine-linear map

So;u(x) = u + 2−nx .
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Remark 1.4 We define Su;v by Su;v ◦ So;u = So;v. Thus Su;v : Qd;r → Qd;s is
defined for u ∈ Lr, v ∈ Ls for all integers r, s, and we can represent it by

Su;v(x) = v + 2r−s(x− u) .

In particular, Qd;0 is semi-transitive: for any vertex o at the zero level of
resolution and any other vertex v ∈ Qd;0 (not necessarily in L0) the map So;u

considered as a map into Qd;0 is a graph homomorphism carrying o into v.
For the purposes of image analysis we are interested in that part of a general-

ized quad-tree formed by the descendants of a fixed root vertex o corresponding
to the cell [0, 1)d, a “pyramid” subset.

Definition 1.5 The rooted generalized quad-tree is Qd(o) where

Qd(u) = {v ∈ Qd : v is a descendant of u} .

Note that

(a) Qd(o) ⊆ Qd;0;

(b) Qd(o) ∼= Qd(u) for any vertex u ∈ Qd.

The root vertex o introduces extra inhomogeneity beyond the intrinsic inho-
mogeneity of the singly infinite generalized quad-tree; clearly the Zd-symmetry
is destroyed. However (cf (b) above) Qd(o) remains semi-transitive: for any
vertex u ∈ Qd(o) there is a graph-homomorphism So;u mapping o to u.

An alternative take on this discussion of symmetry is to note it can be
developed to show that the vertex set of Qd can be viewed as a subset of R+×Rd

which is invariant under a transformation group generated by d maps of the form
(x0,x) 7→ (x0,x + e) and 2d maps of the form (x0,x) 7→ (x0/2,x + (x0/4)a);
however the corresponding Cayley graph contains too many edges to be Qd

(spurious edges arise from inverses to the maps (x0,x) 7→ (x0/2,x + (x0/4)a) –
for each vertex just one of these inverses gives rise to a valid edge!).

Where feasible we describe results for general dimension d: however our
main interest is in d = 2 and we will specialize to this case when necessary or
convenient.

1.2 Image Segmentation

Why should we be interested in the peculiar structure of Qd(o)? Originally
introduced to provide an efficient representation of binary image data [11], the
structure of Qd can be used to provide hierarchical models of simple images as
follows: consider Qd∩ (L0∪L1∪ . . .∪Ln+1) or perhaps its trace on [0, 1)d ⊂ Rd.
Let each of the cells in each of the levels have a state which is white or black.
States in the boundary Qd∩Ln+1 are prescribed using the image to be analyzed.
States of other cells are modelled by a hierarchical Markov random field, which
forms an Ising model on the graph structure of Qd∩(L0∪L1∪ . . .∪Ln+1); bond
strengths depend on whether the bond is “space-like” (lies within a resolution
level) or whether it crosses from one resolution level to the next.
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The interest of this paper focuses on phase transition phenomena which are
exhibited in the n →∞ limit.

All this relates to one of the fundamental problems in image analysis: seg-
mentation [30]. This is the labelling of the several regions of more or less homo-
geneous properties of which a “typical” image, such as figure 2, is comprised.
While sharing features with conventional classification, it has to contend with
the obvious geometrical properties of images. At its simplest, this means that
the class of a pixel (x, y) is treated as being dependent on those of its neighbours
(x± 1, y± 1). Clearly, this leads to the use of a Markov random field model for
the label field following Geman and Geman [8]. Following this seminal paper,
Markov random fields have gained significant attention in the segmentation of
regions of more or less uniform colour or texture [8],[17], [20],[23],[29]. For ex-
ample, Geman et al. [7] use the Kolmogorov-Smirnov non-parametric measure
of difference between the distributions of spatial features extracted from pairs
of blocks of pixel gray levels, with maximum a posteriori (MAP) estimation of
the boundary, while Panjwani et al. [23] characterize textured colour images in
terms of spatial interaction within and between colour planes.

Although they can be effective as models for segmentation, two-dimensional
Markov random fields have weaknesses as models of images. In the first place,
the typical image consists of a relatively small number of regions, something
which is not captured by the equilibrium distribution of the planar discrete
Markov random field prior. Although we are more interested in the posterior
than the prior, it is discouraging to find that even in the simplest case (the Ising
model) no value of coupling parameter will lead to a single, well defined object
on a background. Secondly, the high coupling strengths needed to capture large
scale structure imply a heavy computational burden in reaching equilibrium of
the posterior in many cases.

We can finesse the problem by exploiting a fundamental property of many
images, which we may loosely call ‘scale invariance’; it is illustrated in Figure
3, which shows that across a range of scales (or more accurately resolutions),
image content remains perceptibly ‘the same’, in terms of the underlying region
structure. In this image, each level has a sampling density 4 times that of the
next larger scale: there are 4n samples per unit area on level n. This informal
observation, which underlies the wavelet representations now so popular in im-
age processing [19], leads us to conclude that within the corresponding lattice
structure, which is a quad-tree, neighbouring pixels again should be modelled
as having strongly dependent labels. We are thereby led to consider Markov
random fields defined on quad-trees, in the expectation that if we can solve
the segmentation problem at a low resolution (and low computation), we may
use this to ‘steer’ the solutions at successively higher resolutions. For example,
Bouman and Shapiro use sequential maximum a posteriori (SMAP) estimation
in conjunction with a multi-scale random field (MSRF) [2], a sequence of random
fields at different scales. While such pure quad-tree processes can lead to fast
‘scale-causal’ algorithms for segmentation, they ignore the fundamental trans-
lation symmetry of images, since each layer of the tree has a sampling interval
half that of the layer above it in resolution. This deficiency manifests itself in
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priors which favour ‘blocky’ images, with obvious effects on the estimates.
Consequently in recent years there have been several attempts to implement

estimation algorithms based on a model using the full set of neighbours on the
quad-tree: four or eight on the same resolution level, combined with one or
more parents and four or more children from adjacent levels. Both deterministic
and stochastic methods have been used to find a MAP labelling [15, 16, 21, 18].
This brings us to our quad-tree Q2(o), which serves as a good representative of
the extension of these models to infinite resolution levels.

(a) Noisy image. (b) Labelling.

Figure 2: Segmentation of noisy ‘Shapes’ image. Noise standard deviation is
equal to difference between object and background grey levels.

1.3 Image Segmentation Results

A number of experiments have demonstrated that quad-tree models can perform
well in image segmentation. For example, consider the image in Figure 2(a), a
binary image with added independent mean-zero Gaussian noise variates with
unit standard deviation (thus standard deviation is chosen to equal the difference
between object and background intensities). The prior model used a second
order neighbourhood and a normal observation model. Coupling parameters
were tuned by hand and the class means and variances estimated from the data
during processing. The estimate at the highest resolution, shown in figure 2(b),
using a multiresolution MAP estimation algorithm, [31], had a misclassification
rate of 1.3%. Errors of this order have been found across a wide variety of image
data using this model [31]. Interestingly, similar error rates are also found in
the segmentation of textures having a cell size significantly larger than the error
bound; this is a direct consequence of using the multiresolution model. Our
paper is motivated by these results. In particular, we wished to understand
what one might be able to say about phase transition phenomena which might
throw light on simulation results carried out on finite quad-trees with large
numbers of layers, and thus permit a better grasp of the way in which practical
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quad-tree algorithms might behave.

Figure 3: Quad-tree data formed by successive averaging and decimation oper-
ations: grey level at a pixel on level N is average of 4 on level N + 1.

1.4 Plan of paper

The strategy of this paper is firstly to establish phase transition results for
anisotropic percolation models, in the following Section 2, and then in Section
3 to derive results for the Ising model by use of the famous Fortuin-Kasteleyn
random cluster representation [6, 4, 5]. In conclusion, Section 4 describes some
illustrative simulations and discusses prospects for further work.

Acknowledgements

One of us (WSK) is very grateful to his colleague Jonathan Warren for encour-
agement and discussion.

2 Percolation on generalized quad-trees

Grimmett and Newman [13] introduced (anisotropic) percolation on a transitive
non-euclidean graph (in their case, the cartesian product Tk × Z of a regular
k-tree with the one-dimensional Euclidean lattice, and also Tk×Zd) and showed
the existences of three phases:

(a) no infinite clusters;

(b) many (indeed, infinitely many) infinite clusters (the coexistence phase);

(c) a single unique infinite cluster.

Much work has followed up both on this and also on the seminal paper of Ben-
jamini and Schramm [1], which describes results and questions on “percolation
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beyond Zd”, typically in the context of “isotropic” percolation (retention prob-
ability parameter the same for each bond) on almost transitive non-amenable
graphs. (Note also, Newman and Wu [22] use Fortuin-Kasteleyn random cluster
models and the results of [13] to draw out results about anisotropic Ising models
on Tk × Z, and their procedure will be a template for our work in Section 3.)

Our model for percolation on Qd is as follows: we suppose independent bond
percolation, with retention probability being λ for bonds between neighbours
and τ for bonds between mothers and daughters. This percolation model has
non-constant retention probabilities and is not almost-transitive, so the proofs
in the literature must be adapted accordingly, sometimes with non-trivial effort.
We shall build up schematic phase-transition diagrams for Qd;0-percolation and
Qd(o)-percolation, largely by estimation of locations of phase-transition bound-
aries in λ-τ space for cases when either λ or τ is small.

2.1 Transition from zero to many infinite clusters
for small λ

The work of [13, §3 and §5] applies directly here. We sketch the argument for
the sake of completeness.

When deciding whether there can be an infinite cluster, it suffices to consider
Qd.

Theorem 2.1 There is almost surely no infinite cluster in Qd (and conse-
quently in Qd;0, Qd(o)) if

2dτXλ

(
1 +

√
1−X−1

λ

)
< 1 ,

where Xλ is the mean size of the percolation cluster at the origin for bond per-
colation in Zd with bond retention probability λ.

Proof: Consider the mean size of the cluster at o. This is given by∑
z∈Qd

P [o ↔ z ] .

Arguing as in the proof of [13, Proposition 1], consideration of open self-avoiding
paths shows this is bounded above by

∞∑
n=0

∑
t:|t|=n

∑
o=z′1,z1,...,z′n,zn

P [ z′1 ↔ z1 in Lt1 ]× . . .× P [ z′n ↔ zn in Ltn
]

≤
∞∑

n=0

∑
t:|t|=n

Xλτn(Xλ − 1)T (t)Xn−T (t)
λ ≤

∞∑
n=0

Xλ(τXλ)n
∑

t:|t|=n

(1−X−1
λ )T (t) .

Here the summation
∑

t:|t|=n runs through all length-n sequences t of choices of
mother/daughter bonds making up self-avoiding paths starting at o. For each
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Figure 4: Partial information on existence of infinite clusters: case of small λ.
Here N denotes the number of infinite clusters. This does not yet represent
good information for large λ and small τ .

such sequence representing a possible connection from o to another location, we
count the expected number choices of vertices o = z′1, z1, . . . , z′n, zn marking
the start and end of moves which change level Li which together could make up
an open self-avoiding path (hence requiring each z′i, zi to belong to the same
cluster in the Zd percolation occurring at their common level). Furthermore,
T (t) counts the number of times in t that a daughter step (increasing resolution)
is directly followed by a mother step (decreasing resolution). In such a case there
is at least one state in the relevant Zd-cluster which has already been counted,
and we account for this in the upper bound. Developing this further,

∞∑
n=0

Xλ(τXλ)n
∑

t:|t|=n

(1−X−1
λ )T (t) ≤

∞∑
n=0

Xλ(2dτXλ)n
∑

j:|j|=n

(1−X−1
λ )T (j)

≈
∞∑

n=0

Xλ(2dτXλ)n

(
1 +

√
1−X−1

λ

)n

.

Here the summation
∑

j:|j|=n runs through all length-n sequences j of choices
of mother-step versus daughter-step (omitting which kind of daughter), and
again T (j) counts the number of times in j that a daughter-step is followed by
a mother-step. The (large n) asymptotic arises from a spectral analysis of the
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matrix representation∑
j:|j|=n

(1−X−1
λ )T (j) =

[
1 1

] [ 1 1
1−X−1

λ 1

]n [
1
1

]
.

�

With more work one can derive an upper bound for this phase transition
valid for small λ, by considering the effect of adding a single open λ-bond in
Qd(o) ∩ (L0 ∪ L1 ∪ . . . ∪ Ln). This is discussed for the case d = 2 in Appendix
A.

Comparison with the representation of λ = 0 percolation by the branching
process of family size distribution Binomial(2d, τ) shows that this bound is sharp
at λ = 0 (when Xλ = X0 = 1). Moreover a simple monotonicity argument shows
that there must be infinite clusters at (τ, λ) whenever there are infinite clusters
at (τ − ε, λ− δ) for non-negative ε, δ. This partial information is represented in
Figure 4.

The situation for small τ is more involved. We expect infinite clusters once
λ > λc, where λc is the critical retention probability parameter for Zd bond
percolation. However for a full argument we need to consider Qd(o), and the
resolution levels Qd(o) ∩ Ln are actually finite, so the infinite-cluster prop-
erty cannot simply be inherited from the Zd case. (This is in contrast to the
Grimmett-Newman setting of Tk × Zd.) There is however an argument based
on existence of a unique infinite cluster once λ > λc, and we now turn to this.

2.2 Transition from many to unique infinite clusters
for small τ

It suffices to consider the “pyramid” case Qd(o). Here we have to confront the
special features of our model, specifically the finiteness of the resolution layers.
We restrict to the case d = 2, in order to employ planar duality when analyzing
the resolution layers.

Theorem 2.2 Consider the sequence of finite Z2 percolation problems Q2(o)∩
Ln for n = 0, 1, . . ., when λ > λc(2) = 1/2 and τ > 0. Choose ε > 0 and set

`n = (n log 4 + (2 + ε) log n) ξ(1− λ) , (2.1)

where ξ(1−λ) is the exponent in the nontrivial exponential bound for the connec-
tivity function for the sub-critical bond percolation problem in Z2 with retention
probability 1 − λ [12, Theorem 6.44]. Then, almost surely, for all sufficiently
large n there is exactly one Z2 percolation cluster in Q2(o)∩Ln containing points
separated by `n or more in the uniform norm.

Proof: We rescale for the sake of notational convenience, and represent Q2(o)∩
Ln as {0, 1, . . . , 2n − 1}2.

10



First we show there is at most one such cluster for all large enough n. For
there to be more than one such cluster at resolution level n, there must ex-
ist a separating self-avoiding path in the dual bond percolation problem for
{0, 1, . . . , 2n − 1}2 with edge retention probability 1 − λ, and this must be in
one of four possible forms:

(1) connecting opposite sides of {0, 1, . . . , 2n − 1}2;

(2) connecting neighbouring sides of {0, 1, . . . , 2n − 1}2 and separating two
pairs a, b and c, d of vertices such that ‖a − b‖n,∞, ‖c − d‖n,∞ both
exceed `n;

(3) attached twice to one side and separating two pairs of vertices as before;

(4) closed path not attached to sides at all, and separating two pairs of vertices
as before.

All of these cases entail existence of at least one path in the dual bond percola-
tion problem stretching between endpoints of separation `n or more (once n is
large enough so that `n < 2n).

Now we apply the exponential bound on the connectivity problem for the
dual percolation problem:

P [ dual percolation path as above ] ≤
∑∑

v,u:‖v−u‖=`n

exp
(
− `n

ξ(1− λ)

)

≤ 4n × (4× 2`n)× exp
(
− `n

ξ(1− λ)

)
≤ 8`n exp

(
n log 4− `n

ξ(1− λ)

)
.

This is summable if (2.1) holds, and so the first Borel-Cantelli lemma may be
applied to show that almost surely for all large enough n there will not be more
than one of these large clusters in each resolution level.

The existence of such a cluster for all sufficiently large n follows by using
the super-criticality of λ-percolation in Z2: there is therefore a positive lower
bound θ(λ) that (0, 0) lies in the infinite cluster for this percolation problem.
We choose 4n−[n/2] disjoint rectangles in {0, 1, . . . , 2n − 1}2, each of side-length
2[n/2]. A point in the centre of such a rectangle has probability at least θ(λ)
of percolating to the boundary, and thus establishing an open path between
two points separated in uniform norm by 2[n/2]/2. The probability that none of
these 4n−[n/2] percolations occur is bounded above by

(1− θ(λ))4
n−[n/2]

which is summable in n. It follows that almost surely all but finitely many levels
must exhibit examples of such a percolation. Since 2[n/2]/2 ≥ `n for all large
enough n it is almost surely the case that the required large cluster must exist
for all sufficiently large n. �
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We can now apply this to deduce uniqueness (and existence!) of an infinite
percolation cluster in Q2(o) for λ > λc(2) = 1/2 whenever τ > 0. This is
illustrated in Figure 5.

Figure 5: Partial information on uniqueness of infinite clusters, case d = 2.
Here N denotes the number of infinite clusters. This does not yet represent
good information on uniqueness for small λ and large τ .

Theorem 2.3 Consider percolation in Q2(o) for λ > λc(2) = 1/2 and τ > 0.
Almost surely there is a single infinite cluster.

Proof: We first show existence of an infinite cluster. Set

`n = (n log 4 + (2 + ε) log n) ξ(1− λ)

as in Equation (2.1), Theorem 2.2. Choose kn increasing in n such that 22kn >
2`n, and locate 4n−2kn points in Q2(o)∩Ln separated horizontally and vertically
by 22kn and offset horizontally and vertically by 2kn . Let An be the event that
none of these 4n−2kn points v satisfies the following; that the mother/daughter
bond between v and a specific daughter v′ is open, and v is also connected in
Q2(o)∩Ln to the outside of a square of side-length 2kn centred on v, and v′ is
also connected in Q2(o) ∩ Ln+1 to the outside of a square of side-length 2kn+1

centred on v′.
We may deduce, using independence of percolation in the different squares

of side-length 2kn ,

P [An ] ≤ (1− θ(λ)τθ(λ))4
n−kn

12



where θ(λ) > 0 is the probability that (0, 0) lies in the infinite cluster for λ-
percolation in Z2.

Since this is summable (4n−kn > 4n/(2`n)2), the first Borel-Cantelli lemma
implies that An will happen for only finitely many n.

Combining this with Theorem 2.2, we see that in all but finitely many levels
Ln we may find points vn ∈ Q2(o) ∩ Ln which are

(a) connected to the large cluster in Q2(o)∩Ln which is guaranteed eventually
to exist and to be unique by Theorem 2.2;

(b) connected by a single mother/daughter bond to a daughter v′n in Q2(o)∩
Ln+1;

(c) such that this daughter is again connected to the large cluster in Q2(o)∩
Ln+1 which is also guaranteed eventually to exist and to be unique by
Theorem 2.2.

This allows us to deduce that the large clusters guaranteed by Theorem 2.2 must
eventually all be connected to each other. This provides the required infinite
cluster in Q2(o).

We now show uniqueness of this infinite cluster. Pick an initial vn ∈ Q2(o)∩
Ln and let C0 be the cluster in Q2(o) which contains vn. Let K be the highest
resolution level reached by C0. Define vn+1, vn+2, . . . , vn+K in C0 to lie in levels
Ln+1, Ln+2, . . . , Ln+K , choosing in such a way that vn+r+1 is measurable with
respect to the σ-algebra Fn+r generated by the neighbour and mother/daughter
bonds involving at least one vertex in Q2(o) ∩ (L0 ∪ . . . ∪ Ln+r).

Note that the random resolution level K can be viewed as an optional time
with respect to the filtration {Fn+1 : n ≥ 0}, in the sense that [K ≤ n] ∈ Fn+1.

Then

P [vn+r+1 percolates at least `n+r+1 into Q2(o) ∩ Ln+r+1|Fn+r ] ≥ θ+(λ) ,

where θ+(λ) is the probability that (0, 0) is part of an infinite cluster for λ-
percolation in the orthant Z2

+. (That this is positive for λ > λ2(2) = 1/2
follows from the exponential bound on the connectivity function for the dual
(1− λ)-percolation in Z2, by estimation of the mean number of pairs of bound-
ary vertices (x, 0) and (0, y) which are connected to each other in the dual
percolation.) We therefore deduce

P [vn+r+1 percolates at least `n+r+1 for some r ] ≥ 1− E
[
(1− θ+(λ))K

]
.

Using Theorem 2.2, we deduce that if C0 is infinite (so K is infinite) then it
must be connected to, and so equal, the infinite cluster whose existence was
established in the first part of the proof. Hence the infinite cluster in Q2(o) (for
λ > λc > 1/2) is unique. �

Similar techniques work for the case of Q2;0, but eased by the infinite nature
of the layers L0, L1, . . . :

Corollary 2.4 Consider percolation in Q2;0 for λ > λc(2) = 1/2 and τ > 0.
Almost surely there is a single infinite cluster.

13



2.3 Transition from many to unique infinite clusters
for small λ

Up to this point we have not yet shown that there is any region where there is
definitely a coexistence phase, with many (we expect, infinitely many) infinite
clusters. It is possible to adapt to our problem the branching random walk
comparison used in Benjamini and Schramm [1, Theorem 4], which shows that
for small λ there is an interval of τ for which coexistence holds. A more effective
argument of Grimmett and Newman [13, §4 and §5] applies to the special case of
Tk×Zd; it applies as well to Qd;0. Essentially one modifies the proof of Theorem
2.1 above to bound the probability of a path running between specified vertices
at resolution zero in Qd;0. The modification is a simple matter of observing
that in such a case there must be exactly as many decrements as increments in
resolution. There is just one τ -bond from any vertex which leads to a decreased
resolution, so the argument in the proof of Theorem 2.1 can be modified to
replace 2dτXλ by

√
2dτXλ. The consequent deduction is that if τ ∈ (2−d, 2−d/2)

and if λ is small enough then the probability of connection between two such
vertices tends to zero as the vertices separate. Arguing as in the start of the
proof of Theorem 2.8 below, this prohibits formation of a unique infinite cluster.

Here we establish a larger range of confirmed coexistence phase using a
different argument: the gain is slight for large dimension d but significant for
d = 1, 2. First of all, we establish a preliminary lemma concerning the behaviour
of the Su;v maps of Proposition 1.3 and Remark 1.4. Let M(u) denote the
mother of vertex u.

Lemma 2.5 Consider u ∈ Ls+1 ⊂ Qd and v = M(u) ∈ Ls ⊂ Qd. There are
exactly 2d solutions to

M(x) = Su;v(x)

which lie in Ls+1. They are characterized as follows: one solution is of course
x = u. The other solutions are given by the remaining 2d − 1 vertices y such
that the closure of the cell representing y intersects the vertex shared by the
closures of the cells representing u and M(u). Finally, if x ∈ Ls+1 does not
solve M(x) = Su;v(x) then

‖Su;v(x)− Su;v(u)‖s,∞ > ‖M(x)−M(u)‖s,∞ . (2.2)

Proof: Since the inequality concerns an L∞-norm, we can work coordinate-
by-coordinate and so reduce to the case d = 1. Without loss of generality take v
to represent the cell [0, 1) at resolution level L0, so that u represents either [0, 1

2 )
or [ 12 , 1) at resolution level L1. In either case M(x) = bxc as x runs through
{. . . ,− 3

2 ,−1,− 1
2 , 0, 1

2 , 1, 3
2 . . .} (the half-integers representing cells in L1) where

bxc denotes the greatest integer part of x.

Case [0, 1
2 ): Then Su;v(x) = 2x. The equation bxc = 2x is solved among

x ∈ {. . . ,− 3
2 ,−1,− 1

2 , 0, 1
2 , 1, 3

2 . . .} by x = 0 or x = − 1
2 . Otherwise for
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such x we have

bxc > 2x if x = . . . ,−3
2
,−1 ;

bxc < 2x if x =
1
2
, 1,

3
2
, . . . .

Case [ 12 , 1): Then Su;v(x) = 2(x − 1
2 ) = 2x − 1. The equation bxc = 2x − 1

is solved among x ∈ {. . . ,− 3
2 ,−1,− 1

2 , 0, 1
2 , 1, 3

2 . . .} by x = 1
2 or x = 1.

Otherwise for such x we have

bxc > 2x− 1 if x = . . . ,−3
2
,−1,−1

2
, 0 ;

bxc < 2x− 1 if x =
3
2
, 2, . . . .

In both cases the criterion of the lemma characterizes the solution set, and
Inequality 2.2 holds off the solution set. �

We add a corollary which will be useful during the proof of the main theorem
of this sub-section:

Corollary 2.6 Suppose now that we are given distinct v and y in the same
resolution level of Qd, and we wish to enumerate the pairs of vertices u, x in
the resolution level one step higher and such that

(a) M(u) = v;

(b) M(x) = y;

(c) Su;v(x) = y.

There are at most 2d−1 such vertices.

Proof: From Lemma 2.5 the closure of the cell representing u must intersect
the intersection of the closures of the cells representing v and y. Since v and
y are distinct, there can be at most 2d−1 such u. Moreover, once u is specified
then its counterpart x is specified by the condition characterizing Su;v(x) = y
given in Lemma 2.5. �

Remark 2.7 From Lemma 2.5, the number of pairs described in Corollary 2.6
must vanish unless there is a non-void intersection between the closures of the
cells representing v and y.

Theorem 2.8 Consider (λ, τ) percolation in Qd;0. If τ < 2−(d−1)/2 and if
λ > 0 is sufficiently small then almost surely there can be no unique infinite
cluster.
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Proof: Our strategy is to bound the mean number of open self-avoiding paths
in Qd;0 running from one vertex u to another v, both located at at the same
resolution level. The tree-like nature of the graph Qd;0 forces most self-avoiding
paths which travel to high resolutions to possess a large number of λ-bonds, and
thus to have low probability of being open. We will therefore be able to show
that the mean number of such paths converges to zero as the distance between
v and u increases. This is sufficient to rule out the chance of a unique infinite
cluster in Qd;0; for otherwise any two vertices generating infinite clusters would
have to be interconnected, so that by the FKG inequality the probability of
connection would be bounded below by the square of the probability of belonging
to an infinite cluster. Using semi-transitivity, we deduce a positive lower bound
to this probability so long as infinite clusters are at all possible.

It is convenient to take an algebraic approach, encoding paths as words in
the symbols δ (for a single step from daughter to mother), `±i for i = 1, . . . ,
d (encoding the 2d possible single steps to neighbouring vertices at the same
resolution level), and ux for x ∈ {±1}d (encoding the 2d different ways to make
a single step from mother to daughter). We consider paths restricted to non-
negative resolution levels of Qd;0, and therefore restrict attention to up-words,
those words for which totals #ux, #δ of various symbols obey∑

x

#ux ≥ #δ

for the word itself and also for all initial segments of the word. Moreover,
because we consider paths starting at and returning to the zero resolution level
L0 of Qd;0, among up-words we consider the bridge-words, those up-words for
which ∑

x

#ux = #δ

when calculated for the whole word. The weight of a bridge-word is simply the
probability that a corresponding path is open:

λ
∑

i #`iτ#δ+
∑

x #ux = λ
∑

i #`iτ2#δ .

Borrowing from the vocabulary of the analysis of Brownian paths, we de-
compose a bridge-word (equivalently, the corresponding path) into a family of
excursions, where an excursion word is a sub-word which is itself a bridge-word
starting with a ux for some x, ending with a δ, and delivering a path with does
not revisit the starting resolution level before its end. Note that the family of
excursions for a given bridge-word can be viewed as a tree T , under the re-
lationship “excursion ζ1 is a daughter of excursion ζ2 if the sub-path used to
derive ζ1 is actually a sub-path of the sub-path used to derive ζ2” (excursions
from L0 being viewed as daughters of a virtual excursion ζ0). We label the
tree of excursions by attaching to each vertex of T the start ux of the relevant
excursion.

Consider the possibility of demoting a bridge-word by taking one of its ex-
cursions and removing the excursion start ux and the excursion end δ. The
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result is still a bridge-word, and the tree of excursions of the new bridge-word
is obtained from the old tree simply by removing the vertex ζ corresponding
to the excursion used in the demotion, and transferring the daughters of ζ to
be daughters of the mother of ζ. In general the path produced by the new
bridge-word will not have the same end-point as the old bridge-word, unless the
excursion subject to demotion possesses a particular property which we now
describe.

Observe that we can describe demotion as follows. Let u, ũ, . . . , ṽ, v be the
sequence of vertices of Qd;0 visited by the part of the path corresponding to the
excursion. Suppose for definiteness’ sake that u, v belong to level Ls. Replace
the sequence u, ũ, . . . , ṽ, v by

Sũ;u(ũ), . . . ,Sũ;u(ṽ)

(where Sũ;u is one of the isomorphisms defined in Proposition 1.3 and Remark
1.4). From Lemma 2.5 we deduce that strict inequality holds in

‖Sũ;u(ṽ)− u‖s,∞ ≥ ‖v− u‖s,∞ ,

with just 2d exceptions, and so in general the path of the bridge-word is therefore
broken by the demotion. However this will not hold for the 2d exceptions for
which Sũ;u(ṽ) = M(v), and in such cases we say the demotion is painless.

Now one of these 2d possible cells is represented by ũ, and this is not a
possibility for ṽ. The original bridge-word has to produce a self-avoiding path.
While painless demotion will in general destroy the self-avoiding property, it will
preserve the property that excursions must begin and end at distinct vertices.
This rules out ũ. In the 2d − 1 remaining cases painless demotion pulls down
the second and second-to-last vertices to the start and end vertices respectively,
and the remaining structure of the excursion (in terms of the pattern of ux, `i,
δ and sub-excursions) is not altered.

Given a bridge-word, we can subject it to all possible painless demotions to
produce what we call a fully-reduced bridge-word ; one for which no excursions
can used to provide painless demotion.

The weight contributions of bridge-words which demote painlessly to a given
fully-reduced bridge-word of length r can be bounded as follows. Each of the
r + 1 vertices in the path corresponding to the fully-reduced bridge-word may
correspond to the start and/or the end of iterated demoted excursions, except
that the start vertex cannot end an excursion and the end vertex cannot start
one. Every start/end pair of τ -bonds for an instance of a painlessly demoted
excursion corresponds to at most 2d−1 possible choices, by Corollary 2.6. The
relevant excursions can be reconstructed from assignments of powers of τ to
the 2r possible start and end places for excursions and a choice from 2d−1

possibilities for each start/end of an excursion. Finally, the sum of powers of τ
so assigned must be equal to twice the number of excursions, since each begins
with an up-move and ends with a down-move. So the summed weight multiplier
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contributed from painlessly demoted bridge-words is bounded above by

∞∑
i0=0

. . .
∞∑

i2r=0

τ i0 . . . τ i2r
(
2d−1

)(i0+...+i2r)/2
=

1(
1− 2(d−1)/2τ

)2r

so long as τ < 2−(d−1)/2. So the total weight corresponding to a given fully-
reduced bridge-word is bounded above by

λ
∑

i #`iτ2#δ((
1− 2(d−1)/2τ

)∑
i #`i+2#δ

)2 .

However we can produce an upper bound for #δ for a fully-reduced bridge-
word in terms of the number of λ-bonds

∑
i #`i. Work through each of the #δ

from highest resolution level downwards: the corresponding excursion cannot
be painlessly demoted. By Lemma 2.5 we may adjust the demoted excursion by
removing some `i symbols so as to ensure the resulting path is connected. This
alteration preserves the fully-reduced nature of the bridge-word, since we are
working from highest resolution level downwards, and the possibility of painless
demotion concerns only the first two and last two vertices of any excursion.

Arguing this way, we see that the number of excursions (which is to say, #δ)
cannot exceed the number of `i symbols of all kinds. Accordingly #δ ≤

∑
i #`i

and
∑

i #`i + 2#δ ≤ 3
∑

i #`i for a given fully-reduced bridge-word, yielding
an upper bound for the number of fully-reduced bridge-words with

∑
i #`i = s.

The total number of symbols must be bounded above by 3s, and they are drawn
from an alphabet of length 1+2d+2d. It follows that the total weight for bridge-
words with

∑
i #`i = s is bounded above by((

1 + 2d + 2d
)3

λ(
1− 2(d−1)/2τ

)6
)s

,

since τ2#δ ≤ 1. Under our condition τ < 2−(d−1)/2, this is summable in s for
small enough λ, allowing us to deduce that τ < 2−(d−1)/2 implies that for well-
separated v and u (in which case the number s of `±i symbols in connecting
bridge-words cannot be too small) the probability of both lying in the same
cluster tends to zero as their separation increases. This forces the conclusion
that there can be no unique infinite cluster for τ < 2−(d−1)/2 and small enough
λ, as required. �

Corollary 2.9 We can extract from the proof, almost surely there is no unique
infinite cluster in Qd;0 if τ < 2−(d−1)/2 and

λ <

(
1− 2(d−1)/2τ√

1 + 2d + 2d

)6

.
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Remark 2.10 Note that in case d = 1, and in contrast to the Tk × Z case of
[13, §4] we obtain that for any fixed τ < 1 almost surely there is no unique
infinite cluster in Q1;0 so long as λ is small enough. Of course the planarity of
the graph Q1;0 should allow a more direct proof; we leave the task of establishing
this to an interested reader.

Theorem 2.8 extends to Qd(o) by use of an argument reminiscent of ladder
variables for random walks.

Corollary 2.11 Consider (λ, τ) percolation in Qd(o). If τ < 2−(d−1)/2 and if
λ > 0 satisfies

λ < (1− τ)
(

1− 2(d−1)/2τ√
1 + 2d + 2d

)6

then almost surely there can be no unique infinite cluster.

Proof: We will show that for u ∈ Qd;0 ∩ L0 we have

sup
v∈Ln

P [u connects to v in Qd;0 ] → 0

as n →∞. This suffices to establish the corollary.
Observe that

P [u connects to v in Qd;0 ] ≤
∑

π : u ↔ v
self-avoiding path

P [π open ] .

Any such self-avoiding path π can be decomposed, working backwards from its
end-point v, into a concatenation of paths

π = π0ν0π1ν1 . . . νn−1πn

where

(a) πr is a self-avoiding path ur ↔ vr,

(b) vr is the last site in Lr to be visited by π, so vn = v,

(c) ur is the immediate successor of vr−1 if r > 0, and u0 = u,

(d) νr is a path comprising a single step up in resolution.

We note that the map π 7→ {π0, π1, . . . , πn} is actually 1:1 (though not onto),
since the procedure of building π by working backwards from v shows that
the choices of the νr are all forced choices. Moreover the πr all correspond
to bridge-words, to which we may apply the bound obtained in the proof of
Theorem 2.8.

We deduce

P [π open ] = τn
n∏

r=0

P [πr open ]
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and therefore

∑
π : u ↔ v

self-avoiding path

P [π open ] ≤ τn

(∑
π0

P [π0 open ]

)n+1

≤ τ−1

(
τ

∞∑
s=0

((
1 + 2d + 2d

)3
λ(

1− 2(d−1)/2τ
)6
)s)n+1

= τ−1

(
τ
(
1− 2(d−1)/2τ

)6(
1− 2(d−1)/2τ

)6 − (1 + 2d + 2d)3 λ

)n+1

where the last inequality uses the bound obtained in the proof of Theorem 2.8.
For sufficiently small λ (as given in the statement of this corollary) not only
does the geometric sum over n converge, but also the term in the n + 1st power
is smaller than 1, so the required convergence to zero is obtained. �

We conclude this section by giving a simple upper bound on the threshold
probability τ at which the infinite cluster becomes unique for all positive λ.
The idea is to compare with independent bond percolation on Zd by considering
connectivity between vertices in L0. To simplify the exposition we work with
the case d = 2 only, though the method clearly generalizes to all dimensions
d > 1 (albeit changing the bound on τ).

Theorem 2.12 If τ >
√

2/3 then the infinite cluster of Q2:0 is almost surely
unique for all positive λ.

Proof: We prune bonds in Q2;0 as follows. In each cell of L0 we retain all
τ -bonds at top level, but at lower levels (L1, L2, . . . ) remove τ -bonds which
lead to internal vertices. We also remove all τ -bonds pointing into alternating
45o sectors, changing the parity of alternation in adjacent cells as illustrated in
Figure 6. Finally we retain only those λ-bonds reaching across boundaries of
cells in L0 and not contained in deleted 45o sectors.

The effect of this is that a direct connection is certainly established across
the boundary between the cells corresponding to two neighbouring vertices u,
v in L0 if

(a) the τ -bond leading from u to the relevant boundary is open (probability
τ);

(b) a τ -branching process (formed by using τ -bonds mirrored across the bound-
ary) survives indefinitely, where this branching process has family-size
distribution Binomial(2, τ2);

(c) the τ -bond leading from v to the relevant boundary is open (probability
τ);
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Figure 6: Construction of pruned percolation problem for Q2;0. For the sake of
pictorial clarity we depart from the convention in the text, and represent cells
by vertices placed at their centroids.

For then there will be infinitely many independent chances to complete the
connection by using single λ-bonds.

The probability that (b) occurs is readily computed using branching process
theory. The family-size generating function is

τ4s2 + 2τ2(1− τ2)s + (1− τ2)2

and so the extinction probability is the least non-negative root of

s = τ4s2 + 2τ2(1− τ2)s + (1− τ2)2.

The solution is

s =
(1− τ2)2

τ4
.

Consequently the known theory for bond percolation in Z2 tells us that
a sufficient condition for there to be just one infinite cluster for this pruned
percolation problem is that

τ

(
1− (1− τ2)2

τ4

)
τ =

2τ2 − 1
τ2

>
1
2

.

This leads to the condition τ2 > 2/3.
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We now must argue that the resulting unique infinite cluster is connected to
all connected regions in the full percolation problem, and therefore establishes
uniqueness of the infinite cluster for the full problem also.

First note that if τ2 > 2/3 and λ > 0 then we will retain a unique infinite
cluster if we further prune the percolation problem by deleting all bonds except
those contained in L0∪L1∪. . .∪Ln−1, so long as n is sufficiently large (depending
on τ and λ). Indeed, it suffices to ensure that the probability of connecting
across the boundary between cells corresponding to two neighbouring vertices
in L0 still exceeds 1/2. We can therefore identify a whole infinite sequence of
pruned percolation problems, based on Lnr ∪Lnr+1 ∪ . . .∪Ln(r+1)−1 for n = 0,
1, . . . , each of which contains a unique infinite cluster.

Further, note that the τ -branching process is super-critical when τ2 > 2/3.
A 0-1-law argument can then be deployed to show, in the full problem the
infinite clusters for Lnr ∪Lnr+1 ∪ . . .∪Ln(r+1)−1 must all be connected to each
other, thus forming a large infinite cluster C.

Furthermore τ -super-criticality implies that any infinite cluster in the full
percolation problem cannot be confined to a finite number of resolution levels.
A suitable adaptive enumeration of the vertices in such an infinite cluster, de-
livering a sequence of vertices lying in the successive layers L0, Ln, L2n, . . . ,
shows that almost surely eventually such a cluster must intersect C.

We have therefore shown there is just one infinite cluster when τ2 > 2/3 and
λ > 0. �

The techniques of Theorems 2.2 and 2.3 can be applied to extend this result
to the case of Q2(o), working with Z2 bond percolation for layers L0, Ln, L2n,
. . . , and noting that the FKG inequality allows us to combine percolation within
Lnr ∪ Lnr+1 ∪ . . . ∪ Ln(r+1)−1 with connection along τ -bonds between Lnr and
Ln(r+1). We obtain

Corollary 2.13 If τ >
√

2/3 and λ > 0 then almost surely there is a unique
infinite cluster for Q2(o).

Figure 7 provides a graphical summary of the information we have obtained
concerning uniqueness and existence of infinite clusters for dimension d = 2.

In their treatment of percolation on Tk × Z, Grimmett and Newman [13]
remark that they have not established whether the λ-τ region of uniqueness
of a infinite cluster is an increasing subset of [0, 1]2. However recent work
by Häggström, Peres and Schonmann [14, Definition 2.2, Theorem 2.3] shows
how to use invasion percolation to establish the corresponding fact for indepen-
dent bond percolation with constant retention probability on infinite connected
graphs of bounded degree which are semi-transitive (or, more generally, exhibit
uniform percolation at supercritical levels of the retention probability). This
class of percolation problems includes our graphs Qd(o) except for the con-
stancy of retention probability; however the proof is easily modified to allow for
two different levels of retention probability.

This is discussed in Appendix B.
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Figure 7: Information on transition concerning existence and uniqueness of
infinite clusters, for Q2;0 or Q2(o). Here N denotes the number of infinite
clusters.

Thus the schematic of Figure 7, for example, may be redrawn to include
boundaries between the various phases which are curves defined as non-increasing
functions of τ . However we are not able to guarantee that the coexistence phase
(existence of many infinite clusters) intersects all levels of λ up to the critical
level λ = 1/2.

2.4 Finite islands phenomenon

We need one more result to facilitate our discussion in Section 3 of a reasonably
complete schematic phase transition diagram for the Ising model. Consider the
connected clusters of sites formed by supercritical percolation in Qd;0 or Qd(o),
and remove all infinite clusters. The remaining clusters form islands under
the connectivity relation of adjacency. When are there no infinite islands? This
question has been investigated for Tk×Z by Newman and Wu [22], and (focusing
on isotropic bond percolation on more general graphs) by Schonmann [26]. The
case of Qd;0 and Qd(o) can be treated by an easy variation on the methods of
Newman and Wu.

Theorem 2.14 For fixed λ, for all sufficiently large τ almost surely there are
no infinite islands in any of Qd(o), Qd;0, or Qd.
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Proof: It suffices to find an upper bound for the mean size of the island at
some u0.

Let η = η(λ, τ) > 0 be the probability that o is not part of an infinite cluster
in Q(o). (We suppose τ < 1.) For fixed λ > 0 we know by comparison with the
extinction probability ηbr for the branching process formed from τ -bonds that
η(λ, τ) ≤ ηbr → 0 as τ →∞.

We follow Newman and Wu [22, Lemma 3.3] in noting a bound of isoperimet-
ric type. Define the “cone boundary” ∂c(S) of a finite subset S of vertices in Qd

as the collection of daughters v of S such that Qd(v) ∩ S = ∅. Since S is finite
we may suppose S ⊆ Qd(0). Using induction on construction of S, layer Ln

after layer Ln−1, we obtain the isoperimetric bound #(∂c(S)) ≥ (2d − 1)#(S).
(Adding a vertex at the lowest layer certainly introduces 2d new daughters into
the cone boundary: it may cloak one older member of the cone boundary but
no more than that.)

It follows, the probability that a self-avoiding path S of length n lies entirely
in the island at u0 is bounded above by the probability of the intersection
of independent events corresponding to failure to create open infinite paths
corresponding to each of the Qd(v) ∈ ∂c(S):

P [S in island at u ] ≤ (1− τ(1− η))(2
d−1)n

.

(Note: each vertex in the cone boundary must by definition have its mother in
S.)

On the other hand the number N(n) of self-avoiding paths of length n be-
ginning at u0 is bounded above by

N(n) ≤ (1 + 2d + 2d)(2d + 2d)n

and so (using η(λ, τ) ≤ ηbr and the probability generating function relationship
for ηbr) the mean size of the island is bounded above by

∞∑
n=0

(1 + 2d + 2d)(2d + 2d)nη
n(1−2−d)
br .

For large enough τ < 1 we have ηbr < 1/(2d + 2d)2
d/(2d−1) and therefore

convergence for the above sum, and so we can deduce that the island is almost
surely finite. This establishes the proof. �

We summarize the information obtained about the finite island property for
the case d = 2 in Figure 8. The critical value for τ for small λ is obtained as
follows. We have noted η = η(λ, τ) is bounded above by the least non-negative
root ηbr = η0 of

η0 = (1− τ)4 + 4(1− τ)3τη0 + 6(1− τ)2(τη0)2 + 4(1− τ)(τη0)3 + (τη0)4 .

We need to solve this for τ when η
3/4
0 = 1/8, in order to identify a threshold

above which propagation to infinite islands has zero probability. The relevant
root is τ = 0.533333.
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Figure 8: The finite island property holds for Q2(o) in the shaded region.

3 Ising models on generalized quad-trees

The motivation of this paper is primarily to gain a better understanding of Ising
models defined on generalized quad-trees, particularly Qd;0 and Qd(o), and with
particular reference to the case when λ-bonds and τ -bonds have different bond
strengths Jλ and Jτ , typically with one of Jλ, Jτ being small. We follow Newman
and Wu [22] very closely, so this section simply sets out the general reasoning
and refers to [22] for some details. The plan is to use the representation of
Ising models in terms of random-cluster models, and the Fortuin-Kasteleyn
comparison inequalities, to relate the resulting dependent bond percolation to
results concerning (independent) bond percolation. This allows exploitation of
the percolation results gained in Section 2.

3.1 The random-cluster model representation

Recall the now classical representation of the Ising model on a finite graph G
in terms of a random cluster model. Suppose the Ising model is based on the
Hamiltonian

H = −1
2

∑
〈x,y〉∈E(G)

J〈x,y〉(SxSy − 1) (3.1)

where Sx ∈ ±1 is the spin at site x ∈ G and the sum runs over the (undirected)
bonds of G, namely 〈x, y〉 ∈ E(G). Thus the probability of a given configuration
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{Sx : x ∈ G} is proportional to

exp(−H) = exp

1
2

∑
〈x,y〉∈E(G)

J〈x,y〉(SxSy − 1)

 . (3.2)

We now set
p〈x,y〉 = 1− exp(−J〈x,y〉) . (3.3)

In our case, of course, J〈x,y〉 is set equal to Jλ or to Jτ depending on whether
〈x, y〉 is a λ-bond or a τ -bond.

Denote a configuration of open/closed bonds by {b〈x,y〉 : 〈x, y〉 ∈ E(G)},
where b〈x,y〉 = 1 if the bond is open and b〈x,y〉 = 0 if it is closed. A configuration
{b〈x,y〉 : 〈x, y〉 ∈ E(G)} forming C clusters of sites has a probability under the
q-random cluster model which is proportional to

qC ×
∏

〈x,y〉∈E(G)

(
(p〈x,y〉)b〈x,y〉 × (1− p〈x,y〉)1−b〈x,y〉

)
.

From the work of Fortuin and Kasteleyn [4, 5, 6], the Ising model can be obtained
by choosing spins ±1 uniformly at random, one spin for each cluster of sites
connected by open bonds of the (q = 2)-random cluster model on E(G).

Of course the case q = 1 yields bond-percolation.
Furthermore Fortuin and Kasteleyn establish comparison inequalities of which

the following is a special case:

Lemma 3.1 For q ≥ 1, let Pq,p denote the q-random cluster measure on the
bonds of G using the bond probability parameters p〈x,y〉. Let A be an increasing
event concerning the configuration of bonds on G (if a configuration lies in A
then so does any configuration derived by making more bonds open). Then

Pq,p(A) ≤ P1,p(A) (3.4)
Pq,p(A) ≥ P1,p′(A) (3.5)

where
p′〈x,y〉 =

p〈x,y〉

p〈x,y〉 + (1− p〈x,y〉)q
=

p〈x,y〉

q − (q − 1)p〈x,y〉
.

Accessible proofs of these assertions in the case of constant p〈x,y〉 may be
found for example in [9]. They may be used to establish the existence of limiting
random-cluster measures on infinite graphs, though care has to be taken to
distinguish between possibly different limits arising for free boundary conditions
and “wired” boundary conditions (all components intersecting the boundary are
viewed as connected into one wired cluster). The monotonicity results (3.4),
(3.5) persist in the limit.

The representation of the Ising model using a (q = 2)-random cluster model,
together with these comparison inequalities, now allow us to address questions
about phase transition for Ising models on Qd;0 and Qd(o) using our results
about percolation on Qd;0 and Qd(o).
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3.2 Uniqueness and non-uniqueness of Gibbs states

Consider first what we may discover using the percolation results of Section
2.1 on transition from zero to many infinite clusters. The event that a bond
percolation model has infinite clusters is increasing, in the sense used in Lemma
3.1. Simple comparison arguments using the FKG inequality show that we
can use a continuous contour to delimit the (λ, τ)-region corresponding to the
absence of infinite clusters for the (q = 2)-random cluster model. We shall use
the percolation results to get information as to where this contour meets the λ-
and τ -axes.

In passing, we note that the proof of the 0:1 law given as [22, Lemma 3.2] will
work in the case of Q2(o), so the probability that the (q = 2)-random cluster
model possesses infinite clusters must be zero or one depending on the λ and τ
parameters.

The random cluster representation applies most simply to Ising models on
finite graphs, so we consider the intersections of Qd;0 and Qd(o) with the first
n+1 levels L0 ∪L1 ∪ . . .∪Ln. Let An be the event that the bond configuration
allows percolation from o through to resolution level n in this intersection. As
λ → 0, Theorem 2.1 shows that the probability of An under (λ, τ)-independent
bond percolation is bounded away from zero, or not, as n → ∞ according as
to whether τ > 2−d, or not. The comparison inequalities (3.4), (3.5) then show
that the limiting probability limn→∞ An under (λ, τ)-(q = 2)-random cluster
percolation is positive if τ > 2−d × 2/(1 + 2−d), and is zero for all small enough
λ > 0 if τ < 2−d. Lemma 3.1 allows us to argue to the limit for the monotonic
event A∞, and to show that under (λ, τ)-(q = 2)-random cluster percolation
the probability of A∞, the event that the bond configuration builds an infinite
cluster based on o, is positive if τ > 2−d × 2/(1 + 2−d), and is zero for all small
enough λ > 0 if τ < 2−d.

A similar argument can be deployed in the case of dimension d = 2 (which
is the case of most relevance to image analysis), using Theorem 2.2 to show
that the probability of A∞ under (λ, τ)-(q = 2)-random cluster percolation is
positive for all small τ > 0 if λ > 2/3, and is zero for all small enough τ > 0 if
λ < 1/2.

Consequently the contour which delimits the region of no infinite clusters
will meet the λ-axis at a value of τ lying in the interval [2−d, 2−d×2/(1+2−d)].
Moreover, in the case of dimension d = 2 the contour must meet the τ -axis at
a value of λ lying in the interval [1/2, 2/3].

Using the correspondence (3.3), and arguing as in [22], we deduce

Theorem 3.2 Consider the Ising model on Qd;0 or Qd(o), using interactions
Jλ and Jτ , and with spin +1 at the boundary “at infinite resolution level”.

Case of small Jλ: If Jτ < ln(1/(1− 2−d)), and Jλ is sufficiently small,
then the spin at o is equally likely to be ±1 and indeed there is just one
Gibbs measure regardless of boundary conditions. If Jτ > ln((1+2−d)/(1−
2−d)) then the spin at o is more likely to be +1 than −1, and moreover
there is more than one Gibbs state for the Ising model.
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Case of small Jτ : If dimension d = 2, Jλ < ln 2 and Jτ is sufficiently
small then the spin at o is equally likely to be ±1 and indeed there is just
one Gibbs measure regardless of boundary conditions. If Jλ > ln 3 then
the spin at o is more likely to be +1 than −1, and moreover there is more
than one Gibbs state for the Ising model.

3.3 Free Ising model and mixtures of extreme Gibbs states

We now consider the implications of the transition from many infinite clusters to
a unique infinite cluster, as described in Sections 2.2 and 2.3. Standard consid-
erations show now that the probability under independent bond percolation of
any two vertices x and y being connected, whether in Qd;0 or Qd(o), is bounded
away from zero if and only if there may be a unique infinite cluster. Uniqueness
of the infinite cluster does not constitute an increasing event, but connectedness
of two vertices does, and this allows us to deduce the following using the same
line of argument as that of Section 3.2, and applying Theorems 2.3, 2.8, and
2.12.

Theorem 3.3 Consider the free Ising model on Qd;0 or Qd(o), using inter-
actions Jλ and Jτ (so spins at the boundary “at infinite resolution level” are
unspecified).

Case of small Jλ: If Jτ < ln(1/(1 − 2−(d−1)/2)), and Jλ is sufficiently
small, then the correlation between spins at x and y decay to 0 as the
distance between the two vertices increases. In the case of dimension d =
2, if Jτ > ln((1 +

√
2/3)/(1−

√
2/3)) then the correlation is positive and

bounded below away from zero.

Case of small Jτ : If dimension d = 2 and Jλ > ln 3 then the correlation
is positive and bounded below away from zero.

Corollary 3.4 Suppose ln((1 + 2−d)/(1− 2−d)) < Jτ < ln(1/(1− 2−(d−1)/2)),
and Jλ is sufficiently small. Then Theorems 3.2 and 3.3 combine to show that
the free Ising model cannot be expressed as a mixture of the two extreme Gibbs
states determined by spin +1 and spin −1 at the boundary “at infinite resolution
level”.

Remark 3.5 For small Jτ the picture presented by Theorems 3.2 and 3.3 does
not guarantee an intermediate stage of the kind presented in Corollary 3.4: in
this part of the phase-transition diagram the model appears to have more in
common with the planar Ising model than elsewhere.

While uniqueness of the infinite cluster does not in itself constitute an in-
creasing event, it does constitute an increasing event when combined with the
finite-island property described in Section 2.4, as Newman and Wu observe [22].
Following their arguments, and using Theorem 2.14, we can show the following:
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Theorem 3.6 Consider the free Ising model on Qd;0 or Qd(o), using inter-
actions Jλ and Jτ (so spins at the boundary “at infinite resolution level” are
unspecified). For large enough Jτ , and certainly for Jτ > ln((1 +

√
2/3)/(1 −√

2/3)) in the case of dimension d = 2, the free Ising model is the 1
2 : 1

2 -mixture
of the extreme Gibbs states determined by spin +1 and spin −1 at the boundary
“at infinite resolution level”.

Figure 9 sketches out the regions established above for these different phases
for Q2(o). Note that the middle phase (root influenced by boundary values all
set to a single spin, but dependence between specified vertices will decay to zero
with distance) is drawn as extending to all levels of λ less than the limiting
critical level for small τ ; however we do not know whether this is in fact the
case.

Figure 9: Schematic phase-transition diagram for Ising model on Q2(o). (Figure
not drawn to scale.) Note that the middle phase (root influenced by boundary
values all set to a single spin) may not in fact extend up to the limiting critical
level of λ for small τ .

4 Simulations and further work

The above results describe the free Ising model on Qd;0 or Qd(o). The case of
Qd(o) is amenable to simulation, since the global Markov property for Markov
random fields allows us to view each successive resolution level Ln as being
produced by simulation of an Ising model on {0, 1, . . . , 2n − 1}2 influenced by
a magnetic field representing the interaction with the realization of the Ising
model on the previous level Ln−1. Convergence at each level is typically fast
for small Jλ (as can be assessed using simple CFTP methods following [25]),
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and the main computational issue is one of handling the exponential growth in
memory at increasing resolution levels.

We have run a large number of simulations of an approximate version of the
model in order to explore its behaviour, the results of which are summarized in
figure 10. An animated version of this figure is to be found at

http://www.dcs.warwick.ac.uk/~rgw/sira/sim.html.

The hyperbolic growth of the tree structure obliges us to restrict the simulations
in the following ways:

(1) Only 200 resolution levels are simulated;

(2) At each resolution level the simulation consists of 1000 sweeps through
the image in scan order, giving a total of some 4 million site visits, after
which we assume approximate equilibrium is attained;

(3) At each resolution level a square sub-region of 128×128 pixels is simulated,
this being conditioned by the corresponding 64 × 64 pixel region at the
mother level;

(4) We approximate by imposing periodic boundary conditions on each 128×
128 square region;

(5) At the coarsest resolution level (resolution level 0), all pixels are set white.
At each subsequent resolution level the ‘all black’ state is used as the initial
condition before applying the 1000 sweeps through the image.

The results in figure 10 show broad agreement with the predictions, in that
three distinct phases are observable, occurring in the expected regions of the
Jλ − Jτ plane: (i) a single Gibbs distribution at low Jλ − Jτ values, leading to
(ii) a phase with many large clusters and lastly (iii) a single large cluster at high
values of Jλ or Jτ . Note that for high Jλ the single large cluster is white; this
reflects the strong influence of the pixels at the bottom level for these parameter
settings.

However real images (such as those to be found in [31], or even the artificial
images in Figures 2 and 3) are appropriately modelled neither by free Ising mod-
els nor by either of the two extreme Gibbs states, but by specification of specific
mixtures of ±1 on the ideal boundary at n = ∞ representing images (with, we
would expect, some kind of smoothness of contours between +1 and −1). A
random cluster model approach to this requires us to specify boundary condi-
tions which wire together two or more clusters of sites at infinity (black versus
white image) and condition on these clusters not being connected. The question
is whether such conditioning produces an interface which reaches down to low
(finite!) resolution levels. We defer investigation of this to a future project,
and merely note for now (a) that the analogous problem for the random cluster
model on Zd is treated by Gierls and Grimmett [10], developing Dobrushin’s
classic interface phenomenon for the Ising model on Z3 [3] and (b) the case of
d = 1 with λ = τ is related to the work of Series and Sinai [27], which considers
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(a) Jλ = 1, Jτ = 0.5 (b) Jλ = 1, Jτ = 1 (c) Jλ = 1, Jτ = 2

(d) Jλ = 0.5, Jτ = 0.5 (e) Jλ = 0.5, Jτ = 1 (f) Jλ = 0.5, Jτ = 2

(g) Jλ = 0.25, Jτ = 0.5 (h) Jλ = 0.25, Jτ = 1 (i) Jλ = 0.25, Jτ = 2

Figure 10: Samples from the multiresolution Ising simulation. The coupling
parameters are shown for each sample.

Ising models defined by Cayley graphs of finitely generated co-compact groups
of isometries of the hyperbolic plane, and which establishes exactly that such
interfaces then exist.

Finally we note that the discussion in Section 3 generalizes to Potts models,
again following the methods of [22]. However we omit discussion of this here,
leaving the details as an exercise for the interested reader.
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The following appendices summarize work which was carried out during the
investigation reported here, but which has not found its way into the version
submitted for publication.

A Percolation: More on transition from zero to
many infinite clusters

Theorem 2.1 gives a sharp lower bound on the λ ↓ 0 point at which the transition
occurs between zero and many infinite clusters. We can also derive a lower
bound for the correction to the mean number of daughters at resolution level n
if just one horizontal bond is allowed at some resolution level between 0 and n.
For the sake of simplicity we describe this only for Q2(o), though the argument
generalizes directly to other dimensions d.

Consider first the mean number of sites at level n which are connected to o
in Q2(o) ∩ (L0 ∪ L1 ∪ . . . ∪ Ln). We know we must have many infinite clusters
in Q2(o) when this strictly exceeds 1. For small λ we may estimate the excess
of this mean over (4τ)n (the mean value if λ = 0) to order λ2 by adding the
contributions to the excess arising from adding each of the various λ-bonds
singly.

The ingredients of the calculation are illustrated in Figure 11.

Figure 11: Illustration of calculations used in generating upper bound for tran-
sition from zero to many infinite clusters

(1) Now the addition of a single λ-bond corresponds to increased daughters
at resolution level n if and only if exactly one of its vertices is descended
from the most recent common ancestor of both vertices. This suggests we
sum the contributions over the 1+4+42 + . . .+4n−1 vertices which might
serve as a most recent common ancestor to an added λ-bond:

cλ,τ (n) = c(n) =
n−1∑
a=0

(4τ)a × c2(n, a) .
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(2) For each such vertex we must now sum over all possible λ-bonds with
the vertex as most recent common ancestor, allowing for the two different
ways in which just one vertex of the λ-bond is connected to the ancestor,
and including the probability that the λ-bond in question is open:

c2(n, a) =
n−a∑
b=1

2τ bλ (c3(n, a, b) + c4(n, a, b)) .

(3) The vertex not connected to the ancestor now contributes a further num-
ber of direct descendants at level n. We must add a factor ensuring that
there is no connection between vertex and ancestor:

c3(n, a, b) =

b−1∑
β=0

τβ(1− τ)

 (4τ)n−a−b =
(
1− τ b

)
(4τ)n−a−b .

(4) Furthermore we must add in descendants at level n deriving from ancestors
of this vertex on the (broken) line of descent from the most recent common
ancestor. Again we must add a factor ensuring that there is no connection
between vertex and ancestor:

c4(n, a, b) =

b−1∑
β=1

τβ(1− τ)
β∑

γ=1

3τ(4τ)γ−1

 (4τ)n−a−b

(the sum vanishes if b = 1).

Combining these formulae gives an expression for cλ,τ (n), the excess over (4τ)n.
This can be evaluated in closed form, but is complicated and unenlightening.
However we may now consider the smooth critical path {(λ(s), τ(s)) : s ≥ 0}
such that (4τ)n + cλ(s),τ(s)(n) = 1. Taking λ(s) = s, we deduce using calculus
that the slope of this path at λ = 0, τ = 1/4 is given by

n 100 200 300 400 500
slope -7.1752 -7.15899 -7.15361 -7.15092 -7.1493

This provides us with an indication of an upper bound for the infinite-cluster
region.

B Percolation: More on transition from many
to unique infinite clusters

Following [14, §3], it is possible to use invasion percolation to establish that if
the infinite cluster in Qd,0, respectively Qd(o), is unique at parameters λ, τ then
it is also unique at parameters λ′, τ ′ whenever λ′ ≥ λ and τ ′ ≥ τ . Here is a
sketch of the argument.
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We first realize the percolation by attaching independent uniformly dis-
tributed marks to each bond. Supposing (for example) that λ′ < τ ′, for τ -bonds
the relevant mark M is uniformly distributed over (0, 1) whereas for λ-bonds
it is uniformly distributed over 0, τ ′/λ′, and the bond is open in the (λ′, τ ′)-
percolation exactly when M < τ ′.

The invasion cluster Iu at a vertex u is constructed by setting V0
u = {u}

and I0
u = ∅, and constructing In+1

u by adding the bond with least mark which
is not in In

u but is incident to Vn
u , and adding the non-incident vertex to Vn

u to
form Vn+1

u . Finally set Iu = I∞u .
Semi-transitivity is used to show that any percolation allowing positive

chance of infinite clusters is uniform: sufficiently large metric balls have prob-
ability uniformly close to 1 of intersecting an infinite cluster.

If u has an infinite cluster C ′ under (λ′, τ ′)-percolation then C ′ must contain
Iu.

However we can use uniform percolation to argue that with arbitrarily high
probability one of the In

u will eventually intersect an infinite cluster C under
(λ, τ)-percolation (adapt the proof of [14, Lemma 3.2] and see [14, Proof of
Proposition 3.1]).

The invasion cluster is thus used as an intermediary to show that C ′ inter-
sects (and so contains) the infinite cluster C established at the lower level of
percolation.

If the (λ, τ)-percolation exhibits only a single infinite cluster then it follows
C ′ must intersect and therefore be equal to all other infinite clusters under
(λ′, τ ′)-percolation, and so the (λ′, τ ′)-percolation must also exhibit only a single
infinite cluster.
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