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Abstract

The Kolmaogorov (1934jliffusionis the two-dimensional diffusion gen-
erated by real Brownian motiaB and its time integral B d¢. In this paper
we construct successful co-adapted couplings for iterated Kolmogorov dif-
fusions defined by adding further iterated time integrfals Bdsdt, ...to
the original Kolmogorov diffusion. A Laplace-transform argument shows
it is not possible successfully to couple all iterated time integrals at once;
however we give an explicit construction of a successful co-adapted cou-
pling method for(B, [ Bdt, [ [ Bdsdt); and a more implicit construc-
tion of a successful co-adapted coupling method which works for finite sets
of iterated time integrals.
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1 Introduction

The Kolmogorov (1934qiffusionis the two-dimensional diffusion generated by
real Brownian motion3 and its time integral B d¢. Analytic studies of distri-
bution and winding rate about, 0) have been carried out bylcKean (1963)
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More recent workersl@chal 1997 Khoshnevisan and Shi 199&roeneboom,
Jongbloed, and Wellner 199€@hen and Li 200Bhave considered growth asymp-
totics, distribution under conditioning, and small ball probabiliti@&en Arous
et al. (1995)showed thatB, [ Bdt) can be successfullgoupled co-adapted]y
meaning that for any two different starting poifits, a;) and(by, b,) it is possible
to construct random processes, [ Ad¢) and(B, [ Bdt) begun afay, as) and
(b1, by) respectively, adapted to the same filtration and suchAheatd B are real
Brownian motions with respect to this filtration, whichuple successfuliy the
sense thatl; = B andas + fOT Adt = by + fOT B dt for some random but finite
time T'. Theiterated Kolmogorov diffusiors obtained by adding (perhaps a finite
number of) further iterated time integrafs/ Bdsdt, ..., and the object of this
note is to study its coupling properties.

There are many different kinds of couplingo-adaptedor Markovian cou-
pling as described abovep-adapted time-changed couplinghich relaxes the
filtration requirements to permit random time-changes (an example is to be found
in Kendall 1994; non-adapted couplingwhich lifts the filtration requirement;
and finallyshift-coupling which relaxes the coupling requirement to permit cou-
pling up to a random timeA(dous and Thorisson 1993Elementary martingale
arguments show a diffusion cannot be successfully coupled if there exist non-
trivial bounded functions which are parabolic (space-time harmonic) with respect
to the diffusion; more generally a diffusion cannot be successfully shift-coupled if
there exist non-trivial bounded functions which are harmonic. The converse state-
ments are also true: absence of non-constant parabolic functions means there exist
successful non-adapted coupling&iffeath 197% Goldstein 1979 and absence
of non-constant harmonic functions means there exist successful shift-couplings
(Aldous and Thorisson 1993

Co-adapted couplings are generally less powerful than non-adapted couplings,
but can provide significant links to mathematical notions such as curvature. For
exampleKendall (1986)describes a co-adapted coupling construction for Brown-
ian motion on Cartan-Hadamard manifolds of negative curvature bounded above
away from zero, and shows that there is no successful co-adapted coupling. If
it could be shown in this case that successful non-adapted coupling implied ex-
istence of a successful co-adapted coupling, then one could use the link with
parabolic functions to deduce that all such manifolds must support non-constant
bounded parabolic functions; this question from Riemannian geometry is cur-
rently open! Furthermore, it is typically much easier to construct co-adapted cou-
plings when they do exist; a matter of major significance when using coupling



to explore convergence of a Markov chain to equilibrium (when using Markov
chains as components of approximate counting algorithms as expounded in
rum 2003 or when implementing Coupling from the Past a®nmopp and Wilson
1996. Burdzy and Kendall (2000¢xplore the difference between non-adapted
and co-adapted couplings; see alsayes and Vigoda (2003Wwho describe a
non-adapted variation on an adapted coupling which provides better bounds for
mixing in a particular graph algorithm.

In this paper we extend the resultsR¥n Arous et al. (1995pr (B, [ Bdt),
giving an explicit construction for a successful co-adapted coupling at the level of
the twice-iterated time integral' ieorem 3.5 We also give an implicit construc-
tion for successful co-adapted couplings for higher-order iterated Kolmogorov
diffusions (Theorem 5.1% and note that it is impossible successfully to couple all
iterated time integrals simultaneousiyhieorem 6.}
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2 Parabolic functions and harmonic functions

We begin by sketching some general mathematical considerations. It is possible
to derive information about the existence or otherwise of couplings from analytic
considerations, albeit in a rather non-constructive fashion. The existence of a suc-
cessful non-adapted coupling is known to be equivalent to the nonexistence of
non-constant parabolic function&((ffeath 197% Goldstein 1970 The same is
true if we replace “non-adapted coupling” and “parabolic” by “shift-coupling” and
*harmonic” (Aldous and Thorisson 1993 (These papers consider the discrete-
time case: the technical issue of moving to continuous time is dealt with for ex-
ample inThorisson 2000

In general it is known that manifolds which are (for example) unimodular solv-
able Lie groups will not carry non-constant bounded harmonic functioysné
and Sullivan 1984 Kaimanovich 1986 Leeb 1993. The iterated Kolmogorov
diffusion can be viewed as a Brownian motion on a nilpotent Lie group, so we can



deduce the existence of successfhift-couplingsfor the iterated Kolmogorov
diffusion.

We are concerned here with successful couplings rather than successful shift-
couplings, corresponding to parabolic functions rather than harmonic functions.
HoweverCranston and Wang (200¢83, Remark 3show that a parabolic Harnack
inequality holds for left-invariant diffusions on unimodular Lie groups (and there-
fore successful shift-couplings exist for such diffusions if and only if successful
non-adapted couplings exist). It suffices to indicate how the iterated Kolmogorov
diffusion can be viewed as such a diffusion. We outline the required steps.

First observe that there is a homomorphism of the semigroup of patimsler
concatenation into the quotiegtoup which identifies paths with the same time-
length and the same endpoints and iterated time integrals up to erd&he
resulting group is graded by a degree defined inductively by time-integration,
and is nilpotent with this grading. It is a Lie group, since it can be coordi-
natized smoothly by, B;, andn iterated integrals of the fornj"Othu,

fot ... Jy Bdw...du; evolution of B generates the required left-invariant dif-
fusion. Nilpotent Lie groups are unimodul&drwin and Greenleaf 1990so the
Cranston and Wang (200@)ork applies.

Thus at a rather abstract and indirect level we know it is possible to construct
successful non-adapted couplings for the iterated Kolmogorov diffusion. However
in the following we will show how to construct successtoladapted couplings
while our general constructior3g) is not completely explicit, nevertheless it is
much more direct than the above, as well as possessing the useful co-adapted

property.

3 Explicit co-adapted coupling
for the twice-iterated Kolmogorov diffusion

We now describe a constructive approach to successtadaptedcoupling of
Brownian motion and its first two iterated integral3; [ Bdt and [ [ Bdsdt.
In later sections we will show how to deal with higher-order iterated integrals.

We use the conventional probabilistic language of “ev&nhappens eventu-
ally in n” to mean, almost surelyi,, occurs for all but finitely many: (in measure-
theoretic terms this corresponds to the assertion that the gyefnt ., A, has
null complement). -



3.1 Case of first integral

Coupling of the first two iterated integrals is based onBke Arous et al. (1995)
coupling construction fofB, | B dt); we begin with a brief description of this in
order to establish notation.

E
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Figure 1: Plots of (a) two coupled Brownian motioAsand B, (b) the difference
W =B-A=DB(0)—A(0)+ [(J—1)dA. The coupling contro/ switches be-
tween valuest1 (“synchronous coupling”) and 1 (“reflection coupling”). In the
figure, switches to fixed periods df= +1 are triggered by successive crossings
of +1 by W.

Co-adapted couplings are built on two co-adapted Brownian motioasd
B begun at different locationd(0) and B(0): we shall suppose they are related
by a stochastic integra8 = B(0) + [ Jd A, whereJ is a piece-wise constant
+1-valued adapted random function. The coupling is defined by speciffing

W = B-A = B(O)—A(O)+/(J—1)dA, (1)
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so thatlV is constant on intervals where= 1 (holding interval$, and evolves as
Brownian motion run at raté on intervals where/ = —1 (intervals in whichiV/
is run atfull rate). The coupling is illustrated ifigure 1

So our coupling problem is reduced to a stochastic control problem: how
should one choose adaptddso as to controlV andV = V(0) + [ W d¢ to
hit zero simultaneously?

We start by noting that the trajectofyV, V') breaks up intchalf-cyclesac-
cording to successive alternate visits to the positive and negative rays of the axis
V = 0. (We can assum¥& (0) = 0 without loss of generality; we can manipu-
late W andV to this end using an initial phase of controls!) We adopt a control
strategy as follows: if the" half-cycle begins atV = +a,, for a,, > 0 then we
compute a leveb,, depending om,,, with b,, < a,, < kb,, for some fixedk > 1,
and run this half-cycle of¥ at full rate (/ = —1) until W hits b,, or the half-
cycle ends. i/ hits Fb,, before the end of the half-cycle then we start a holding
interval (/ = 1) until V' hits zero, so concluding the half-cycle. $gt, to be the
absolute value ofl at the end of the half-cycle. We will call the holding interval
the Fall of the half-cycle and will refer to the initial component as Br@wnian
componenbr BrC. The construction is illustrated irigure 2

E u

Fall BrC

-b

n

= || ‘ w

Figure 2: lllustration of two half-cycles for the cake= a, /2, k = 2, labelling
Fall andBrC for first half-cycle.

With appropriate choices for the, andb,,, it can be shown that this control
forces(W, V') almost surely to converge 10, 0) in finite time. To see this, note
the following. By the reflection principle applied to a Brownian motiBrbegun
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Simple dynamical arguments allow us to control the duration of the Fall:
maxV duringBrC < (BrC duration x (max¥/ duringBrC)

P [BrCduration > t,] < P[2|B(t,)| < a, + b, (2)

Fall duration <

bn - by ’
(3)
which we can combine with the following (far,, > 0):
P [(maxW duringBrC) > z,] = P[2B + a, hitsx,, before — b,]
B an + by, (4)
 ap+b, T,
We now use a Borel-Cantelli argument to deduce that
Duration of half-cyclen < (1 + %) tn (5)
for all sufficiently largen, so long as
a 1
= —_ . 6
;\/5@0’ ;1+xn/(2an)<oo ©)

(Bear in mind, we have stipulated that < a,, < xb,.) Now this convergence is
ensured by setting/t,, = x,, = a,n'* for somea > 0, in which case we obtain

KTy,

Duration of half-cyclen < (1 + ) tn < (14 kn')ain®.

(7)
If we arrange fom,, < x/n*"? then the sum of this over converges, since we
can chooser < 23/3. Thus we have proved the following, which is a trivial
generalization oBen Arous et al. (1995, Theorem 2.1)

Qn,

Theorem 3.1 Suppose the evolution @/, [ W d¢) is divided into half-cycles as
described above: if the™ half-cycle begins &t = +a,,, then itis run at full rate

till ¥ hits b,, and then allowed to fall to the conclusion of the half-cycle. (The
fall phase is omitted if the half-cycle concludes befdfehits Fb,,.) Our control
consists of choosing the,; so long asa, /s < b, < min{a,, 1/n*"} for all
sufficiently largen for some constantsand3 > 0, then(WV, [ W d¢) converges

to (0,0) in finite time.



Remark 3.2 By definition of a,, we knowa, < b, ; < 1/(n — 1)?*7, so it is
feasible to choosg, such thati,,/x < b, < min{a,, 1/n*>°} for all largen.

Remark 3.3 Note thata,, is determined by the location & at the end of half-
cyclen — 1.

Remark 3.4We can assume the initial conditiollg = 1, V;, = 0 (otherwise we
can run the diffusion at full rate til hits zero, as can be shown to happen almost
surely, then re-scale accordingly). It then suffices tobset min{a,,1/(n +
1)2*P}. However this is not the only option; for examgBen Arous et al. (1995)
useb,, = a, /2. Note, in either case we find,; < b, < a, < kb, for Kk = 2.

3.2 Controlling two iterated integrals

Inspection of the above control strategy reveals some flexibility which was not
exploited byBen Arous et al. (1995%)in then'" half-cycle there is a timé&, at
which W first hits0, and we may thehold W = 0 constant (by setting = 1)

and so delay for a timé’,,, without altering eithefV or V' = [ W d¢. We may
choose’,, as we wish without jeopardizing convergencedf, V') to (0,0). This
flexibility allows us to consider controlling = [ [ W dsd¢ as follows: we hold
atT,, for a duration

_ — [ [Wdsdt _ U
C, = maX{O, Twdt } = max{O,—V}. (8)

For simplicity we concentrate on the cd$€0) = 0: itis easy to adapt the follow-

ing treatment to the case of non-zero initial valli€0). The event{V'(7,,) = 0]

turns out to be of probability zero, since it can only happéh, ibccurs at the very
start of the half-cycle, which in turn happens onlyiit hits zero exactly at the end

of the previous half-cycle; that this is a null event will be a weak consequence of
thelower bound at Inequality (18)elow. The construction is illustrated kgure

3.

Supposez,, < k/n?**? as in the previous subsection. If we can show that
>, Cn < oo then this strategy results {iV, V') tending to(0, 0) in finite time ¢,
with U hitting zero in infinitely many half-cycles accumulatinglaand therefore
also converging to at (. To fix notation, let us suppos&’ is positive at the start
of the half-cycle in question. This ensurs > 0 at time7,,. So the issue at
hand is to control”,, by determining what makesU = — [ [W dsd¢ large,
and what make¥ = [ 1V d¢ small at timeT,.



Fall BrC u
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Figure 3: Two consecutive half-cycles for the case= a, /2, together with a
graph ofU against time. The disks signify time points at which there is an option
to hold the diffusion to allow/ to change sign if required.

Consider—U at timeT,,. At the start of the half-cycle we knoW = 0 and
W = a,, S0 subsequent contributions mak& more negative and need not detain
us. At the start of th@revioushalf-cycleU will be non-negative. Consequently
an upper bound for-U at timeT,, is given by

(Duration of half-cyclen — 1)?
2

X (—minimum value ofi¥ over half-cyclen — 1),

thus (given the work 0§3.1) we may suppose that, eventuallyrinat timeT,, the
guantity—U is bounded above by

2
1 ((1 + $n—1) tn1> X Tp_1 = L (1+k(n— 1)1+a)2 al_,(n—1)°t%.
2 br—1 2
(9)
Now apply a Borel-Cantelli argument to the probability that the Brownian
component takes time at least/(4n*2*) in travelling froma,, to a,,/2. Using
the reflection principle, we deduce almost surely for all sufficiently largetime
T,, it must be the case thit = f W dt exceeds

(a,/2) x time to move fronu, toa,/2 > i (10)

ThusC,, is bounded above, eventuallyqin by

3
A (1 + K(n — 1>1+a)2 (n— 1>5+5an2+2a % (M) ai—1 ) (11)
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This leads to the crux of the argument; we need an upper bound on the ratio
A1/

First note that théower bound of Inequality (1Qppplied to thén—1)% cycle,
shows that eventually in

Tn—-1 (13

n—1

So it suffices to obtain a suitable lower boundwnthe value ofil” at the end of
half-cyclen — 1, in terms of— fTH W dt and holding eventually in. Moreover
we may ignore thé&all component of half-cycle — 1 so long as the lower bound
is smaller tharb,,_;, and treall” over the whole of this half-cycle as a Brownian
motion of ratey/2.

We now introduce a discontinuous time-change based on the continuous (but
non-monotonic) additive function&l (t) = [ W ds: condition onfT”*1 Wdt =
—u,_1 and set

olw) = inf{s>0:V(T,+s)—V(T,) >u—u,_1}

for 0 < u < wu,_;. We setZ(u) = W(o(u) and use standard time-change
arguments to showd = W(o(u))do so do/du = 1/W(o(u)) = 1/Z(u).
Consequently, on time intervals throughout whi¢h> 0,

dZ(u) = ﬁdé whenZ > 0 (13)

V7

for a new Brownian motiods. The time-changed procegs's illustrated inFigure
4. Note thatZ must be non-negative. B
A nonlinear transformation of scald = /2Z%/?/3 produces a Bessél(

process” in time intervals throughout whicl (equivalently?) is positive: by
Itd’s formula the stochastic differential equation

V2~ 1 ~py~ 1 1 =
dz = d| =2z = ——ZY*dZ+ ——=(d2)?
(3 V2 4\/5\/5( )

~ 11

holds in intervals for whicl > 0.



Figure 4: Discontinuous time-change for W basedior= [ W d¢. The effect

of the time-change is to delete the loops extending inta> 0, and to continue
deletion till V = [ 1V d¢ re-attains its minimum, thus generating discontinuities
(some of which are indicated in the figure by small dots onithaxis) in the
time-changed process, which follows the red /dark trajectory.

Now observe that the zero-sét : Z(u) = 0} is almost surely a null-set.
For certainly the Brownian zero-sé¢t : W (t) = 0} is almost surely null, and
{V(t) : W(t) = 0} is then almost surely null by Sard’s lemma, sifi¢és aC"
function with derivativéV (indeed this is an easy exercise in this simple context).
But{u: Z(u) =0} ={u: Z(u) =0} isasubsetof V(t) : W(t) = 0}.

Becausdu : Z(u) = 0} is almost surely a null-set, it follows that the stochas-
tic integral

B(u) = /OU]I[Z>O]d§ (14)

(using Equation (13)}o constructB whenZ > 0) defines a Brownian motion.
Furthermore we can apply limiting arguments to write

Z7 = B+%/]I[Z>O]%du+H (15)

whereH is the non-decreasing pure jump process

H(u) = Z\/g (W(o(u) = W(o(u=))"?

v<u

which is constant away frord = 0.
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By the theory of the Skorokhod constructidel Karoui and Chaleyat-Maurel
1978 we now derive the comparison

Z > B+L

whereL is local time of B at0, so thatB + L is reflected Brownian motion.H{
is discontinuous, but the argument of the Skorokhod construction applies so long
asH is non-decreasing.) Consequently

V2

P 723/2(%1)2:6] < P[B(up_y) > ]

and so we can deduce from tlwsver bound of Inequality (12that the following
holds eventually im:

n—1 1/3 1/3
| [T W dt] 1
"= (m 2 o1 g q)ivie (16)

for o > 0. Thus eventually im

Cn S 32 (1 + (n o 1)1+O¢)2 (n _ 1)9+9an2+2a % a2_1

n

and so we can arrange fr, C, < oo so long as we choose, < 1/n"* for
6> 0.
We state this as a theorem:

Theorem 3.5 The modified strategy described at the head of this subsection (hold
at eachT, till | [ W dsdt is zero or has the same sign dsV d¢) produces

convergence of
(W,/Wdt,//stdt)

to (0,0, 0) in finite time so long as the conditions Dfieorem 3.Jare augmented
by the following: half-cycle: begins atW’ = =+a,, for a,, < 1/n™ for 3 > 0
and for all sufficiently large:. (This can be arranged by choosihgin the range
an/k < b, < min{a,,1/n"#} for constants; and 3 > 0.)

Remark 3.6 The choice,, = a,,/2 of Ben Arous et al. (1995ill suffice.

Remark 3.7 It is possible to obtain a modest gain on the above: recognizing that
the hitting time of Brownian motion oA 1 has the same distribution as the inverse



square of a standard normal random variable. This argument permits replacement
of Equation (10py

Tn

1
Wdt > constantx a’ — .
n

Remark 3.8 The elementary comparison approach above can of course be re-
placed by arguments employing the exact computatiomgabfean (1963)

Remark 3.9 The method described here (control coupling of higher-order iterated
integrals by judicious waits al/ = 0) appears to deliver effective control of just
one higher-order iterated integral in addition6, V' = [ 1V d¢. Attempts to
control more than one higher-order iterated integral seem to lead to problems of
propagation of over-correction from one half-cycle to the next. We therefore turn
to a rather different, less explicit, approach in the remainder of the paper.

4 Reduction to non-iterated time integrals

Before considering the problem of coupling more than two iterated time inte-
grals, we first reformulate the coupling problem in terms of integrals of the form
[ & B(t) dt rather than the less amenable iterated time integrals of above. We be-
gin with some notation. Suppo$¥ is defined as the difference between two co-
adapted coupled Brownian motions, aghl Thenwe setV = W = B — A

and define the firslv iterated time integrals inductively by

wh = wWh(0) + / wOdt,
w® w®(0) + / w®de
w™ = wW(0) + / W™ dt. (17)

(Note that we have allowed for arbitrary initial conditiori&™) (0) et cetera)
If W) = wh0) = w2(@©) = ... = W™(0) = 0, so the initial



conditions all vanish, then we find by exchange of integrals that

w(ry = /OTW(”‘l)(t)dt = /0T</0tw<”—2)(s)ds)dt
_ /OT(/STW(Z)(s)dt)ds _ /OT(T—S)W(”2)(s)d3

= ... = /O%W(O)(s)ds.

Binomial expansion leads to the following:

Lemma 4.1 SupposéV (©(0) = W (0) = WP (0) = ... = W (0) = 0, and
J is a given adapted control, angis a given stopping time. Then

woQ =0, wW=o0, wEQ=0, ..., W) =0
if and only if

W) = 0, /OCW(t)dtzo, /OCtW(t)dt:(),

¢ tN_l
g /0 Ao = 0.

If the iterated time integrals have non-zero initial values then we can reduce
to the case of zero initial values by supposingis deterministically extended
backwards in time to time-1, with corresponding generalization &fguation
(17). By a simple argument using orthogonal Legendre polynoniiaten [—1, 1],
we can choos®V|(_; g to produceV @ (—1) = W (-1) = W& (-1) = ... =
WW (1) =0, andW©(0) = ag, WD (0) = a1, WP (0) = ay, ..., WM (0) =
ay as required. For if

for —1 <t < 0then

/0 P,2t+ D)W (t)dt = %bn /1 P,(t)*dt.

-1



Expanding the Legendre polynomials and adapting the argument leadiagtoa
4.1, we can finday, ..., ay in terms ofbg, by, ..., by_1 by solving a triangular
linear system of equations. Finalby andby,; may be fixed by the requirement
that W(0) = ap = S0 b,P.(1) and0 = W(—-1) = "1, P,(0) (note
that Legendre polynomials do not vanish at their end-points, and are odd or even
functions according to whether their order is odd or even!).

This allows us to useemma 4.1to deduce the required reduction:

Lemma 4.2 Itis possible to use adapted controldo ensure
WO =0, wOQ=0  WOQ=0, ..., WV =0

at some stopping time (depending on initial value® ™ (0)) if and only if it is
also possible to use adapted controls to ensure

W) = 0,
¢ ¢

b0+/ W(t)dt = 0, b1+/ tW(t)dt = 0,
0 0

¢ thl

(Here the constants, depend on the initial conditiond’ (™ (0) for the iterated
integrals).

For we may extend back ovér1, 0], condition on achieving the desired values
W™ (0), and work with controls/ which act only for positive time.

5 Coupling finitely many iterated integrals

We motivate the control strategy required to couple more than two iterated inte-
grals by considering a discrete analogue to our problem, which is in fact a limiting
case.

Suppose we choose only to switch between= +1 at instants wheriV/
switches over between two constant levels (as illustratellignre 7). To aid
explanation we temporarily entertain the fiction that the Brownian motions con-
spire to produce instantaneous switching as soos asswitched to—1. Then
it is a matter of simple integration to compute the effect on integrals of the form
i %", dW': if we hold J = +1 at successive levels1, beginning at+1, making



switches from+1 to 1 at times0 = T, < T} < ... < T,, then (under the
instantaneous switching approximation)

o S B - T
TRl ) e T (18)

il

0

In §5.1 below we show that particular patterns of switching times produces
zero effect on integrals up to a fixed order, at least for the discrete analogue. This
permits us to eliminate a whole finite sequence of the integrals. (Of course in
practice, because switching is not instantaneous, the use of such patterns creates
further contributions to the integrals which then must be dealt with in turn!)

It is algebraically convenient to formulate the required patterns using a se-
guenceSy, Sy, ...Syv_; of values of+1 defined recursively in a manner reminis-
cent of the theory of experimental design. We set

SO = +1 )
(Sgn, SQn+1, ey 52n+1_1) - —(307 Sl, ey Sgn_l) . (19)
Here is the pattern formed by the first sixtegnvalues:
+ - -+ -+ + - -+ + -+ - -+

We will be considering perturbations and re-scalings of the deterministic control
which applies control/ = —1 throughout the time intervdln, m + 1) till a
switch has occurred to leved,,, and then applies = 1 for the remainder of

the time interval. The discrete analogue can be viewed as a limiting case under
homogeneous (not Brownian!) scaling of space and time. Fsg&re S5for an
illustration.

5.1 Algebraic properties of the sign sequence

We now prove some simple properties of the sign sequsmcs,, ...Sov_;.

Lemma 5.1 If b(r) is the number of positive bits in the binary expansion tbfen

Proof:
Sinceb(0) = 0 this holds forS, = 1. Therecursive definition (193hows that if



Discrete analogue to Brownian time integrals

\VW

Brownfan time integrals
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N

Figure 5: lllustration of the deterministic switching control corresponding to the
pattern+ - - + - + + - . The top panel shows the pathldf together with
shaded regions indicating discrepancies with the discretized analogue. The middle
panel shows the paths of the first three time integrals of the discretized analogue
(all of which are brought t0 at the end of the sequence). The lower panel shows
the paths of the first three time integralslof
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the lemma holds for the fir&t* entries in the sequence 6f then it will also hold
for the nex2" entries. The result follows by induction. O

The proofs of the next three corollaries are immediate from the recursive def-
inition of the S,,,’s.

Corollary 5.2
Sytjra = S;S.  whena=0,1,...,2" - 1.

Corollary 5.3
SQm-H - _SQm

Notice the analogue d@forollary 5.3doesnot hold betweerb,,,  » andSs,, ;1!

Corollary 5.4

> 8w = 0 ifn>1,

= 1 ifn=0.

These results imply the vanishing of certain sums of low-order powers:

Lemmab.5
oN_1
1)k .
3 %Sm - 0 if k< N,
m=0 ’
= (=1)NoNW-D/2 ifk=N. (20)
Proof:

Use induction on the levet. If £ = 0 then Equation (20)follows from the
N
expression fod "> ' S,, in Corollary 5.4 HenceEquation (20)holds at level
k = 0.
SupposdeEquation (20holds for all levels below levet and supposé < N.
Using therecursive construction (19)

2NV -1 2N-1_1
1 k 1 k _ 1 2N—1 k
(m + )Sm _ (m+1)F —(m+1+ )Sm
Z_O k! Z_O k!

k 2N -1

(2N71)u —1 (m + 1)k7u
- _»222 u! (k —u)! Sm

m=0




using the binomial expansion and cancelling the + 1)* terms. Now we can
apply the inductive hypothesis to dispose of terms involying- 1)*~* for u > 1:

2N _1 oN-1_1

(m+ 1) B N1 (m+ 1)+t
Z k! Sm = 2 Z (k—1)! Sm-
m=0 m=0
ThusEquation (20¥ollows by applying the inductive hypothesis to the right-hand
side. 0

Remark 5.6 An alternative approach uses generating functions, applying the re-
cursive construction dequation (19fo show

Zu ZL‘USWL :<1—€2N71> (1=e™)(1—e")e

m=0

We can now compute the discrete analogug"OQONf EW (t) d¢t under the spe-
cial control which arranges instantaneous switching to I18yeat timem.

Theorem 5.7 Forall k < N

2N 1

(m + 1)k+1 _ mk+1 B
> e o = O (21)

m=0
Proof:
Equation (21¥ollows from Equation (20py binomial expansion: for example we
usem = (m + 1) — 1 to deduce

2N 1 N-— 1

2N -1
(m+ 1N —m& B —u (m 4 1) B
Z_% N! S = ~ N Z_:O aom =0

O

Note thatEquation (21)or S, S, ..., Sov_; IS equivalent taEquation (18)
with appropriate definitions of the switching timég 7, ...,7,.. We now intro-
duce notation for these deterministic times, as they will be basic to our coupling
construction.

Definition 5.8 Define switching timeg;, e T,(w) to be the timesn at which
S.,—1 = *1 switches taoS,, = 1, and setl, = 0.
Corollary 5.9 By induction onNV > 1, sincer(N + 1) > 2r(N),

N < r(N) < 2V-1.



5.2 Application to the coupling problem

We can now summarize our control strategy for successful coupling. By global
analysis (specifically, the inverse function theorem), as long as initial conditions
for integrals of order up tg —5; B dt are sufficiently small we can obtain a

perturbation’y =2V < TP < ... < TB(N) of the switching timed?, e Try
(Definition 5.8 which will dispose of these initial conditions by tir2&. (As will
become apparent, scaling arguments can be deployed to deal with larger initial
conditions.)

Since the coupled Brownian motions cannot actually prodons@antaneous
transitions betweer:1, the switching activity will by time2" have introduced
further non-zero contributions to the integrals. So long as these contributions are
in turn sufficiently small, we can dispose of them in turn by administering a new
control based on switching timég = 2V < T < ... < T}, which form a

small perturbation of thecaledcontrol obtained fromy, ... ,TT(N) by re-scaling
both space and time homogeneously by a fatt@r(not by Brownian scaling!)

and shifting forwards in time bg". Thus switching now occurs between levels
+1/2. A key reason for the success of the coupling is that in terms of Brown-
ian scaling there is now twice as much effective time in which to carry out each
switch! This means that the probability of all switches completing within their
assigned times will increase rapidly to

We can now continue this procedure, disposing of further non-zero contribu-
tions by appending further controls using perturbations based on smaller delays
and smaller levels. A Borel-Cantelli argument shows there is a positive lower
bound on the probability of this infinite sequence completing before a finite time:
and moreover the size of the integrals decreasing to zero.

If this fails (because at some stage no small enough perturbation is available,
or because a switch fails to complete before its successor is due) then we simply
restart the procedure, re-scaling time to ensure existence of the perturbation re-
quired initially. Continuing in this manner allows us to deduce that almost surely
coupling is eventually successful.

All depends on analyzing the behaviour of perturbations of deterministic con-
trols of the form ofDefinition 5.8 Consider the map whose coordinates corre-



spond to analogues of time integrals of order less than

F(to;t,u) = F(tostr,...,tv—1,un, .., urvy)) = (Fo,.... Fn) (22)
N-1 mAl emetl m+l _ ymetl
pt — 1 U —ty
Fu(toitu) = e T e e e )
p (m—|— 1)! (m+1)!
m—+1 m—+1
Uk+1 — Uk
* Z (m+1)!
k=N+1

so F,,(to; t,u) describes the contribution t %Wdt made by instantaneous
switching between levels1 happening attimes, ..., tx, Uy, - - - Ur(ny, Start-
ing at levell at timet,. (RecallingCorollary 5.9 (N) > N if N > 1.) We can
re-write F,,,(to; t, u) as

N
gt . .
Fp(te;t,u) = 22 ‘1—1)+(furtherterms|nvoIV|nqo,uN+1,...).
k=1 ’

We compute the Jacobian fél(y; t, u) with respect to the arguments .. .,¢y:

2 ot Qﬁ 2£
1 2! (NE1)1!
2 )~
—2 —2t5 —232 —2m
det

2(_1)N72 2(_1)N72t 2(_1)N72t?\7—1 2(_1)N72 t%:%
N-1 o1 (J\]/'V_ll)l
5 _
2N (=N ey =DV L 2(=)N T R

This is proportional to a Vandermonde determinant and in fact evaluates to

N (_1)N
1-1-2!-...-(N—1)11<£I<N(tf_ti)’ (24)

which is non-zero so long as tligs are distinct. This and the inverse function
theorem allows us to assert the following fact:

Lemma 5.10 The polynomial (hence smooth) map

t= (t,...,tn) = FO;5,Tnea, - Toowy)



is invertible in a neighbourhood of the initial sequence of switching tifies
T, ..., T corresponding to switching between lev8]s, ... at timesn, .... In
particular there isx > 0 ands’ > 0 such that for alk < ¢/, if |[IW(™+1)(0)| < ¢ for
m=20,1,...,N — 1, then there is ae-perturbation(t,, . .., ty) of (ﬁ, .. .TN)
with0 < t; < ... <ty < TNH (hence generating a valid switching strategy)
which is such that

Fm(ovth s 7tN7fN+1, . 7TT'(N)) = _W(m+1)(0)
form=0,1,...,N — 1.

Note further that fromEquation (22)and the binomial theorem we have a
translation symmetry:

Lemma5.11

m—u

o S
Fu(to+sit+suts) = > ——F(to;t,u)
-_— —_— _ ‘ —_—) —_—
u:O(m u)!

while Equation (22directly yields a scaling property:

Lemma5.12
Fo(Mo M, Auw) = NPT, (tost, )

We need just one more lemma, concerning the behaviour of Brownian motion,
before we can state and prove the main coupling result for this section.

Lemma 5.13 Consider a Brownian motiof started at) and run till it hits level
—3/2 attimeS. For fixed constant¥(;, Ko

ZP S > K (14+n)*™andsup B > Ky(1 +n)*™*| < oo.
n [0,5]

Proof:
This follows easily from the reflection principle and elementary Gaussian integral



estimates:

P [S > (1+n)**orsupB > (1 + n)2+20‘]
0,8

< 1-2P [B(l )22 <« 2L L 2P [B((14n)22) > (14 n)>2]
S A& / T gy t e du

27T 2(1+n )1+o¢) 1+n Ito

5 1

< .
T V2r (14 n)tte

Theorem 5.14 There is a successful co-adapted coupling for Brownian motion
and its first/V iterated time integrals.

Proof:
By the work of§4 this is reduced this to the problem of finding an adapted control
J = +1 which deliversW¥ such that at a particular stopping tigewe have
W(¢) = WO() = 0 andWD(0) + [ LW (t)dt = 0 form = 0, 1,
N — 1. Without loss of generallty we assuriﬂé(o) = 2 (for otherwise we can
run the control/ = —1 till this occurs!).

UsingLemma 5.10andLemma 5.12for fixede > 0 we can choosé€’ large

enough to solve foft?, ... #2,) with [0 — T}| < e in
Fu(0:C1,...,Ct%, CTxns1,....CTyvy) = W) (25)
form = 0, ..., N — 1: carry out this switching strategy over the time period

[0,2V(C) to eliminate the initial conditions.

We now apply the following algorithm iteratively starting at step= 1, and
continuing, to reduce the further contributions to the integrals made during previ-
ous switching strategies.

Stepk: Attime T = (2 — 217%)2VC, useLemmas 5.105.11, and5.12to



determine the solutiof}, ... &) of

F(TE, T - 278t TF + 2750t T + 27 C Ty, .., T8 + 27 C'To )

T ym
= — —W(t)dt
o m!
Ty m m (Tk)mfu 21-k2NC 4y
/Té“l m!W() UZ:O(m—u)!/O u!W( 1) de

(taking into account that previous steps will have elimin:;)fﬁeﬂflél_1 WY (t) dt)
or equivalently Lemmas 5.115.12

Fm(O;tlf, ce ,tlfv,fj\u_l, PN ,TT(N))

1 m+1 217k2NC tm
_ k-1
_ (21kc> /0 W T de

2NC ym
= —/0 —WE Ty de,

m:

form=0,1,...,N —1.

We setl* = T + 27*Ctk form =1, ..., N, andT* = T} + 27%CT,,
form =N +1,...,r(N). Note that’} ) = Ty

Apply the switching strategy determined By, 77, . .. ,Tf(N) over the time
interval [T, T4 1),

The algorithm can fail at this stepéitherthe integralstTé LW (t) dt are too
large,or one of the2” switches fails to complete in the interval allotted to it. The
estimate of.emma 5.13llows us to obtain bounds on (a) the probability of large

. . T* m TE+L m .
size of the integralg, "™ =W dt = [;° LW dt, in terms of bounds ofiV|,
and (b) the probability that a switch begunZdt , fails to complete by time the
next switchT” is due to start.
from Lemma 5.10thate > 0 is the bound on initial conditions required sk-
perturbation switching controls are guaranteed to exist./kebe the event that
both

2NC im
/ WM TH At < Zo(1+k)Fe27 e
0 m!




form=0,...,N — 1, and also
1
W) = —5W(I)
W(rr = —W(TF,) fors=1,...,7(N).
So long asDy, Dy, ..., D,_; have been satisfied, we kndi (77) = 217F,
and so (bearing in mind the effects of the switching stratdgy)holds only if
W(Tk) =2"%fors =1, ...,7(N); moreover, the condition

2NC
tm
/ %W(21"‘“t+T§‘1)dt < Zo(k)treomk=D2e < ¢
O .

ensures we will be able to determine the solutti. . ., t%) in Equation (25)
Now the eventD, is contained in the union a®(n) events of the form

ZnE
sup  [2"PW (u)] < o
welT§ Th ] @NC)mH/(m+ 1)
andV makes an down-crossing frozn*~1 to —27*
over the time intervally, T7.,] ;

1+«
!(1 + k)

whereT¥, T¥ , is an interval of minimum lengt?—*(1 — xe), and the down-
crossing may be replaced by a down-crossing fofito —2~%, or an up-crossing
from —27% to 2% (but this does not decrease the probability of the event con-
cerned!).

By Brownian scaling any one such event has probability bounded above by
the probability of the following event:

o€
sup W(U, | S (1 _|_k)2+204
w€[0,(14+k)2+20] W) V1—re2NC)™ 1 /(m + 1)!
9—(k=1)/2 ) —k/2 )
andW makes an down-crossing from——(1+k)'" to — —— (1+k)1
g \/1—/{5( ) \/1—/%( )

over the time interval0, (1 + k)*™2%].

Consequently byemma 5.13ve deduce tha} |, P [D;] < oo, and moreover we

can use the Markov property and the density of Brownian paths to deduce there is
a positive chancg > 0 that(, £} occurs. If this happens then coupling succeeds
at timelim; ., 7¢: otherwise we can start the strategy anew. We can therefore
assert, almost surely success will occur eventually. O



6 Impossibility of coupling all iterated integrals

Is it possible to arrange successful coupling dtiriterated integrals at a single
stopping time using some adapted contrd?

Summation of the coupling statements produces a statement about Laplace
transforms of the path, which allows us to demonstrate that coupling of all iterated
integrals is possible only in trivial cases.

Theorem 6.1 Suppose that the initial conditions for the iterated stochastic inte-
grals arefeasible in the sense that they could have been produced by integration
of a continuous path starting at some previous time (without loss of generality,
time —1). Consider an adapted control producing coupling for all iterated in-
tegrals at a stopping timé. This can be produced only# = B — A is actually
identically zero ovef0, C].

Proof:
Suppose the Brownian paths and all iterated integrals couglesat? ™ (¢) = 0
for all n. We show that in this casé” = 0 must hold over the interval, ¢].

By hypothesis, we may convert into statements about integrals|[ever]
(with a suitable extension d#") using powers of. We can write

The continuous path’ is bounded ovef—1, (], so the sum on the left-hand-side
converges and moreover we can exchange integral and summation to obtain

¢
/ exp(BOWE)dE = 0
-1
for all 3. By uniqueness of the Laplace transform, this holds only’i= 0 over
the intervall0, {] as required. O

Remark 6.2 This argument is essentially non-stochastic, based only on the con-
tinuity of the path which is the difference of the two coupled processes, and so
holds foranycoupling, whether co-adapted or not.

Remark 6.3 More generally, this argument extends immediately to cover for ex-
ample the case when the sequence of initial conditidi®)(0) is L? summable
(use anL? path over—1, 0]!).



7 Conclusion

We conclude by noting that the successful coupling strategi€¢8 ahd §5 are

both in essence very simple, involving switching between synchronpus ()

and mirror (/ = —1) coupling. It would be interesting to construct a successful
coupling strategy which optimized, for example, a specific exponential moment
of the coupling time; one expects there would be a whole family of such couplings
parametrized by the coefficient in the exponential moment, and that the coupling
strategies themselves would have some kind of geometric flavour.

The results of this paper can be viewed as introducing a new notion to coupling
theory: that of an “exotic coupling”, a co-adapted coupling for a diffusion (in
this case real Brownian motion) which successfully couples not only the diffusion
itself but also a number of path functionals of the diffusion. Itis striking that exotic
coupling is feasible at all; the method of proof for the general cgSeig very
suggestive for how to address more general situati@® Arous et al. (1995)
also showed the existence of an exotic coupling for planar Brownian motion using
the path functional given by theélvy stochastic area, and it would be interesting
to see how far th&en Arous et al. (1995)esult could be extended to higher
dimensional Brownian motion; this would be a useful next step towards the natural
bold conjecture which we now present:

Conjecture 7.1 Hypoelliptic diffusions with smooth coefficients can be coupled
co-adaptively with positive chance of success from any two starting points.

It would of course be of great interest to obtain specific applications of these
couplings, perhaps for example in Coupling from the Past constructions.

Finally we remark thaPrice (1996 gives some results concerning exotic cou-
pling using single functionals of the forrh f(¢) B dt.



References Studies in Advanced Mathematics

Cambridge: Cambridge University
Aldous, D. J. and H. Thorisson [1993]. Press

Shift-coupling.Stochastic Processes

and Their Application4(1), 1-14.  Cranston, M. and F.-Y. Wang [2000].

A condition for the equivalence of
coupling and shift coupling.The

Ben Arous, G., M. Cranston, and W. S. Annals of Probability28(4), 1666—
Kendall [1995]. Coupling construc- 1679w

tions for hypoelliptic diffusions:
Two examp|es_ In M. Cranston and El KarOUi, N. and M. Chaleyat'MaurEI

M. Pinsky (Eds.)Stochastic Analy- [1978]. Un probéme de éflexion
sis: Summer Research Institute July €t ses applications au temps lo-
11-30, 1993. Volume 57, Provi- cal et auxéquations difrentielles
dence, RI Providence, pp. 193-212. stochastiques sWR, cas continu. In
American Mathematical Society J. Azema and M. Yor (Eds.Jlemps
Locaux Volume 52-53, pp. 117-
Burdzy, K. and W. S. Kendall [2000, 144.

May]. Efficient Markovian cou- _
plings: examples and counterexam- Goldstein, S. [1978 — 1979]. Max-

ples.The Annals of Applied Proba- imal  coupling. Zeitschrift fir
bility 10(2), 362—409E® Also Uni- Wabhrscheinlichkeitstheorie und
versity of Warwick Department of Verve Gebiete 4@), 193-204.

Statistics Research Report 3&i. Griffeath, D. [1974 / 1975]. A max-

Chen, X. and W. V. Li [2003]. Quadratic imal coupling for Markov chains.
functionals and small ball probabili- Z. Wahrscheinlichkeitstheorie und
ties for them-fold integrated Brow- Verw. Gebiete 3195-106.

nian motion.The Annals of Proba-

bility 31(2), 1052—107 78 Groeneboom, P., G. Jongbloed, and

J. A. Wellner [1999]. Integrated

Corwin, L. J. and F. P. Greenleaf Brownian motion, conditioned to be
[1990]. Representations of nilpotent positive. The Annals of Probabil-
Lie groups and their applications. ity 27(3), 1283-1303z»

Part |, Volume 18 of Cambridge Hayes, T. P. and E. Vigoda [2003].

A non-Markovian coloring for ran-

This is a rich hypertext bibliography. Journals are linked to d0m|y sampling colorings. Techni-
their homepages, and icoZs which link to preprints are .
inserted where available. Stable URL links (as provided for cal report, Dept- Compmer Science,
example by JSTOR] or Project Euclid®) have been University of Chicago. Preliminary

added where known. Access to such URLs is not univer-
sal: in case of difficulty you should check whether you are
registered (directly or indirectly) with the relevant provider.

version availabler.


http://www.elsevier.com/locate/issn/03044149
http://www.elsevier.com/locate/issn/03044149
http://dx.doi.org/10.1016/0304-4149(93)90034-2
http://www.amsy.org/bookstore-getitem?key=isbn&id=0-8218-0289-5
http://www.amsy.org/bookstore-getitem?key=isbn&id=0-8218-0289-5
http://www.amsy.org/bookstore-getitem?key=isbn&id=0-8218-0289-5
http://www.ams.org/
http://www.maths.lth.se/annappr
http://www.maths.lth.se/annappr
http://projecteuclid.org/getRecord?id=euclid.aoap/1019487348
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/331.ps.gz
http://www.imstat.org/publications/journals/annprob/
http://www.imstat.org/publications/journals/annprob/
http://projecteuclid.org/getRecord?id=euclid.aop/1048516545
http://links.jstor.org
http://projecteuclid.org
http://www.cup.cam.ac.uk
http://www.cup.cam.ac.uk
http://www.imstat.org/publications/journals/annprob/
http://www.imstat.org/publications/journals/annprob/
http://projecteuclid.org/Dienst/UI/1.0/Display/euclid.aop/1019160502
http://www.imstat.org/publications/journals/annprob/
http://www.imstat.org/publications/journals/annprob/
http://projecteuclid.org/getRecord?id=euclid.aop/1022677447
http://people.cs.uchicago.edu/~vigoda/NonMarkovian.ps

Jerrum, M. [2003].Counting, sampling
and integrating: algorithms and
complexity Lectures in Mathematics
ETH Zirich. Basel: Birkkuser Ver-
lag.

Kaimanovich, V. A. [1986]. Brow-
nian motion and harmonic func-
tions on covering manifolds. An en-
tropic approachDokl. Akad. Nauk
SSSR 288), 1045-1049.

Kendall, W. S. [1986]. Stochastic dif-
ferential geometry, a coupling prop-
erty, and harmonic map3he Jour-
nal of the London Mathematical So-
ciety (Second Serie8B, 554-566.

Kendall, W. S. [1994]. Probability,
convexity, and harmonic maps II:
Smoothness via probabilistic gradi-
ent inequalities.Journal of Func-
tional Analysis126, 228-257.m%
Also: University of Warwick De-
partment of Statistics Research Re-
port 260.2:

Khoshnevisan, D. and Z. Shi [1998].
Chung’s law for integrated Brow-
nian motion. Transactions of the
American  Mathematical  Soci-
ety 350(10), 4253-4264%

Kolmogorov, A. N. [1934]. Zudllige be-
wegungen (zur theorie der Brown-
schen bewegungfnnals of Mathe-
matics 35116-117g

Lachal, A. [1997]. Local asymptotic
classes for the successive primitives
of Brownian motion.The Annals of
Probability 25(4), 1712—-17 34>

Leeb, B. [1993]. Harmonic functions
along Brownian balls and the Li-
ouville property for solvable Lie
groups. Math. Ann. 29¢4), 577-
584.1

Lyons, T. J. and D. Sullivan [1984].
Function theory, random paths and
covering spaces.J. Differential
Geom. 192), 299-323.

McKean, H. [1963]. A winding problem
for a stochastic resonator driven by a
white noise Journal of Mathematics
of Kyoto University 2227-235.

Price, C. J. [1996].Zeros of Brown-
ian polynomials and Coupling of
Brownian areas Ph. D. thesis, De-
partment of Statistics, University of
Warwick.

Propp, J. G. and D. B. Wilson [1996].
Exact sampling with coupled
Markov chains and applications
to statistical mechanicsRandom
Structures and  Algorithms 9,
223-252m3

Thorisson, H. [2000]Coupling, station-
arity, and regenerationNew York:
Springer-Verlag


http://uk.cambridge.org/journals/jlm
http://uk.cambridge.org/journals/jlm
http://uk.cambridge.org/journals/jlm
http://www.academicpress.com/jfa
http://www.academicpress.com/jfa
http://dx.doi.org/10.1006/jfan.1994.1147
http://www.warwick.ac.uk/statsdept/staff/WSK/papers/260.ps.gz
http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/jourcgi/jour-getitem?pii=S000299479802011X
http://links.jstor.org/sici?sici=0003-486X%28193401%292%3A35%3A1%3C116%3AZB%28TDB%3E2.0.CO%3B2-6
http://www.imstat.org/publications/journals/annprob/
http://www.imstat.org/publications/journals/annprob/
http://projecteuclid.org/getRecord?id=euclid.aop/1023481108
http://134.76.163.65/servlet/digbib?template=view.html&id=164066&startpage=581&endpage=588&pagenumber=581&image-path=http%3A%2F%2F134.76.176.141%2Fcgi-bin%2Fletgifsfly.cgi&image-subpath=%2F4179&imageset-id=4179&zoom-factor=100&hlinfo=-1
http://www.interscience.wiley.com/jpages/1042-9832/
http://www.interscience.wiley.com/jpages/1042-9832/
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
http://www.amazon.com/exec/obidos/ASIN/0387987797/104-9490813-9604718
http://www.amazon.com/exec/obidos/ASIN/0387987797/104-9490813-9604718
http://www.springer.de/

Other University of Warwick Department of Statistics
Research Reports authored or co—authored by W.S. Kendall.

161: The Euclidean diffusion of shape.
162: Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence.
172: A spatial Markov property for nearest—neighbour Markov point processes.
181: Convexity and the hemisphere.
202: A remark on the proof of &'s formula forC2 functions of continuous semimartingales.
203: Computer algebra and stochastic calculus.
212: Convex geometry and nonconfludiimartingales I: Tightness and strict convexity.
: The Propeller: a counterexample to a conjectured criterion for the existence of certain convex functions.
214: Convex Geometry and nonconfludrtmartingales Il: Well-posedness aRemartingale convergence.
216: (with E. Hsu) Limiting angle of Brownian motion in certain two—dimensional Cartan—Hadamard manifolds.
217: Symbolic I6 calculus: an introduction.
218: (with H. Huang) Correction note to “Martingales on manifolds and harmonic maps.”
222: (with O.E. Barndorff-Nielsen and P.E. Jupp) Stochastic calculus, statistical asymptotics, Taylor strings and phyla.
223: Symbolic 16 calculus: an overview.
231: The radial part of &-martingale and a non-implosion theorem.
236: Computer algebra in probability and statistics.
237: Computer algebra and yoke geometry |: When is an expression a tensor?
238: Itovsn3: doing stochastic calculus withathematica.
239: On the empty cells of Poisson histograms.
244: (with M. Cranston and P. March) The radial part of Brownian motion II: Its life and times on the cut locus.
247: Brownian motion and computer algebra (Text of talk to BAAS Science Festival '92, Southampton Wednesday 26 August 1992, with screenshots of
illustrative animations).
257: Brownian motion and partial differential equations: from the heat equation to harmonic maps (Special inviteddéttusession of the ISI, Firenze).
260 Probability, convexity, and harmonic maps Il: Smoothness via probabilistic gradient inequalities.
261: (with G. Ben Arous and M. Cranston) Coupling constructions for hypoelliptic diffusions: Two examples.
280: (with M. Cranston and Yu. Kifer) Gromov's hyperbolicity and Picard’s little theorem for harmonic maps.
292 Perfect Simulation for the Area-Interaction Point Process.
293 (with A.J. Baddeley and M.N.M. van Lieshout) Quermass-interaction processes.
295 On some weighted Boolean models.
296 A diffusion model for Bookstein triangle shape.
301: COMPUTER ALGEBRA: an encyclopaedia article.
308 Perfect Simulation for Spatial Point Processes.
319: Geometry, statistics, and shape.
321 From Stochastic Parallel Transport to Harmonic Maps.
323 (with E. Thonnes) Perfect Simulation in Stochastic Geometry.
325 (with J.M. Corcuera) Riemannian barycentres and geodesic convexity.
327 Symbolic I calculus inAXIOM: an ongoing story.
328 Itovsn3in AXIOM: modules, algebras and stochastic differentials.
331% (with K. Burdzy) Efficient Markovian couplings: examples and counterexamples.
333 Stochastic calculus iMathematica: software and examples.
341 Stationary countable dense random sets.
347 (with J. Mpller) Perfect Metropolis-Hastings simulation of locally stable point processes.
348 (with J. Mpller) Perfect implementation of a Metropolis-Hastings simulation of Markov point processes
349 (with Y. Cai) Perfect simulation for correlated Poisson random variables conditioned to be positive.
350 (with Y. Cai) Perfect implementation of simulation for conditioned Boolean Model via correlated Poisson random variables.
353 (with C.J. Price) Zeros of Brownian Polynomials.
371 (with G. Montana) Small sets and Markov transition densities.
382 (with A. Brix) Simulation of cluster point processes without edge effects.
391 (with E. Thonnes, A. Bhalerao, R.G. Wilson) A Bayesian approach to inferring vascular tree structure from 2D imagery.
392 (with A. Bhalerao, E. Thénnes, R.G. Wilson) Inferring vascular tree structure from 2D and 3D imagery.
402 (with R.G. Wilson) Ising models and multiresolution quad-trees.
409: Constructing Markov chains for differentiable curves.
410: Simplification rules for ItoIntegral.
416 (with C.J. Price) Coupling iterated Kolmogorov diffusions.

Also see the following related preprints

317: E. Thonnes: Perfect Simulation of some point processes for the impatient user.

334: M.N.M. van Lieshout and E. Ténnes: A Comparative Study on the Power of van Lieshout and Baddeleyiaction.
359: E. Thonnes: A Primer on Perfect Simulation.

366: J.Lund and E. Tnnes: Perfect Simulation for point processes given noisy observations.

If you want copies of any of these reports then please email your requests to the secretarpasisiics @warwick.ac.uk > (mail address: the Depart-
ment of Statistics, University of Warwick, Coventry CV4 7AL, UK).


http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/260.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/292.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/293.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/295.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/296.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/308.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/321.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/323.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/325.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/327.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/328.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/331.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/333.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/341.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/347.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/348.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/349.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/350.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/353.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/371.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/382.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/391.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/392.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/402.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/416.pdf
statistics@warwick.ac.uk

	Introduction
	Parabolic and harmonic functions
	Explicit coupling
	Case of first integral
	Controlling two iterated integrals

	Reduction
	Coupling many iterated integrals
	Algebraic properties
	Application to coupling

	Impossibility result
	Conclusion
	References

